Skip to main content
Top

2017 | OriginalPaper | Chapter

14. Application of Gold Nanorods in Cardiovascular Science

Authors : Jack G. Goldsmith, Heather L’Ecuyer, Delphine Dean, Edie C. Goldsmith

Published in: Anisotropic and Shape-Selective Nanomaterials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cardiovascular disease is a significant global Cardiovascular disease is a significant global health problem. Effectively treating it and exercise, but also demands the development of novel tools for rapid diagnosis and new therapeutics for treatment. The field of nanomaterials is making significant contributions to multiple health care problems in the areas of disease detection, imaging and drug delivery. Gold nanoparticles are particularly promising due to their ease of synthesis, biocompatibility and unique optical properties. In particular, gold nanorods having received much attention for their potential in the diagnosis and treatment of cancer, are now being examined for other biomedical applications. This chapter highlights efforts using gold nanorods in cardiovascular research in such areas as detection of cardiovascular disease, understanding cardiac cell response to nanomaterials and the ability of gold nanorods to alter the mechanical properties of model tissue constructs and cardiac valves.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference World Health Organization. 2014. Global status report on noncommunicable diseases, 9–20. Geneva: WHO. World Health Organization. 2014. Global status report on noncommunicable diseases, 9–20. Geneva: WHO.
2.
go back to reference Jain, A., P. Kesharwani, N.K. Garg, A. Jain, P. Nirbhavane, N. Dwivedi, S. Banerjee, A.K. Iyer, and M.C.I.M. Amin. 2015. Nano-constructed carriers loaded with antioxidant: Boon for cardiovascular system. Current Pharmaceutical Design 21: 4456–4464.CrossRef Jain, A., P. Kesharwani, N.K. Garg, A. Jain, P. Nirbhavane, N. Dwivedi, S. Banerjee, A.K. Iyer, and M.C.I.M. Amin. 2015. Nano-constructed carriers loaded with antioxidant: Boon for cardiovascular system. Current Pharmaceutical Design 21: 4456–4464.CrossRef
3.
go back to reference Sharma, P.A., R. Maheshwari, M. Tekade, and R.K. Tekade. 2015. Nanomaterial based approaches for the diagnosis and therapy of cardiovascular diseases. Current Pharmaceutical Design 21: 4465–4478.CrossRef Sharma, P.A., R. Maheshwari, M. Tekade, and R.K. Tekade. 2015. Nanomaterial based approaches for the diagnosis and therapy of cardiovascular diseases. Current Pharmaceutical Design 21: 4465–4478.CrossRef
4.
go back to reference Behera, S.S., K. Pramanik, and M.K. Nayak. 2015. Recent advancement in the treatment of cardiovascular diseases: Conventional therapy to nanotechnology. Current Pharmaceutical Design 21: 4479–4497.CrossRef Behera, S.S., K. Pramanik, and M.K. Nayak. 2015. Recent advancement in the treatment of cardiovascular diseases: Conventional therapy to nanotechnology. Current Pharmaceutical Design 21: 4479–4497.CrossRef
5.
go back to reference Sundar, D.S., M.G. Antoniraj., C.S. Kumar., S.S. Mohapatra., N.N. Houreld., K. Ruckmani. 2016. Recent trends of biocompatible and biodegradable nanoparticles in drug delivery: A review. Current Medicinal Chemistry 23 (32): 3730-3751 (doi:10.2174/0929867323666160607103854). Sundar, D.S., M.G. Antoniraj., C.S. Kumar., S.S. Mohapatra., N.N. Houreld., K. Ruckmani. 2016. Recent trends of biocompatible and biodegradable nanoparticles in drug delivery: A review. Current Medicinal Chemistry 23 (32): 3730-3751 (doi:10.​2174/​0929867323666160​607103854).
6.
go back to reference Nitta, S.K., and K. Numata. 2013. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. International Journal of Molecular Sciences 14: 1629–1654. Nitta, S.K., and K. Numata. 2013. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. International Journal of Molecular Sciences 14: 1629–1654.
