Skip to main content
Top

2021 | OriginalPaper | Chapter

Application of Fragility Analysis to Timber-Framed Structures for Seismic and Robustness Assessments

Authors : Leonardo G. Rodrigues, Jorge M. Branco, Luís A. C. Neves, André R. Barbosa

Published in: 18th International Probabilistic Workshop

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the past few years, the construction of multi-storey timber buildings has increased significantly in locations where high-intensity ground motions are likely to occur. On the other hand, the fast development of wood engineered products, as glued-laminated timber (GLT) and cross-laminated timber (CLT), has been challenging researchers to provide adequate guidelines for the design and assessment of structures built in seismic regions. Some guidelines and analysis methods considered in seismic design can improve robustness, commonly described as the ability of structures to sustain limited damage without disproportionate effects. This paper proposes a probabilistic methodology for seismic and robustness assessment of timber-framed structures. The seismic performance and the progressive collapse potential of a three-storey building are here exemplified through the proposed methodology, which accounts for uncertainties in mechanical properties of members and connections, as well as for external loads. The Latin Hypercube Sampling (LHS) was used in each assessment to generate a set of 1000 structural models. Each structural model corresponds to a realization of the random variables used to define the structural model. Incremental dynamic analyses were performed to develop seismic fragility curves for different damage levels. The fragility functions for robustness assessment were developed for distinct damage scenarios, exploiting the results of an alternate load path analysis (ALPA) that involved the performance of nonlinear static analyses (pushdown analyses). The methodology presented is suitable for risk-based assessments that consider the occurrence of different exposures, such as earthquakes, impacts, and explosions, while considering the direct and indirect consequences of failures. However, the methodology involves time-consuming analyses with distinct load scenarios, which can constitute a burdening task within a typical building design phase.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference CEN. (2013). EN 1998–1: Eurocode 8: Design of structures for earthquake resistance Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardisation. CEN. (2013). EN 1998–1: Eurocode 8: Design of structures for earthquake resistance Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardisation.
2.
go back to reference Branco, J. M., & Neves, L. A. (2011). Robustness of timber structures in seismic areas. Engineering Structures, 33(11), 3099–3105.CrossRef Branco, J. M., & Neves, L. A. (2011). Robustness of timber structures in seismic areas. Engineering Structures, 33(11), 3099–3105.CrossRef
3.
go back to reference Huber, J. A., Ekevad, M., Girhammar, U. A., & Berg, S. (2019). Structural robustness and timber buildings—A review. Wood Material Science & Engineering, 14(2), 107–128.CrossRef Huber, J. A., Ekevad, M., Girhammar, U. A., & Berg, S. (2019). Structural robustness and timber buildings—A review. Wood Material Science & Engineering, 14(2), 107–128.CrossRef
4.
go back to reference Melchers, R. E., & Beck, A. T. (2018). Structural reliability analysis and prediction. Wiley. Melchers, R. E., & Beck, A. T. (2018). Structural reliability analysis and prediction. Wiley.
5.
go back to reference Köhler, J., Sørensen, J. D., & Faber, M. H. (2007). Probabilistic modelling of timber structures. Structural Safety, 29(4), 255–267.CrossRef Köhler, J., Sørensen, J. D., & Faber, M. H. (2007). Probabilistic modelling of timber structures. Structural Safety, 29(4), 255–267.CrossRef
6.
go back to reference Casagrande, D., Bezzi, S., D’Arenzo, G., Schwendner, S., Polastri, A., Seim, W., & Piazza, M. (2020). A methodology to determine the seismic low-cycle fatigue strength of timber connections. Construction and Building Materials, 231, 117026.CrossRef Casagrande, D., Bezzi, S., D’Arenzo, G., Schwendner, S., Polastri, A., Seim, W., & Piazza, M. (2020). A methodology to determine the seismic low-cycle fatigue strength of timber connections. Construction and Building Materials, 231, 117026.CrossRef
7.
go back to reference Vamvatsikos, D., & Fragiadakis, M. (2010). Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty. Earthquake Engineering & Structural Dynamics, 39(2), 141–163. Vamvatsikos, D., & Fragiadakis, M. (2010). Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty. Earthquake Engineering & Structural Dynamics, 39(2), 141–163.
8.
go back to reference Starossek, U., & Haberland, M. (2010). Disproportionate collapse: Terminology and procedures. Journal of Performance of Constructed Facilities, 24(6), 519–528.CrossRef Starossek, U., & Haberland, M. (2010). Disproportionate collapse: Terminology and procedures. Journal of Performance of Constructed Facilities, 24(6), 519–528.CrossRef
9.
