Skip to main content
Top
Published in: International Journal of Data Science and Analytics 4/2023

03-01-2023 | Regular Paper

Apache Spark-based scalable feature extraction approaches for protein sequence and their clustering performance analysis

Authors: Preeti Jha, Aruna Tiwari, Neha Bharill, Milind Ratnaparkhe, Om Prakash Patel, Nilagiri Harshith, Mukkamalla Mounika, Neha Nagendra

Published in: International Journal of Data Science and Analytics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Genome sequencing projects are rapidly contributing to the rise of high-dimensional protein sequence datasets. Extracting features from a high-dimensional protein sequence dataset poses many challenges. However, many features extraction methods exist, but extracting features from millions of protein sequences becomes impractical because these approaches are not scalable. Therefore, to design an efficient scalable feature extraction approach that extracts significant features, we have proposed two Apache Spark-based scalable feature extraction approaches that extracts significantly important features based on statistical properties from huge protein sequences, which are termed 60d-SPF (60-dimensional Scalable Protein Feature) and 6d-SCPSF (6-dimensional Scalable Co-occurrence-based Probability-Specific Feature). The proposed 60d-SPF and 6d-SCPSF approaches capture the statistical properties of amino acids to create a fixed-length numeric feature vector that represents each protein sequence in terms of 60-dimensional and 6-dimensional features, respectively. The preprocessed huge protein sequences are used as an input in four clustering algorithms, i.e., scalable random sampling with iterative optimization fuzzy c-means (SRSIO-FCM), scalable literal fuzzy c-means (SLFCM), kernelized SRSIO-FCM (KSRSIO-FCM), and kernelized SLFCM (KSLFCM) for clustering. We have conducted extensive experiments on various soybean protein datasets to demonstrate the effectiveness of the proposed feature extraction methods, 60d-SPF, 6d-SCPSF, and existing feature extraction methods on SRSIO-FCM, SLFCM, KSRSIO-FCM, and KSLFCM clustering algorithms. The reported results in terms of the Silhouette index and the Davies–Bouldin index show that the proposed 60d-SPF extraction method on SRSIO-FCM, SLFCM, KSRSIO-FCM, and KSLFCM clustering algorithms achieve significantly better results than the proposed 6d-SCPSF and existing feature extraction approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Guo, R., Zhao, Y., Zou, Q., Fang, X., Peng, S.: Bioinformatics applications on apache spark. GigaScience 7(8), giy098 (2018) Guo, R., Zhao, Y., Zou, Q., Fang, X., Peng, S.: Bioinformatics applications on apache spark. GigaScience 7(8), giy098 (2018)
2.
go back to reference Alawneh, L., Shehab, M.A., Al-Ayyoub, M., Jararweh, Y., Al-Sharif, Z.A.: A scalable multiple pairwise protein sequence alignment acceleration using hybrid cpu-gpu approach. Clust. Comput. 23(4), 2677–2688 (2020)CrossRef Alawneh, L., Shehab, M.A., Al-Ayyoub, M., Jararweh, Y., Al-Sharif, Z.A.: A scalable multiple pairwise protein sequence alignment acceleration using hybrid cpu-gpu approach. Clust. Comput. 23(4), 2677–2688 (2020)CrossRef
3.
go back to reference Krause, A., Stoye, J., Vingron, M.: Large scale hierarchical clustering of protein sequences. BMC Bioinform. 6(1), 15 (2005)CrossRef Krause, A., Stoye, J., Vingron, M.: Large scale hierarchical clustering of protein sequences. BMC Bioinform. 6(1), 15 (2005)CrossRef
4.
go back to reference Zou, Q., Lin, G., Jiang, X., Liu, X., Zeng, X.: Sequence clustering in bioinformatics: an empirical study. Brief. Bioinform. 21(1), 1–10 (2020) Zou, Q., Lin, G., Jiang, X., Liu, X., Zeng, X.: Sequence clustering in bioinformatics: an empirical study. Brief. Bioinform. 21(1), 1–10 (2020)
5.
go back to reference Steinegger, M., Söding, J.: Clustering huge protein sequence sets in linear time. Nat. Commun. 9(1), 1–8 (2018)CrossRef Steinegger, M., Söding, J.: Clustering huge protein sequence sets in linear time. Nat. Commun. 9(1), 1–8 (2018)CrossRef
6.
go back to reference Zeng, M., Zhang, F., Wu, F.X., Li, Y., Wang, J., Li, M.: Protein-protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics 36(4), 1114–1120 (2020)CrossRef Zeng, M., Zhang, F., Wu, F.X., Li, Y., Wang, J., Li, M.: Protein-protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics 36(4), 1114–1120 (2020)CrossRef
7.