7.
go back to reference Padmanabhan, P., A. Kumar, S. Kumar, R. Chaudhary, and B. Gulyas. 2016. Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomaterialia 41: 1–16.CrossRef Padmanabhan, P., A. Kumar, S. Kumar, R. Chaudhary, and B. Gulyas. 2016. Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomaterialia 41: 1–16.CrossRef
8.
go back to reference Zhu, D., F. Liu, L. Ma, D. Liu, and Z. Wang. 2013. Nanoparticle-based systems for T1-weighted magnetic resonance imaging contrast agents. International Journal of Molecular Sciences 14: 10591–10607.CrossRef Zhu, D., F. Liu, L. Ma, D. Liu, and Z. Wang. 2013. Nanoparticle-based systems for T1-weighted magnetic resonance imaging contrast agents. International Journal of Molecular Sciences 14: 10591–10607.CrossRef
9.
go back to reference Uusitalo, L.M., and N. Hempel. 2012. Recent advances in intracellular and in vivo ROS sensing: Focus on nanoparticle and nanotube applications. International Journal of Molecular Sciences 13: 10660–10679.CrossRef Uusitalo, L.M., and N. Hempel. 2012. Recent advances in intracellular and in vivo ROS sensing: Focus on nanoparticle and nanotube applications. International Journal of Molecular Sciences 13: 10660–10679.CrossRef
10.
go back to reference Wang, J. 2005. Nanomaterial-based amplified transduction of biomolecular interactions. Small 1: 1036–1043.CrossRef Wang, J. 2005. Nanomaterial-based amplified transduction of biomolecular interactions. Small 1: 1036–1043.CrossRef
11.
go back to reference Wang, J., and J. Qiu. 2016. A review of organic nanomaterials in photothermal cancer therapy. Cancer Research Frontiers 2: 67–84. Wang, J., and J. Qiu. 2016. A review of organic nanomaterials in photothermal cancer therapy. Cancer Research Frontiers 2: 67–84.
12.
go back to reference Jabeen, F., M. Najam-ul-Haq, R. Javeed, C.W. Huck, and G.K. Bonn. 2014. Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules 19: 20580–20593.CrossRef Jabeen, F., M. Najam-ul-Haq, R. Javeed, C.W. Huck, and G.K. Bonn. 2014. Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules 19: 20580–20593.CrossRef
13.
go back to reference Chen, G., I. Roy, C. Yang, and P. Prasad. 2016. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical Reviews 116: 2826–2885.CrossRef Chen, G., I. Roy, C. Yang, and P. Prasad. 2016. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical Reviews 116: 2826–2885.CrossRef
14.
go back to reference Dykman, L., and N. Khlebtsov. 2012. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews 41: 2256–2282.CrossRef Dykman, L., and N. Khlebtsov. 2012. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews 41: 2256–2282.CrossRef
15.
go back to reference Dreaden, E.C., A.M. Alkilany, X. Huang, C.J. Murphy, and M.A. El-Sayed. 2012. The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews 41: 2740–2779.CrossRef Dreaden, E.C., A.M. Alkilany, X. Huang, C.J. Murphy, and M.A. El-Sayed. 2012. The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews 41: 2740–2779.CrossRef
16.
go back to reference Ostdiek, A.M., J.R. Ivey, S.A. Hansen, R. Gopaldas, and S.A. Grant. 2016. Feasibility of a nanomaterial-tissue patch for vascular and cardiac reconstruction. Journal of Biomedical Materials Research B 104: 449–457.CrossRef Ostdiek, A.M., J.R. Ivey, S.A. Hansen, R. Gopaldas, and S.A. Grant. 2016. Feasibility of a nanomaterial-tissue patch for vascular and cardiac reconstruction. Journal of Biomedical Materials Research B 104: 449–457.CrossRef
17.