go back to reference Ellingwood, B. R., Smilowitz, R., Dusenberry, D. O., Duthinh, D., Lew, H. S., & Carino, N. J. (2007). Best practices for reducing the potential for progressive collapse in buildings. Ellingwood, B. R., Smilowitz, R., Dusenberry, D. O., Duthinh, D., Lew, H. S., & Carino, N. J. (2007). Best practices for reducing the potential for progressive collapse in buildings.
10.
go back to reference Alam, M. S., & Barbosa, A. R. (2018). Probabilistic seismic demand assessment accounting for finite element model class uncertainty: Application to a code-designed URM infilled reinforced concrete frame building. Earthquake Engineering & Structural Dynamics, 47(15), 2901–2920.CrossRef Alam, M. S., & Barbosa, A. R. (2018). Probabilistic seismic demand assessment accounting for finite element model class uncertainty: Application to a code-designed URM infilled reinforced concrete frame building. Earthquake Engineering & Structural Dynamics, 47(15), 2901–2920.CrossRef
11.
go back to reference Callegari, E. (2009). Caratterizzazione del comportamento di telai sismoresistenti in legno lamellare, MS thesis (in Italian). Trento, Italy: Universita degli Studi di Trento. Callegari, E. (2009). Caratterizzazione del comportamento di telai sismoresistenti in legno lamellare, MS thesis (in Italian). Trento, Italy: Universita degli Studi di Trento.
12.
go back to reference CEN. (2004a). EN 1995-1-1:2004—Eurocode 5: Design of timber structures—Part 1-1: General—Common rules and rules for buildings (Vol. 1). CEN. (2004a). EN 1995-1-1:2004—Eurocode 5: Design of timber structures—Part 1-1: General—Common rules and rules for buildings (Vol. 1).
13.
go back to reference Rodrigues, L. G., Branco, J. M., Neves, L. A., & Barbosa, A. R. (2018). Seismic assessment of a heavy-timber frame structure with ring-doweled moment-resisting connections. Bulletin of Earthquake Engineering, 16(3), 1341–1371.CrossRef Rodrigues, L. G., Branco, J. M., Neves, L. A., & Barbosa, A. R. (2018). Seismic assessment of a heavy-timber frame structure with ring-doweled moment-resisting connections. Bulletin of Earthquake Engineering, 16(3), 1341–1371.CrossRef
14.
go back to reference Rodrigues, L. G. (2019). Robustness of multi-storey timber buildings in seismic regions, Ph.D. thesis, University of Minho, Guimarães, Portugal. Rodrigues, L. G. (2019). Robustness of multi-storey timber buildings in seismic regions, Ph.D. thesis, University of Minho, Guimarães, Portugal.
15.
go back to reference . (2004b), EN 10025-2:2004, European standard for hot-rolled structural steel. Part 2—Technical delivery conditions for non-alloy structural steels. . (2004b), EN 10025-2:2004, European standard for hot-rolled structural steel. Part 2—Technical delivery conditions for non-alloy structural steels.
16.
go back to reference CEN. (2005a), EN 14080 Timber structures—Glued laminated timber Requirements. European Committee for Standardisation. CEN. (2005a), EN 14080 Timber structures—Glued laminated timber Requirements. European Committee for Standardisation.
17.
go back to reference Blass, H. J., & Fellmoser, P. (2004). Design of solid wood panels with cross layers. In Proceedings of the 8th World Conference on Timber Engineering 2014, 14–17 June, Lahti, Finland. Blass, H. J., & Fellmoser, P. (2004). Design of solid wood panels with cross layers. In Proceedings of the 8th World Conference on Timber Engineering 2014, 14–17 June, Lahti, Finland.
18.
go back to reference McKenna, F. (2011). OpenSees: A framework for earthquake engineering simulation. Computing in Science & Engineering, 13(4), 58–66.CrossRef McKenna, F. (2011). OpenSees: A framework for earthquake engineering simulation. Computing in Science & Engineering, 13(4), 58–66.CrossRef
19.
go back to reference Polastri, A., Tomasi, R., Piazza, M., & Smith, I. (2013). Moment resisting dowelled joints in timber structures: Mechanical behaviour under cyclic tests. Ingegneria Sismica, 30(4), 72–81. Polastri, A., Tomasi, R., Piazza, M., & Smith, I. (2013). Moment resisting dowelled joints in timber structures: Mechanical behaviour under cyclic tests. Ingegneria Sismica, 30(4), 72–81.
20.
go back to reference United States Department of Defense. (2016). UFC 4-023-0.3. Design of buildings to resist progressive collapse. United States Department of Defense. (2016). UFC 4-023-0.3. Design of buildings to resist progressive collapse.
21.
go back to reference CEN. (2006). EN 1991-1-7 (2006) Actions on structures. Part 1-7: General actions—Accidental actions. European Committee for Standardisation. CEN. (2006). EN 1991-1-7 (2006) Actions on structures. Part 1-7: General actions—Accidental actions. European Committee for Standardisation.
22.
go back to reference ARUP. (2011). Review of international research on structural robustness and disproportionate collapse (Tech. Rep.), London. ARUP. (2011). Review of international research on structural robustness and disproportionate collapse (Tech. Rep.), London.
Metadata
Title
Application of Fragility Analysis to Timber-Framed Structures for Seismic and Robustness Assessments
Authors
Leonardo G. Rodrigues
Jorge M. Branco
Luís A. C. Neves
André R. Barbosa
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-73616-3_12