go back to reference Han, K.F., Baker, D.: Recurring local sequence motifs in proteins. J. Mol. Biol. 251(1), 176–187 (1995)CrossRef Han, K.F., Baker, D.: Recurring local sequence motifs in proteins. J. Mol. Biol. 251(1), 176–187 (1995)CrossRef
8.
go back to reference Bystroff, C., Thorsson, V., Baker, D.: Hmmstr: a hidden markov model for local sequence-structure correlations in proteins. J. Mol. Biol. 301(1), 173–190 (2000)CrossRef Bystroff, C., Thorsson, V., Baker, D.: Hmmstr: a hidden markov model for local sequence-structure correlations in proteins. J. Mol. Biol. 301(1), 173–190 (2000)CrossRef
9.
go back to reference Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., Mounika, M., Nagendra, N.: A novel scalable kernelized fuzzy clustering algorithms based on in-memory computation for handling big data. IEEE Trans. Emerg. Topic. Comput. Intell. 5, 908–919 (2020)CrossRef Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., Mounika, M., Nagendra, N.: A novel scalable kernelized fuzzy clustering algorithms based on in-memory computation for handling big data. IEEE Trans. Emerg. Topic. Comput. Intell. 5, 908–919 (2020)CrossRef
10.
go back to reference Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., Mounika, M., Nagendra, N.: Apache spark based kernelized fuzzy clustering framework for single nucleotide polymorphism sequence analysis. Comput. Biol. Chem 92, 107454 (2021)CrossRef Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., Mounika, M., Nagendra, N.: Apache spark based kernelized fuzzy clustering framework for single nucleotide polymorphism sequence analysis. Comput. Biol. Chem 92, 107454 (2021)CrossRef
11.
go back to reference Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., Nagendra, N., Mounika, M.: Scalable incremental fuzzy consensus clustering algorithm for handling big data. Soft. Comput. pp 1–17 (2021b) Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., Nagendra, N., Mounika, M.: Scalable incremental fuzzy consensus clustering algorithm for handling big data. Soft. Comput. pp 1–17 (2021b)
12.
go back to reference Bezdek, J.C., Ehrlich, R., Full, W.: Fcm: the fuzzy c-means clustering algorithm. Comput. & Geosci. 10(2–3), 191–203 (1984)CrossRef Bezdek, J.C., Ehrlich, R., Full, W.: Fcm: the fuzzy c-means clustering algorithm. Comput. & Geosci. 10(2–3), 191–203 (1984)CrossRef
13.
go back to reference Zhang, C.T., Chou, K.C., Maggiora, G.: Predicting protein structural classes from amino acid composition: application of fuzzy clustering. Protein Eng. Des. Select. 8(5), 425–435 (1995)CrossRef Zhang, C.T., Chou, K.C., Maggiora, G.: Predicting protein structural classes from amino acid composition: application of fuzzy clustering. Protein Eng. Des. Select. 8(5), 425–435 (1995)CrossRef
14.
go back to reference Lu, T., Dou, Y., Zhang, C.: Fuzzy clustering of cpp family in plants with evolution and interaction analyses. BMC Bioinform. 14(S13), S10 (2013)CrossRef Lu, T., Dou, Y., Zhang, C.: Fuzzy clustering of cpp family in plants with evolution and interaction analyses. BMC Bioinform. 14(S13), S10 (2013)CrossRef
15.
go back to reference Farhangi, E., Ghadiri, N., Asadi, M., Nikbakht, MA., Pitre, S.: Fast and scalable protein motif sequence clustering based on hadoop framework. In: 2017 3th International Conference on Web Research (ICWR), IEEE, pp 24–31 (2017) Farhangi, E., Ghadiri, N., Asadi, M., Nikbakht, MA., Pitre, S.: Fast and scalable protein motif sequence clustering based on hadoop framework. In: 2017 3th International Conference on Web Research (ICWR), IEEE, pp 24–31 (2017)
16.
go back to reference Chunduri, R.K., Cherukuri, A.K.: Scalable formal concept analysis algorithms for large datasets using spark. J. Ambient Intell. Humaniz. Comput. pp 1–21 (2018) Chunduri, R.K., Cherukuri, A.K.: Scalable formal concept analysis algorithms for large datasets using spark. J. Ambient Intell. Humaniz. Comput. pp 1–21 (2018)
17.