go back to reference Baei, P., S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, M. Tafazzoli-Shadpour, H. Baharvand, and N. Aghdami. 2016. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Materials Science and Engineering C 63: 131–141.CrossRef Baei, P., S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, M. Tafazzoli-Shadpour, H. Baharvand, and N. Aghdami. 2016. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Materials Science and Engineering C 63: 131–141.CrossRef
18.
go back to reference Yang, C., A. Tian, and Z. Li. 2016. Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice. Scientific Reports 6: 20203.CrossRef Yang, C., A. Tian, and Z. Li. 2016. Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice. Scientific Reports 6: 20203.CrossRef
19.
go back to reference Liu, G., M. Qi, Y. Zhang, C. Cao, and E.M. Goldys. 2016. Nanocomposites of gold nanoparticles and graphene oxide towards a stable label-free electrochemical immunosensor for detection of cardiac marker troponin-I. Analytica Chimica Acta 909: 1–8.CrossRef Liu, G., M. Qi, Y. Zhang, C. Cao, and E.M. Goldys. 2016. Nanocomposites of gold nanoparticles and graphene oxide towards a stable label-free electrochemical immunosensor for detection of cardiac marker troponin-I. Analytica Chimica Acta 909: 1–8.CrossRef
20.
go back to reference Sridhar, S., J.R. Venugopal, R. Sridhar, and S. Ramakrishna. 2015. Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids and Surfaces B 134: 346–354.CrossRef Sridhar, S., J.R. Venugopal, R. Sridhar, and S. Ramakrishna. 2015. Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids and Surfaces B 134: 346–354.CrossRef
21.
go back to reference Payam, B., S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, M. Tafazzoli-Shadpour, H. Baharvand, and N. Aghdami. 2016. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Materials Sciences and Engineering C 63: 131–141.CrossRef Payam, B., S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, M. Tafazzoli-Shadpour, H. Baharvand, and N. Aghdami. 2016. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Materials Sciences and Engineering C 63: 131–141.CrossRef
22.
go back to reference Fleischer, S., M. Shevach, R. Feiner, and T. Dvir. 2014. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues. Nanoscale 6: 9410–9414.CrossRef Fleischer, S., M. Shevach, R. Feiner, and T. Dvir. 2014. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues. Nanoscale 6: 9410–9414.CrossRef
23.
go back to reference Huang, X., I.H. El-Sayed, W. Qian, and M.A. El-Sayed. 2006. Cancer cell imaging and photothermal therapy in the near-infrared region using gold nanorod. Journal of the American Chemical Society 128 (6): 2115–2120.CrossRef Huang, X., I.H. El-Sayed, W. Qian, and M.A. El-Sayed. 2006. Cancer cell imaging and photothermal therapy in the near-infrared region using gold nanorod. Journal of the American Chemical Society 128 (6): 2115–2120.CrossRef
24.
go back to reference Wackenhut, F., A.V. Failla, and A.J. Meixner. 2015. Single gold nanorods as optical probes for spectral imaging. Analytical and Bioanalytical Chemistry 407: 4029–4034.CrossRef Wackenhut, F., A.V. Failla, and A.J. Meixner. 2015. Single gold nanorods as optical probes for spectral imaging. Analytical and Bioanalytical Chemistry 407: 4029–4034.CrossRef
25.
go back to reference Krishnan, S., Z. DiagaQin, Y. Wang, J. Randrianalisoa, V. Raeesi, W.C. Chan, W. Linski, and J.C. Bischof. 2016. Quantitative comparison of photothermal heat generation between gold nanospheres and nanorods. Scientific Reports 6: 29836.CrossRef Krishnan, S., Z. DiagaQin, Y. Wang, J. Randrianalisoa, V. Raeesi, W.C. Chan, W. Linski, and J.C. Bischof. 2016. Quantitative comparison of photothermal heat generation between gold nanospheres and nanorods. Scientific Reports 6: 29836.CrossRef
26.
