Skip to main content
Top
Published in: Experiments in Fluids 8/2021

01-08-2021 | Research Article

Application of clustering and the Hungarian algorithm to the problem of consistent vortex tracking in incompressible flowfields

Authors: P. R. R. J. Stevens, A. Sciacchitano

Published in: Experiments in Fluids | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ability to track vortices spatially and temporally is of great interest for the study of complex and turbulent flows. A methodology to solve the problem of vortex tracking by the application of machine learning approaches is investigated. First a well-known vortex detection algorithm is applied to identify coherent structures. Hierarchical clustering is then conducted followed by a unique application of the Hungarian assignment algorithm. Application to a synthetic flowfield of merging Batchelor vortices results in robust vortex labelling even in a vortex merging event. A robotic PIV experimental dataset of a canonical Ahmed body is used to demonstrate the applicability of the method to three-dimensional flows.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agüera N, Cafiero G, Astarita T, Discetti S (2016) Ensemble 3d PTV for high resolution turbulent statistics. Meas Sci Technol 27(12):1240111CrossRef Agüera N, Cafiero G, Astarita T, Discetti S (2016) Ensemble 3d PTV for high resolution turbulent statistics. Meas Sci Technol 27(12):1240111CrossRef
go back to reference Ahmed SR, Ramm G, Faltin G (1984) Some salient features of the time-averaged ground vehicle wake. SAE Tech 840300 Ahmed SR, Ramm G, Faltin G (1984) Some salient features of the time-averaged ground vehicle wake. SAE Tech 840300
go back to reference Amsallam D, Zahr MJ, Farhat C (2012) Nonlinear model order reduction based on local reduced-order bases. Int J Numer Meth Eng 10:891–916MathSciNetCrossRef Amsallam D, Zahr MJ, Farhat C (2012) Nonlinear model order reduction based on local reduced-order bases. Int J Numer Meth Eng 10:891–916MathSciNetCrossRef
go back to reference Azijli I, Dwight RP (2015) Solenoidal filtering of volumetric velocity measurements using gaussian process regression. Exp Fluids 56:198CrossRef Azijli I, Dwight RP (2015) Solenoidal filtering of volumetric velocity measurements using gaussian process regression. Exp Fluids 56:198CrossRef
go back to reference de Bruin AC, Hegen GH, Rohne PB, Spalart PR (1996) Flow field survey in trailing vortex system behind a civil aircraft model at high lift. Technical report NLR TP 96284, National Aerospace Laboratory, NLR de Bruin AC, Hegen GH, Rohne PB, Spalart PR (1996) Flow field survey in trailing vortex system behind a civil aircraft model at high lift. Technical report NLR TP 96284, National Aerospace Laboratory, NLR
go back to reference Brunton SL, Noack BR, Koumoutsakos P (2019) Machine learning for fluid mechanics. Annu Rev Fluid Mech 52:1–31MATH Brunton SL, Noack BR, Koumoutsakos P (2019) Machine learning for fluid mechanics. Annu Rev Fluid Mech 52:1–31MATH
go back to reference Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids A 2(5):765–777MathSciNetCrossRef Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids A 2(5):765–777MathSciNetCrossRef
go back to reference Cucitore R, Quadrio M, Baron A (1999) On the effectiveness and limitations of local criteria for the identification of a vortex. Eur J Mech B Fluids 18:261–282MathSciNetCrossRef Cucitore R, Quadrio M, Baron A (1999) On the effectiveness and limitations of local criteria for the identification of a vortex. Eur J Mech B Fluids 18:261–282MathSciNetCrossRef
go back to reference Deng L, Wang Y, Chen C, Liu Y, Wang F, Liu J (2020) A clustering-based approach to vortex extraction. J Vis 1–16 Deng L, Wang Y, Chen C, Liu Y, Wang F, Liu J (2020) A clustering-based approach to vortex extraction. J Vis 1–16
go back to reference Deng L, Wang Y, Liu Y, Wang F, Li S, Liu J (2019) A CNN-based vortex identification method. J Vis 22(1):65–78CrossRef Deng L, Wang Y, Liu Y, Wang F, Li S, Liu J (2019) A CNN-based vortex identification method. J Vis 22(1):65–78CrossRef
