Skip to main content
Top
Published in: Steel in Translation 2/2020

01-02-2020

Application of Equilibrium State Diagrams for Calculating Segregation Kinetics during Cooling of a Two-Component Melt

Authors: A. D. Drozin, E. Yu. Kurkina

Published in: Steel in Translation | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

According to equilibrium state diagrams, compositions of liquid and solid phases are determined by corresponding diagram curves at the melt cooling to below the liquidus temperature. For equilibrium to occur, the following is necessary: the melt is kept indefinitely at each temperature; or the thermal conductivity of the liquid and solid phases, as well as the diffusion coefficients of their components, are infinitely large. This study attempts to find out how these processes occur in reality. An individual crystal growth during cooling of a two-component melt is considered. A mathematical model is designed based on the following standings: (i) a melt region with a volume per one grain, the periphery of which is cooled according to a certain law, is selected; (ii) at the initial time, the crystal nucleus with a certain minimal size is in the liquid; (iii) near the crystal surface, the compositions of the liquid and solid phases correspond to a state diagram for the considered temperature on its surface; and (iv) changes in temperature and composition in the liquid and solid phases occur according to the heat conduction and diffusion laws, respectively. As the melt cools and the crystal grows, the liquid phase is enriched in one component and depleted in another, while the solid phase occurs in reverse. The component’s diffusion coefficient in the solid phase is small. Therefore, its composition does not completely equalize over the cross section. The model proposed here makes it easier to study this phenomenon and to calculate the crystal composition for each cooling mode as it moves away from its center. The calculations showed that the temperature equalizes almost instantly while the composition equalization of the liquid phase occurs much slower. The solid phase’s composition during observation practically does not equalize. The obtained results will be useful for improving the production technology for alloys with an optimal structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tourret, D. and Gandin, Ch., A generalized segregation model for concurrent dendritic, peritectic and eutectic solidification, Acta Mater., 2009, vol. 57, no. 7, pp. 2066–2079.CrossRef Tourret, D. and Gandin, Ch., A generalized segregation model for concurrent dendritic, peritectic and eutectic solidification, Acta Mater., 2009, vol. 57, no. 7, pp. 2066–2079.CrossRef
2.
go back to reference Ferrandini, P.L., Rios, C.T., Dutra, A.T., Jaime, M.A., Mei, P.R., and Caram, R., Solute segregation and microstructure of directionally solidified austenitic stainless steel, Mater. Sci. Eng., A, 2006, vols. 435–436, pp. 139–144.CrossRef Ferrandini, P.L., Rios, C.T., Dutra, A.T., Jaime, M.A., Mei, P.R., and Caram, R., Solute segregation and microstructure of directionally solidified austenitic stainless steel, Mater. Sci. Eng., A, 2006, vols. 435–436, pp. 139–144.CrossRef
3.
go back to reference Bellmann, M.P., Meese, E.A., and Arnberg, L., Impurity segregation in directional solidified multi-crystalline silicon, J. Cryst. Growth, 2010, vol. 312, no. 21, pp. 3091–3095.CrossRef Bellmann, M.P., Meese, E.A., and Arnberg, L., Impurity segregation in directional solidified multi-crystalline silicon, J. Cryst. Growth, 2010, vol. 312, no. 21, pp. 3091–3095.CrossRef
4.
go back to reference Steiner, M.A., Garlea, E., and Agnew, S.R., Modeling solute segregation during the solidification of g-phase U–Mo, J. Nucl. Mater., 2016, vol. 474, pp. 105–112.CrossRef Steiner, M.A., Garlea, E., and Agnew, S.R., Modeling solute segregation during the solidification of g-phase U–Mo, J. Nucl. Mater., 2016, vol. 474, pp. 105–112.CrossRef