go back to reference Antman, E., J.P. Bassand, W. Klein, M. Ohman, J.L.L. Sendon, L. Ryden, M. Simoons, and M. Tendera. 2000. Myocardial infarction redefined—A consensus document of the joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Journal of American College of Cardiology 36: 959–969.CrossRef Antman, E., J.P. Bassand, W. Klein, M. Ohman, J.L.L. Sendon, L. Ryden, M. Simoons, and M. Tendera. 2000. Myocardial infarction redefined—A consensus document of the joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Journal of American College of Cardiology 36: 959–969.CrossRef
27.
go back to reference Apple, F.S., A.H.B. Wu, and A.S. Jaffe. 2002. European Society of Cardiology and American College of Cardiology guidelines for redefinition of myocardial infarction: How to use existing assays clinically and for clinical trials. American Heart Journal 144: 981–986.CrossRef Apple, F.S., A.H.B. Wu, and A.S. Jaffe. 2002. European Society of Cardiology and American College of Cardiology guidelines for redefinition of myocardial infarction: How to use existing assays clinically and for clinical trials. American Heart Journal 144: 981–986.CrossRef
28.
go back to reference Murphy, C.J., T.K. Sau, A. Gole, and C.J. Orendorff. 2005. Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bulletin 30: 349–355.CrossRef Murphy, C.J., T.K. Sau, A. Gole, and C.J. Orendorff. 2005. Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bulletin 30: 349–355.CrossRef
29.
go back to reference El-Sayed, M.A. 2001. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research 34: 257–264.CrossRef El-Sayed, M.A. 2001. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research 34: 257–264.CrossRef
30.
go back to reference Guo, Z.R., C.R. Gu, X. Fan, Z.P. Bian, H.F. Wu, D. Yang, N. Gu, and J.N. Zhang. 2009. Fabrication of anti-human cardiac troponin I immunogold nanorods for sensing acute myocardial damage. Nanoscale Research Letters 4: 1428–1433.CrossRef Guo, Z.R., C.R. Gu, X. Fan, Z.P. Bian, H.F. Wu, D. Yang, N. Gu, and J.N. Zhang. 2009. Fabrication of anti-human cardiac troponin I immunogold nanorods for sensing acute myocardial damage. Nanoscale Research Letters 4: 1428–1433.CrossRef
31.
go back to reference Tang, L., and J. Casas. 2014. Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis. Biosensors and Bioelectronics 61: 70–75.CrossRef Tang, L., and J. Casas. 2014. Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis. Biosensors and Bioelectronics 61: 70–75.CrossRef
32.
go back to reference Tadepalli, S., Z. Kuang, Q. Jiang, K.K. Liu, M.A. Fisher, J.J. Morrissey, E.D. Kharasch, J.M. Slocik, R.R. Naik, and S. Singamaneni. 2015. Peptide functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmonic paper devices. Scientific Reports 5: 16206.CrossRef Tadepalli, S., Z. Kuang, Q. Jiang, K.K. Liu, M.A. Fisher, J.J. Morrissey, E.D. Kharasch, J.M. Slocik, R.R. Naik, and S. Singamaneni. 2015. Peptide functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmonic paper devices. Scientific Reports 5: 16206.CrossRef
33.
go back to reference Apple, F.S., R. Ler, and M.M. Murakami. 2012. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clinical Chemistry 58: 1574–1581.CrossRef Apple, F.S., R. Ler, and M.M. Murakami. 2012. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clinical Chemistry 58: 1574–1581.CrossRef
34.
go back to reference Ankri, R., D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E.I. Lev. 2014. Gold Nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements. Nano Letters 14: 2681–2687.CrossRef Ankri, R., D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E.I. Lev. 2014. Gold Nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements. Nano Letters 14: 2681–2687.CrossRef
35.
go back to reference Ankri, R., S. Melzer, A. Tarnok, and D. Fixler. 2015. Detection of gold nanorods uptake by macrophages using scattering analyses combined with diffusion reflection measurements as a potential took for in vivo atherosclerosis tracking. International Journal of Nanomedicine 10: 4437–4446. Ankri, R., S. Melzer, A. Tarnok, and D. Fixler. 2015. Detection of gold nanorods uptake by macrophages using scattering analyses combined with diffusion reflection measurements as a potential took for in vivo atherosclerosis tracking. International Journal of Nanomedicine 10: 4437–4446.