go back to reference Dinits EA (1970) Algorithm for solution on a problem on maximum flow in a network with power estimation. Sov Math Doclady 11:1277–1280MATH Dinits EA (1970) Algorithm for solution on a problem on maximum flow in a network with power estimation. Sov Math Doclady 11:1277–1280MATH
go back to reference Edmonds J, Karp RM (1972) Theoretical improvements in algorithmic efficiency for network flow problems. J ACM 19:248–264CrossRef Edmonds J, Karp RM (1972) Theoretical improvements in algorithmic efficiency for network flow problems. J ACM 19:248–264CrossRef
go back to reference Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, pod and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12:1422–1429CrossRef Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, pod and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12:1422–1429CrossRef
go back to reference Gunther T, Theisel H (2017) The state of the art in vortex extraction. Comput Graph Forum 1981:1–24 Gunther T, Theisel H (2017) The state of the art in vortex extraction. Comput Graph Forum 1981:1–24
go back to reference Haller G, Hadjighasem A, Farazmand M, Huhn F (2016) Defining coherent vortices objectively from the vorticity. J Fluid Mech 795:136–173MathSciNetCrossRef Haller G, Hadjighasem A, Farazmand M, Huhn F (2016) Defining coherent vortices objectively from the vorticity. J Fluid Mech 795:136–173MathSciNetCrossRef
go back to reference Hardin JC, Wang FY (2003) Sound generation by aircraft wake vortices. Technical report CR-2003-212674, NASA Hardin JC, Wang FY (2003) Sound generation by aircraft wake vortices. Technical report CR-2003-212674, NASA
go back to reference Hunt JCR, Wray AA, Moin P (1988) Eddies, streams and convergence zones in turbulent flows. Technical Report N89-24555, NASA Center for Turbulence Research Hunt JCR, Wray AA, Moin P (1988) Eddies, streams and convergence zones in turbulent flows. Technical Report N89-24555, NASA Center for Turbulence Research
go back to reference Jux C, Sciacchitano A, Schneiders JFG, Scarano F (2018) Robotic volumetric PIV of a full-scale cyclist. Exp Fluids 74:1–15 Jux C, Sciacchitano A, Schneiders JFG, Scarano F (2018) Robotic volumetric PIV of a full-scale cyclist. Exp Fluids 74:1–15
go back to reference Kaiser E, Noack BR, Cordier L, Spohn A, Segond M, Abel M, Niven RK (2014) Cluster-based reduced-order modelling of a mixing layer. J Fluid Mech 754:365–414CrossRef Kaiser E, Noack BR, Cordier L, Spohn A, Segond M, Abel M, Niven RK (2014) Cluster-based reduced-order modelling of a mixing layer. J Fluid Mech 754:365–414CrossRef
go back to reference Kim B, Gunther T (2019) Robust reference frame extraction from unsteady 2d vector fields with convolutional neural networks. Comput Graph Forum 38(3):285–295CrossRef Kim B, Gunther T (2019) Robust reference frame extraction from unsteady 2d vector fields with convolutional neural networks. Comput Graph Forum 38(3):285–295CrossRef
go back to reference Kline SJ, Robinson SK (1990) Turbulent boundary layer structure: progress, status and challenges. Struct Turbulen Drag Reduct 3–32 Kline SJ, Robinson SK (1990) Turbulent boundary layer structure: progress, status and challenges. Struct Turbulen Drag Reduct 3–32
go back to reference Lignarolo LEM, Ragni D, Scarano F, Ferreira CJS, van Bussel GJW (2015) Tip-vortex instability and turbulent mixing in wind-turbine wakes. J Fluid Mech 781:467–493MathSciNetCrossRef Lignarolo LEM, Ragni D, Scarano F, Ferreira CJS, van Bussel GJW (2015) Tip-vortex instability and turbulent mixing in wind-turbine wakes. J Fluid Mech 781:467–493MathSciNetCrossRef
go back to reference Lugt HJ (1979) The dilemma of defining a vortex. In: Muller U, Roesner KG, Schmidt B (eds) In recent developments in theoretical and experimental fluid mechanics. Springer, New York, pp 113–138 Lugt HJ (1979) The dilemma of defining a vortex. In: Muller U, Roesner KG, Schmidt B (eds) In recent developments in theoretical and experimental fluid mechanics. Springer, New York, pp 113–138