go back to reference Oussous, A., Benjelloun, F.Z., Lahcen, A.A., Belfkih, S.: Big data technologies: a survey. J. King Saud Univ Comput Inform Sci 30(4), 431–448 (2018) Oussous, A., Benjelloun, F.Z., Lahcen, A.A., Belfkih, S.: Big data technologies: a survey. J. King Saud Univ Comput Inform Sci 30(4), 431–448 (2018)
18.
go back to reference Bharill, N., Tiwari, A., Malviya, A.: Fuzzy based scalable clustering algorithms for handling big data using apache spark. IEEE Trans. Big Data 2(4), 339–352 (2016)CrossRef Bharill, N., Tiwari, A., Malviya, A.: Fuzzy based scalable clustering algorithms for handling big data using apache spark. IEEE Trans. Big Data 2(4), 339–352 (2016)CrossRef
19.
go back to reference Vipsita, S., Rath, S.K.: Two-stage approach for protein superfamily classification. Comput. Biol. J. 2013 (2013) Vipsita, S., Rath, S.K.: Two-stage approach for protein superfamily classification. Comput. Biol. J. 2013 (2013)
20.
go back to reference Wang, J.T.L., Ma, Q., Shasha, D., Wu, C.H.: New techniques for extracting features from protein sequences. IBM Syst. J. 40(2), 426–441 (2001)CrossRef Wang, J.T.L., Ma, Q., Shasha, D., Wu, C.H.: New techniques for extracting features from protein sequences. IBM Syst. J. 40(2), 426–441 (2001)CrossRef
21.
go back to reference Wu, C., Whitson, G., McLarty, J., Ermongkonchai, A., Chang, T.C.: Protein classification artificial neural system. Protein Sci. 1(5), 667–677 (1992)CrossRef Wu, C., Whitson, G., McLarty, J., Ermongkonchai, A., Chang, T.C.: Protein classification artificial neural system. Protein Sci. 1(5), 667–677 (1992)CrossRef
22.
go back to reference Dayhoff, M., Schwartz, R., Orcutt, B.: 22 a model of evolutionary change in proteins. In: Atlas of Protein Sequence and Structure, vol. 5, pp. 345–352. National Biomedical Research Foundation Silver Spring, MD (1978) Dayhoff, M., Schwartz, R., Orcutt, B.: 22 a model of evolutionary change in proteins. In: Atlas of Protein Sequence and Structure, vol. 5, pp. 345–352. National Biomedical Research Foundation Silver Spring, MD (1978)
23.
go back to reference Das, J.K., Sengupta, A., Choudhury, P.P., Roy, S.: Mapping sequence to feature vector using numerical representation of codons targeted to amino acids for alignment-free sequence analysis. Gene 766, 145096 (2021)CrossRef Das, J.K., Sengupta, A., Choudhury, P.P., Roy, S.: Mapping sequence to feature vector using numerical representation of codons targeted to amino acids for alignment-free sequence analysis. Gene 766, 145096 (2021)CrossRef
24.
go back to reference Bandyopadhyay, S.: An efficient technique for superfamily classification of amino acid sequences: feature extraction, fuzzy clustering and prototype selection. Fuzzy Sets Syst. 152(1), 5–16 (2005)MathSciNetCrossRefMATH Bandyopadhyay, S.: An efficient technique for superfamily classification of amino acid sequences: feature extraction, fuzzy clustering and prototype selection. Fuzzy Sets Syst. 152(1), 5–16 (2005)MathSciNetCrossRefMATH
25.
go back to reference Mansoori, E.G., Zolghadri, M.J., Katebi, S.D., Mohabatkar, H., Boostani, R., Sadreddini, M.H.: Generating fuzzy rules for protein classification. Iran. J. Fuzzy Syst 5(2), 21–33 (2008)MathSciNetMATH Mansoori, E.G., Zolghadri, M.J., Katebi, S.D., Mohabatkar, H., Boostani, R., Sadreddini, M.H.: Generating fuzzy rules for protein classification. Iran. J. Fuzzy Syst 5(2), 21–33 (2008)MathSciNetMATH
26.
go back to reference Chou, K.C.: Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 273(1), 236–247 (2011)MathSciNetCrossRefMATH Chou, K.C.: Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 273(1), 236–247 (2011)MathSciNetCrossRefMATH
27.
go back to reference Chou, KC.: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21(1), 10–19 (2005) Chou, KC.: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21(1), 10–19 (2005)
28.
go back to reference Yu, C., Deng, M., Cheng, S.Y., Yau, S.C., He, R.L., Yau, S.S.T.: Protein space: a natural method for realizing the nature of protein universe. J. Theor. Biol. 318, 197–204 (2013)CrossRefMATH Yu, C., Deng, M., Cheng, S.Y., Yau, S.C., He, R.L., Yau, S.S.T.: Protein space: a natural method for realizing the nature of protein universe. J. Theor. Biol. 318, 197–204 (2013)CrossRefMATH
29.