36.
go back to reference Huang, H., F. Liu, S. Huang, S. Yuan, B. Liao, S. Yi, Y. Zeng, and P.K. Chu. 2012. Sensitive and simultaneous detection of different disease markers using multiplexed gold nanorods. Analytica Chimica Acta 755: 108–114.CrossRef Huang, H., F. Liu, S. Huang, S. Yuan, B. Liao, S. Yi, Y. Zeng, and P.K. Chu. 2012. Sensitive and simultaneous detection of different disease markers using multiplexed gold nanorods. Analytica Chimica Acta 755: 108–114.CrossRef
37.
go back to reference Truong, P.L., B.W. Kiim, and S.J. Sim. 2012. Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab on a Chip 12: 1102–1109.CrossRef Truong, P.L., B.W. Kiim, and S.J. Sim. 2012. Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab on a Chip 12: 1102–1109.CrossRef
38.
go back to reference Huang, H., S. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, and Y. Chen. 2009. Label-free optical biosensors based on Au2S-coated gold Nanorods. Biosensors and Bioelectronics 24: 3025–3029.CrossRef Huang, H., S. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, and Y. Chen. 2009. Label-free optical biosensors based on Au2S-coated gold Nanorods. Biosensors and Bioelectronics 24: 3025–3029.CrossRef
39.
go back to reference Mayer, K.M., S. Lee, H. Liao, B.C. Rostro, A. Fuentes, P.T. Scully, C.L. Nehl, and J.H. Hafner. 2008. A label-free immunoassay based upon localized surface plasmon resonance of gold Nanorods. ACS Nano 2: 687–692.CrossRef Mayer, K.M., S. Lee, H. Liao, B.C. Rostro, A. Fuentes, P.T. Scully, C.L. Nehl, and J.H. Hafner. 2008. A label-free immunoassay based upon localized surface plasmon resonance of gold Nanorods. ACS Nano 2: 687–692.CrossRef
40.
go back to reference Orendorff, C.J., S.C. Baxter, E.C. Goldsmith, and C.J. Murphy. 2005. Light scattering from gold nanorods: Tracking material deformation. Nanotechnology 16: 2601–2605.CrossRef Orendorff, C.J., S.C. Baxter, E.C. Goldsmith, and C.J. Murphy. 2005. Light scattering from gold nanorods: Tracking material deformation. Nanotechnology 16: 2601–2605.CrossRef
41.
go back to reference Fuseler, J.W., C.F. Millette, J.M. Davis, and W. Carver. 2007. Fractal and image analysis of morphological changes in the actin cytoskeleton of neonatal cardiac fibroblasts in response to mechanical stretch. Microscopy and Microanalysis 13: 133–143.CrossRef Fuseler, J.W., C.F. Millette, J.M. Davis, and W. Carver. 2007. Fractal and image analysis of morphological changes in the actin cytoskeleton of neonatal cardiac fibroblasts in response to mechanical stretch. Microscopy and Microanalysis 13: 133–143.CrossRef
42.
go back to reference Kamkin, A., I. Liseleva, I. Lozinsky, K.D. Wagner, G. Isenberg, and H. Scholz. 2005. The role of mechanosensitive fibroblasts in the heart. In Mechanosensitivity in cells and tissues, ed. Kamkin, A., I. Kiseleva. Moscow: Academia. Kamkin, A., I. Liseleva, I. Lozinsky, K.D. Wagner, G. Isenberg, and H. Scholz. 2005. The role of mechanosensitive fibroblasts in the heart. In Mechanosensitivity in cells and tissues, ed. Kamkin, A., I. Kiseleva. Moscow: Academia.