go back to reference Lumley JL (1981) Coherent structures in turbulence. In: Meyer RE (ed) Transition and turbulence. Academic Press Inc., Canvridge, pp 215–242CrossRef Lumley JL (1981) Coherent structures in turbulence. In: Meyer RE (ed) Transition and turbulence. Academic Press Inc., Canvridge, pp 215–242CrossRef
go back to reference Manning CD, Raghaven P, Schütze H (2008) In: Introduction to information retrieval. Cambridge University Press Manning CD, Raghaven P, Schütze H (2008) In: Introduction to information retrieval. Cambridge University Press
go back to reference Scarano F, Ghaemi S, Caridi GCA, Bosbach J, Dierksheide U, Sciacchitano A (2015) On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments. Exp Fluids 56(2):42CrossRef Scarano F, Ghaemi S, Caridi GCA, Bosbach J, Dierksheide U, Sciacchitano A (2015) On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments. Exp Fluids 56(2):42CrossRef
go back to reference Schanz D, Gesemann S, Schroder A (2016) Shake-the-box: Lagrangian particle tracking at high particle image densities. Exp Fluids 57(5):1–27CrossRef Schanz D, Gesemann S, Schroder A (2016) Shake-the-box: Lagrangian particle tracking at high particle image densities. Exp Fluids 57(5):1–27CrossRef
go back to reference Schneiders JFG, Scarano F, Jux C, Sciacchitano A (2018) Coaxial volumetric velocimetry. Meas Sci Technol 29(6):065201 Schneiders JFG, Scarano F, Jux C, Sciacchitano A (2018) Coaxial volumetric velocimetry. Meas Sci Technol 29(6):065201
go back to reference Sciacchitano A, Giaquinta D (2019) Investigation of the ahmed body cross-wind flow topology by robotic volumetric PIV. In: Proceedings of the 13th international symposium on particle image velocimetry: 22–27 July, Munich, Germany, vol 13, pp 311–320 Sciacchitano A, Giaquinta D (2019) Investigation of the ahmed body cross-wind flow topology by robotic volumetric PIV. In: Proceedings of the 13th international symposium on particle image velocimetry: 22–27 July, Munich, Germany, vol 13, pp 311–320
go back to reference Sciacchitano A, Scarano F (2014) Elimination of PIV light reflections via a temporal high pass filter. Meas Sci Technol 25(8):084009 Sciacchitano A, Scarano F (2014) Elimination of PIV light reflections via a temporal high pass filter. Meas Sci Technol 25(8):084009
go back to reference Simpson CE, Babinsky H, Harvey JK, Corkery S (2018) Detecting vortices within unsteady flows when using single-shot PIV. Exp Fluids 59:125CrossRef Simpson CE, Babinsky H, Harvey JK, Corkery S (2018) Detecting vortices within unsteady flows when using single-shot PIV. Exp Fluids 59:125CrossRef
go back to reference Spalart PR (1988) Direct simulation of a turbulent boundary layer up to rtheta = 1410. J Fluid Mech 187:61–98CrossRef Spalart PR (1988) Direct simulation of a turbulent boundary layer up to rtheta = 1410. J Fluid Mech 187:61–98CrossRef
go back to reference Spencer NH (2013) In: Essentials of multivariate data analysis. CRC Press, Boca Raton FL, pp 91–95 Spencer NH (2013) In: Essentials of multivariate data analysis. CRC Press, Boca Raton FL, pp 91–95
go back to reference Wang Y, Deng L, Yang Z, Zhao D, Wang F (2021) A rapid vortex identification method using fully convolutional segmentation network. Vis Comput 37:261–273 Wang Y, Deng L, Yang Z, Zhao D, Wang F (2021) A rapid vortex identification method using fully convolutional segmentation network. Vis Comput 37:261–273
go back to reference Zhang X, Toet W, Zerihan J (2006) Ground effect aerodynamics of race cars. Appl Mech Rev 59(1):33–49CrossRef Zhang X, Toet W, Zerihan J (2006) Ground effect aerodynamics of race cars. Appl Mech Rev 59(1):33–49CrossRef
go back to reference Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396MathSciNetCrossRef Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396MathSciNetCrossRef
Metadata
Title
Application of clustering and the Hungarian algorithm to the problem of consistent vortex tracking in incompressible flowfields
Authors
P. R. R. J. Stevens
A. Sciacchitano
Publication date
01-08-2021
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 8/2021
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-021-03265-w

Other articles of this Issue 8/2021

Experiments in Fluids 8/2021 Go to the issue

Premium Partners