5.
go back to reference Gong, L., Chen, B., Du, Zh., Zhang, M., Liu, R., and Liu, K., Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G, J. Mater. Sci. Technol., 2018, vol. 34, no. 3, pp. 541–550.CrossRef Gong, L., Chen, B., Du, Zh., Zhang, M., Liu, R., and Liu, K., Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G, J. Mater. Sci. Technol., 2018, vol. 34, no. 3, pp. 541–550.CrossRef
6.
go back to reference Gao, Z., Jie, W., Liu, Y., and Luo, H., Solidification modeling for coupling prediction of porosity and segregation, Acta Mater., 2017, vol. 127, pp. 277–286.CrossRef Gao, Z., Jie, W., Liu, Y., and Luo, H., Solidification modeling for coupling prediction of porosity and segregation, Acta Mater., 2017, vol. 127, pp. 277–286.CrossRef
7.
go back to reference Chatelain, M., Botton, V., Albaric, M., Pelletier, D., Cariteau, B., Abdo, D., and Borrelli, M., Mechanical stirring influence on solute segregation during plane front directional solidification, Int. J. Therm. Sci., 2018, vol. 126, pp. 252–262.CrossRef Chatelain, M., Botton, V., Albaric, M., Pelletier, D., Cariteau, B., Abdo, D., and Borrelli, M., Mechanical stirring influence on solute segregation during plane front directional solidification, Int. J. Therm. Sci., 2018, vol. 126, pp. 252–262.CrossRef
8.
go back to reference Hou, Z., Guo, D., Cao, J., and Chang, Y., A method based on the centroid of segregation points: A Voronoi polygon application to solidification of alloys, J. Alloys Compd., 2018, vol. 762, pp. 508–519.CrossRef Hou, Z., Guo, D., Cao, J., and Chang, Y., A method based on the centroid of segregation points: A Voronoi polygon application to solidification of alloys, J. Alloys Compd., 2018, vol. 762, pp. 508–519.CrossRef
9.
go back to reference Liang, J., Zhao, Z., Tang, D., Ye, N., and Yang, Sh., Improved microstructural homogeneity and mechanical property of medium manganese steel with Mn segregation banding by alternating lath, Mater. Sci. Eng., A, 2018, vol. 711, pp. 175–181.CrossRef Liang, J., Zhao, Z., Tang, D., Ye, N., and Yang, Sh., Improved microstructural homogeneity and mechanical property of medium manganese steel with Mn segregation banding by alternating lath, Mater. Sci. Eng., A, 2018, vol. 711, pp. 175–181.CrossRef
10.
go back to reference Martinsen, F.A., Purification of melt-spun metallurgical grade silicon micro-flakes through a multi-step segregation procedure, J. Cryst. Growth, 2013, vol. 363, pp. 33–39.CrossRef Martinsen, F.A., Purification of melt-spun metallurgical grade silicon micro-flakes through a multi-step segregation procedure, J. Cryst. Growth, 2013, vol. 363, pp. 33–39.CrossRef
11.
go back to reference Robson, J.D., Analytical electron microscopy of grain boundary segregation: application to Al–Zn–Mg–Cu (7xxx) alloys, Mater. Charact., 2019, vol. 154, pp. 325–334.CrossRef Robson, J.D., Analytical electron microscopy of grain boundary segregation: application to Al–Zn–Mg–Cu (7xxx) alloys, Mater. Charact., 2019, vol. 154, pp. 325–334.CrossRef
12.
go back to reference Li, J. and Guo, Zh., Thermodynamic evaluation of segregation behaviors of metallic impurities in metallurgical grade silicon during Al–Si solvent refining process, J. Cryst. Growth, 2014, vol. 394, pp. 18–23.CrossRef Li, J. and Guo, Zh., Thermodynamic evaluation of segregation behaviors of metallic impurities in metallurgical grade silicon during Al–Si solvent refining process, J. Cryst. Growth, 2014, vol. 394, pp. 18–23.CrossRef
13.
go back to reference Drozin, A.D., Rost mikrochastits produktov khimicheskikh reaktsii v zhidkom rastvore (Growth of Microparticles of Chemical Reaction Products in a Liquid Solution), Chelyabinsk: Yuzhn.-Ural. Gos. Univ., 2007. Drozin, A.D., Rost mikrochastits produktov khimicheskikh reaktsii v zhidkom rastvore (Growth of Microparticles of Chemical Reaction Products in a Liquid Solution), Chelyabinsk: Yuzhn.-Ural. Gos. Univ., 2007.