43.
go back to reference Atance, J., M.J. Yost, and W. Carver. 2004. Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch. Journal of Cellular Physiology 200: 377–386.CrossRef Atance, J., M.J. Yost, and W. Carver. 2004. Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch. Journal of Cellular Physiology 200: 377–386.CrossRef
44.
go back to reference Carver, W., M.L. Nagpal, M. Nachtigal, T.K. Borg, and L. Terracio. 1991. Collagen expression in mechanically stimulated cardiac fibroblasts. Circulation Research 69: 116–122.CrossRef Carver, W., M.L. Nagpal, M. Nachtigal, T.K. Borg, and L. Terracio. 1991. Collagen expression in mechanically stimulated cardiac fibroblasts. Circulation Research 69: 116–122.CrossRef
45.
go back to reference Stone, J.W., P.N. Sisco, E.C. Goldsmith, S.C. Baxter, and C.J. Murphy. 2007. Using gold nanorods to probe cell-induced collagen deformation. NanoLetters 7: 116–119.CrossRef Stone, J.W., P.N. Sisco, E.C. Goldsmith, S.C. Baxter, and C.J. Murphy. 2007. Using gold nanorods to probe cell-induced collagen deformation. NanoLetters 7: 116–119.CrossRef
46.
go back to reference Chernak, D.J., P.N. Sisco, E.C. Goldsmith, S.C. Baxter, and C.J. Murphy. 2013. High aspect ratio gold Nanorods: Their synthesis and application to image cell-induced strain fields in collagen films. Methods of Molecular Biology 1026: 1–20.CrossRef Chernak, D.J., P.N. Sisco, E.C. Goldsmith, S.C. Baxter, and C.J. Murphy. 2013. High aspect ratio gold Nanorods: Their synthesis and application to image cell-induced strain fields in collagen films. Methods of Molecular Biology 1026: 1–20.CrossRef
47.
go back to reference Wilson, C.G., J.W. Stone, V. Fowlkes, M.O. Morales, C.J. Murphy, S.C. Baxter, and E.C. Goldsmith. 2011. Age-dependent expression of collagen receptors and deformation of type I collagen substrates by rat cardiac fibroblasts. Microscopy and Microanalysis 17: 555–562.CrossRef Wilson, C.G., J.W. Stone, V. Fowlkes, M.O. Morales, C.J. Murphy, S.C. Baxter, and E.C. Goldsmith. 2011. Age-dependent expression of collagen receptors and deformation of type I collagen substrates by rat cardiac fibroblasts. Microscopy and Microanalysis 17: 555–562.CrossRef
48.
go back to reference Grinnell, F. 2003. Fibroblast biology in three-dimensional collagen matrices. Trends in Cell Biology 13: 264–269.CrossRef Grinnell, F. 2003. Fibroblast biology in three-dimensional collagen matrices. Trends in Cell Biology 13: 264–269.CrossRef
49.
go back to reference Carver, W., I. Molano, T.A. Reaves, T.K. Borg, and L. Terracio. 1995. Role of alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. Journal of Cellular Physiology 165: 425–437.CrossRef Carver, W., I. Molano, T.A. Reaves, T.K. Borg, and L. Terracio. 1995. Role of alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. Journal of Cellular Physiology 165: 425–437.CrossRef
50.
go back to reference Baxter, S.C., M.O. Morales, and E.C. Goldsmith. 2008. Adaptive changed in cardiac fibroblast morphology and collagen organization as a result of mechanical environment. Cell Biochemistry and Biophysics 51: 33–44.CrossRef Baxter, S.C., M.O. Morales, and E.C. Goldsmith. 2008. Adaptive changed in cardiac fibroblast morphology and collagen organization as a result of mechanical environment. Cell Biochemistry and Biophysics 51: 33–44.CrossRef
51.
go back to reference Law, B.A., and W.E. Carver. 2013. Activation of cardiac fibroblast by ethanol is blocked by TGF– inhibition. Alcoholism, Clinical and Experimental Research 37: 1286–1294.CrossRef Law, B.A., and W.E. Carver. 2013. Activation of cardiac fibroblast by ethanol is blocked by TGF– inhibition. Alcoholism, Clinical and Experimental Research 37: 1286–1294.CrossRef
52.