go back to reference Gupta, M., Niyogi, R., Misra, M.: An alignment-free method to find similarity among protein sequences via the general form of chou’s pseudo amino acid composition. SAR and QSAR in Environ. Res. 24(7), 597–609 (2013)CrossRef Gupta, M., Niyogi, R., Misra, M.: An alignment-free method to find similarity among protein sequences via the general form of chou’s pseudo amino acid composition. SAR and QSAR in Environ. Res. 24(7), 597–609 (2013)CrossRef
30.
go back to reference Chou, K.C.: Prediction of protein cellular attributes using pseudo-amino acid composition. Protein. Struct. Funct. Bioinform. 43(3), 246–255 (2001)CrossRef Chou, K.C.: Prediction of protein cellular attributes using pseudo-amino acid composition. Protein. Struct. Funct. Bioinform. 43(3), 246–255 (2001)CrossRef
31.
go back to reference Bharill, N., Tiwari, A., Rawat, A.: A novel technique of feature extraction with dual similarity measures for protein sequence classification. Proced. Comput. Sci. 48, 795–801 (2015)CrossRef Bharill, N., Tiwari, A., Rawat, A.: A novel technique of feature extraction with dual similarity measures for protein sequence classification. Proced. Comput. Sci. 48, 795–801 (2015)CrossRef
32.
go back to reference Mansoori, E.G., Zolghadri, M.J., Katebi, S.D.: Protein superfamily classification using fuzzy rule-based classifier. IEEE Trans. NanoBiosci. 8(1), 92–99 (2009)CrossRef Mansoori, E.G., Zolghadri, M.J., Katebi, S.D.: Protein superfamily classification using fuzzy rule-based classifier. IEEE Trans. NanoBiosci. 8(1), 92–99 (2009)CrossRef
33.
go back to reference Veiga, J., Expósito, R.R., Pardo, X.C., Taboada, G.L., Tourifio, J.: Performance evaluation of big data frameworks for large-scale data analytics. In: 2016 IEEE International Conference on Big Data (Big Data), IEEE, pp 424–431 (2016) Veiga, J., Expósito, R.R., Pardo, X.C., Taboada, G.L., Tourifio, J.: Performance evaluation of big data frameworks for large-scale data analytics. In: 2016 IEEE International Conference on Big Data (Big Data), IEEE, pp 424–431 (2016)
34.
go back to reference Li, R., Hu, H., Li, H., Wu, Y., Yang, J.: Mapreduce parallel programming model: a state-of-the-art survey. Int. J. Parallel Program. 44(4), 832–866 (2016)CrossRef Li, R., Hu, H., Li, H., Wu, Y., Yang, J.: Mapreduce parallel programming model: a state-of-the-art survey. Int. J. Parallel Program. 44(4), 832–866 (2016)CrossRef
35.
go back to reference Le Nir, Y.: Spark and machine learning library. TORUS 1–Toward an open resource using services: Cloud Comput. Environ. Data pp 229–243 (2020) Le Nir, Y.: Spark and machine learning library. TORUS 1–Toward an open resource using services: Cloud Comput. Environ. Data pp 229–243 (2020)
36.
go back to reference Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, USENIX Association, pp 2–2 (2012) Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, USENIX Association, pp 2–2 (2012)
37.
38.
go back to reference Chou, K.C.: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21(1), 10–19 (2005)CrossRef Chou, K.C.: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21(1), 10–19 (2005)CrossRef
39.
go back to reference Dayhoff, M.O.: A model of evolutionary change in proteins. Atlas Prot. Seq. Struct. 5, 89–99 (1972) Dayhoff, M.O.: A model of evolutionary change in proteins. Atlas Prot. Seq. Struct. 5, 89–99 (1972)
40.
go back to reference Salloum, S., Dautov, R., Chen, X., Peng, P.X., Huang, J.Z.: Big data analytics on apache spark. Int. J. Data Sci. Anal. 1(3–4), 145–164 (2016)CrossRef Salloum, S., Dautov, R., Chen, X., Peng, P.X., Huang, J.Z.: Big data analytics on apache spark. Int. J. Data Sci. Anal. 1(3–4), 145–164 (2016)CrossRef
41.
go back to reference Borthakur, D., et al.: Hdfs architecture guide. Hado. Apac. Proj. 53(1–13), 2 (2008) Borthakur, D., et al.: Hdfs architecture guide. Hado. Apac. Proj. 53(1–13), 2 (2008)
42.