14.
go back to reference Budak, B.M., Gol’dman, N.L., and Uspenskii, A.B., Difference scheme with front straightening for solving multi-front problems of the Stefan’s type, Dokl. Akad. Nauk SSSR, 1966, vol. 167, no. 4, pp. 735–738. Budak, B.M., Gol’dman, N.L., and Uspenskii, A.B., Difference scheme with front straightening for solving multi-front problems of the Stefan’s type, Dokl. Akad. Nauk SSSR, 1966, vol. 167, no. 4, pp. 735–738.
15.
go back to reference Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1972. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1972.
16.
go back to reference Samarskii, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1977. Samarskii, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1977.
17.
go back to reference Samarskii, A.A. and Nikolaev, E.S., Metody resheniya setochnykh uravnenii (Solution Methods of Grid Equations), Moscow: Nauka, 1978. Samarskii, A.A. and Nikolaev, E.S., Metody resheniya setochnykh uravnenii (Solution Methods of Grid Equations), Moscow: Nauka, 1978.
18.
go back to reference Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (State Diagrams of Binary Metal Systems: Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (State Diagrams of Binary Metal Systems: Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.
19.
go back to reference Zakharov, A.M., Diagrammy sostoyaniya dvoinykh i troinykh sistem (State Diagrams of Binary and Ternary Systems), Moscow: Metallurgiya, 1990. Zakharov, A.M., Diagrammy sostoyaniya dvoinykh i troinykh sistem (State Diagrams of Binary and Ternary Systems), Moscow: Metallurgiya, 1990.
20.
go back to reference Spravochnik po paike (Soldering Handbook), Petrunin, I.E., Ed., Moscow: Mashinostroenie, 2003. Spravochnik po paike (Soldering Handbook), Petrunin, I.E., Ed., Moscow: Mashinostroenie, 2003.
21.
go back to reference Fizicheskie velichiny. Spravochnik (Physical Quantities: Handbook), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991. Fizicheskie velichiny. Spravochnik (Physical Quantities: Handbook), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.
22.
go back to reference Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Brief Chemical Handbook), Leningrad: Khimiya, 1978. Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Brief Chemical Handbook), Leningrad: Khimiya, 1978.
23.
go back to reference Khairulin, R.A., Stankus, S.V., Abdullaev, R.N., and Sklyarchuk, V.M., The density and interdiffusion coefficients of bismuth-tin melts of eutectic and near-eutectic composition, High Temp., 2010, vol. 48, no. 2, pp. 188–191.CrossRef Khairulin, R.A., Stankus, S.V., Abdullaev, R.N., and Sklyarchuk, V.M., The density and interdiffusion coefficients of bismuth-tin melts of eutectic and near-eutectic composition, High Temp., 2010, vol. 48, no. 2, pp. 188–191.CrossRef
24.
go back to reference Makhniy, V.P., Protopopov, E.V., and Skripnik, N.V., Mechanism of tin diffusion in ZnTe single crystals, Inorg. Mater., 2011, vol. 47, no. 9, pp. 945–946.CrossRef Makhniy, V.P., Protopopov, E.V., and Skripnik, N.V., Mechanism of tin diffusion in ZnTe single crystals, Inorg. Mater., 2011, vol. 47, no. 9, pp. 945–946.CrossRef
Metadata
Title
Application of Equilibrium State Diagrams for Calculating Segregation Kinetics during Cooling of a Two-Component Melt
Authors
A. D. Drozin
E. Yu. Kurkina
Publication date
01-02-2020
Publisher
Pleiades Publishing
Published in
Steel in Translation / Issue 2/2020
Print ISSN: 0967-0912
Electronic ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091220020023

Other articles of this Issue 2/2020

Steel in Translation 2/2020 Go to the issue

Premium Partners