go back to reference Svystonyuk, D.A., J.M. Nqu, H.E. Mewhort, B.D. Lipon, G. Teng, D.G. Guzzardi, G. Malik, D.D. Belke, and P.W. Fedak. 2015. Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling. Journal of Translational Medicine 13: 147–157.CrossRef Svystonyuk, D.A., J.M. Nqu, H.E. Mewhort, B.D. Lipon, G. Teng, D.G. Guzzardi, G. Malik, D.D. Belke, and P.W. Fedak. 2015. Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling. Journal of Translational Medicine 13: 147–157.CrossRef
53.
go back to reference Sisco, P.N., C.G. Wilson, E. Mironova, S.C. Baxter, C.J. Murphy, and E.C. Goldsmith. 2008. The effect of gold Nanorods on cell-mediated collagen remodeling. NanoLetters 8: 3409–3412.CrossRef Sisco, P.N., C.G. Wilson, E. Mironova, S.C. Baxter, C.J. Murphy, and E.C. Goldsmith. 2008. The effect of gold Nanorods on cell-mediated collagen remodeling. NanoLetters 8: 3409–3412.CrossRef
54.
go back to reference Borg, K.T., W. Burgess, L. Terracio, and T.K. Borg. 1997. Expression of metalloproteases by cardiac myocytes and fibroblasts in vitro. Cardiovascular Pathology 6: 261–269.CrossRef Borg, K.T., W. Burgess, L. Terracio, and T.K. Borg. 1997. Expression of metalloproteases by cardiac myocytes and fibroblasts in vitro. Cardiovascular Pathology 6: 261–269.CrossRef
55.
go back to reference Lundqvist, M., J. Stigler, G. Elia, I. Lynch, T. Cedervall, et al. 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences 105: 14265–14270.CrossRef Lundqvist, M., J. Stigler, G. Elia, I. Lynch, T. Cedervall, et al. 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences 105: 14265–14270.CrossRef
56.
go back to reference Walczyk, D., F.B. Bombelli, M.P. Monopoli, I. Lynch, and K.A. Dawson. 2010. What the cell sees in bionanoscience. Journal of the American Chemical Society 132: 5761–5768.CrossRef Walczyk, D., F.B. Bombelli, M.P. Monopoli, I. Lynch, and K.A. Dawson. 2010. What the cell sees in bionanoscience. Journal of the American Chemical Society 132: 5761–5768.CrossRef
57.
go back to reference Monopoli, M.P., D. Walczyk, A. Campbell, G. Elia, I. Lynch, et al. 2011. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. Journal of the American Chemical Society 133: 2525–2534.CrossRef Monopoli, M.P., D. Walczyk, A. Campbell, G. Elia, I. Lynch, et al. 2011. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. Journal of the American Chemical Society 133: 2525–2534.CrossRef
58.
go back to reference Maiorano, G., S. Sabella, B. Sorce, V. Brunetti, M.A. Malvindi, et al. 2010. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4: 7481–7491.CrossRef Maiorano, G., S. Sabella, B. Sorce, V. Brunetti, M.A. Malvindi, et al. 2010. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4: 7481–7491.CrossRef
59.
go back to reference Sisco, P.N., C.G. Wilson, D. Chernak, J.C. Clark, E.M. Grzincic, K. Ako-Asare, E.C. Goldsmith, and C.J. Murphy. 2014. Adsorption of cellular proteins to polyelectrolyte-functionalized gold nanorods: A mechanism for nanoparticle regulation of cell phenotype. PLoS ONE 9: e86670.CrossRef Sisco, P.N., C.G. Wilson, D. Chernak, J.C. Clark, E.M. Grzincic, K. Ako-Asare, E.C. Goldsmith, and C.J. Murphy. 2014. Adsorption of cellular proteins to polyelectrolyte-functionalized gold nanorods: A mechanism for nanoparticle regulation of cell phenotype. PLoS ONE 9: e86670.CrossRef
60.