go back to reference Wysmierski, P.T., Vello, N.A.: The genetic base of brazilian soybean cultivars: evolution over time and breeding implications. Gene. Mole. Biol. 36(4), 547–555 (2013)CrossRef Wysmierski, P.T., Vello, N.A.: The genetic base of brazilian soybean cultivars: evolution over time and breeding implications. Gene. Mole. Biol. 36(4), 547–555 (2013)CrossRef
43.
go back to reference Sedivy, E.J., Wu, F., Hanzawa, Y.: Soybean domestication: the origin, genetic architecture and molecular bases. New Phytol. 214(2), 539–553 (2017)CrossRef Sedivy, E.J., Wu, F., Hanzawa, Y.: Soybean domestication: the origin, genetic architecture and molecular bases. New Phytol. 214(2), 539–553 (2017)CrossRef
44.
go back to reference Lee, J.D., Shannon, J.G., Vuong, T.D., Nguyen, H.T.: Inheritance of salt tolerance in wild soybean (glycine soja sieb. and zucc.) accession pi483463. J. Hered. 100(6), 798–801 (2009) Lee, J.D., Shannon, J.G., Vuong, T.D., Nguyen, H.T.: Inheritance of salt tolerance in wild soybean (glycine soja sieb. and zucc.) accession pi483463. J. Hered. 100(6), 798–801 (2009)
45.
go back to reference Xie, M., Chung, C.Y.L., Li, M.W., Wong, F.L., Wang, X., Liu, A., Wang, Z., Leung, A.K.Y., Wong, T.H., Tong, S.W., et al.: A reference-grade wild soybean genome. Nat. Commun. 10(1), 1–12 (2019)CrossRef Xie, M., Chung, C.Y.L., Li, M.W., Wong, F.L., Wang, X., Liu, A., Wang, Z., Leung, A.K.Y., Wong, T.H., Tong, S.W., et al.: A reference-grade wild soybean genome. Nat. Commun. 10(1), 1–12 (2019)CrossRef
46.
go back to reference Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome expression data. Signal Process. 83(4), 825–833 (2003)CrossRefMATH Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome expression data. Signal Process. 83(4), 825–833 (2003)CrossRefMATH
47.
go back to reference Dugué, N., Lamirel, J.C., Chen, Y.: Evaluating clustering quality using features salience: a promising approach. Neural Comput. Appl. 33(19), 12939–12956 (2021)CrossRef Dugué, N., Lamirel, J.C., Chen, Y.: Evaluating clustering quality using features salience: a promising approach. Neural Comput. Appl. 33(19), 12939–12956 (2021)CrossRef
48.
go back to reference Coelho, G.P., Barbante, C.C., Boccato, L., Attux, R.R., Oliveira, J.R., Von Zuben, F.J.: Automatic feature selection for bci: an analysis using the davies-bouldin index and extreme learning machines. In: The 2012 international joint conference on neural networks (IJCNN), IEEE, pp 1–8 (2012) Coelho, G.P., Barbante, C.C., Boccato, L., Attux, R.R., Oliveira, J.R., Von Zuben, F.J.: Automatic feature selection for bci: an analysis using the davies-bouldin index and extreme learning machines. In: The 2012 international joint conference on neural networks (IJCNN), IEEE, pp 1–8 (2012)
49.
go back to reference Shen, H.B., Yang, J., Liu, X.J., Chou, K.C.: Using supervised fuzzy clustering to predict protein structural classes. Biochem. Biophys. Res. Commun. 334(2), 577–581 (2005)CrossRef Shen, H.B., Yang, J., Liu, X.J., Chou, K.C.: Using supervised fuzzy clustering to predict protein structural classes. Biochem. Biophys. Res. Commun. 334(2), 577–581 (2005)CrossRef
Metadata
Title
Apache Spark-based scalable feature extraction approaches for protein sequence and their clustering performance analysis
Authors
Preeti Jha
Aruna Tiwari
Neha Bharill
Milind Ratnaparkhe
Om Prakash Patel
Nilagiri Harshith
Mukkamalla Mounika
Neha Nagendra
Publication date
03-01-2023
Publisher
Springer International Publishing
Published in
International Journal of Data Science and Analytics / Issue 4/2023
Print ISSN: 2364-415X
Electronic ISSN: 2364-4168
DOI
https://doi.org/10.1007/s41060-022-00381-6

Other articles of this Issue 4/2023

International Journal of Data Science and Analytics 4/2023 Go to the issue

Premium Partner