go back to reference Wilson, C.G., P.N. Sisco, F.A. Gadala-Maria, C.J. Murphy, and E.C. Goldsmith. 2009. Polyelectrolyte-coated gold nanorods and their interaction with type I collagen. Biomaterials 30: 5639–5648.CrossRef Wilson, C.G., P.N. Sisco, F.A. Gadala-Maria, C.J. Murphy, and E.C. Goldsmith. 2009. Polyelectrolyte-coated gold nanorods and their interaction with type I collagen. Biomaterials 30: 5639–5648.CrossRef
61.
go back to reference Wilson, C.G., P.N. Sisco, E.C. Goldsmith, and C.J. Murphy. 2009. Glycosaminoglycan-functionalized gold nanorods: Interactions with cardiac cells and type I collagen. Journal of Materials Chemistry 19: 6332–6340.CrossRef Wilson, C.G., P.N. Sisco, E.C. Goldsmith, and C.J. Murphy. 2009. Glycosaminoglycan-functionalized gold nanorods: Interactions with cardiac cells and type I collagen. Journal of Materials Chemistry 19: 6332–6340.CrossRef
62.
go back to reference Hribar, K.C., K. Meggs, J. Lui, W. Zhu, X. Qu, and S. Chen. 2015. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser. Scientific Reports 5: 17203.CrossRef Hribar, K.C., K. Meggs, J. Lui, W. Zhu, X. Qu, and S. Chen. 2015. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser. Scientific Reports 5: 17203.CrossRef
63.
go back to reference Ganji, Y., Q. Li, E.S. Quabius, M. Bottner, C. Selhuber-Unkel, and M. Kasra. 2016. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Materials Science and Engineering C 59: 10–18.CrossRef Ganji, Y., Q. Li, E.S. Quabius, M. Bottner, C. Selhuber-Unkel, and M. Kasra. 2016. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Materials Science and Engineering C 59: 10–18.CrossRef
64.
go back to reference Fedak, P.W.M., F.M. McCarthy, and R.O. Bonow. 2008. Evolving concepts and technologies in mitral valve repair. Circulation 117: 963–974.CrossRef Fedak, P.W.M., F.M. McCarthy, and R.O. Bonow. 2008. Evolving concepts and technologies in mitral valve repair. Circulation 117: 963–974.CrossRef
65.
go back to reference Grande-Allen, K.J., J.E. Barber, K.M. Klatka, P.L. Houghtaling, I. Vesely, C.S. Moravec, and P.M. McCarthy. 2005. Journal of Thoracic and Cardiovascular Surgery 130: 783–790.CrossRef Grande-Allen, K.J., J.E. Barber, K.M. Klatka, P.L. Houghtaling, I. Vesely, C.S. Moravec, and P.M. McCarthy. 2005. Journal of Thoracic and Cardiovascular Surgery 130: 783–790.CrossRef
66.
go back to reference Grande-Allen, K.J., A.G. Borowski, R.W. Troughton, P.L. Houghtaling, N.R. DiPaola, C.S. Moravec, I. Vesely, and B.P. Griffin. 2005. Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements. Journal of the American College of Cardiology 45: 54–61.CrossRef Grande-Allen, K.J., A.G. Borowski, R.W. Troughton, P.L. Houghtaling, N.R. DiPaola, C.S. Moravec, I. Vesely, and B.P. Griffin. 2005. Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements. Journal of the American College of Cardiology 45: 54–61.CrossRef
67.
go back to reference Rabkin, E., M. Aikawa, J.R. Stone, Y. Fukumoto, P. Libby, and F.J. Schoen. 2001. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104: 2525–2532.CrossRef Rabkin, E., M. Aikawa, J.R. Stone, Y. Fukumoto, P. Libby, and F.J. Schoen. 2001. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104: 2525–2532.CrossRef
Metadata
Title
Application of Gold Nanorods in Cardiovascular Science
Authors
Jack G. Goldsmith
Heather L’Ecuyer
Delphine Dean
Edie C. Goldsmith
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-59662-4_14

Premium Partners