Skip to main content
Top

2016 | OriginalPaper | Chapter

15. Application of LEDs for UV-Curing

Authors : Christian Dreyer, Franziska Mildner

Published in: III-Nitride Ultraviolet Emitters

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Curing resins by ultraviolet radiation from LEDs is an emerging field in a wide range of applications and offers many advantages compared to thermal polymerization, such as high reaction velocity, solvent-free formulations, low energy consumption, and the operation at ambient temperature. Due to additional benefits like the use of discrete wavelengths, lower heat emission, smaller dimensions, more flexible geometries and the comparatively very low power consumption, UV-LEDs were already proved as good alternatives for commonly used photocuring units based on established mercury-vapor bulbs. By individually adapting the interaction of chemicals, photoinitiators, formulation, and light source many distinct tailor-made polymer formulations are developed for coatings, inks, adhesives, composites, and stereolithography.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Strehmel, Photopolymere in der Industrie. Nachr. Chem. 64, 128–133 (2014)CrossRef B. Strehmel, Photopolymere in der Industrie. Nachr. Chem. 64, 128–133 (2014)CrossRef
2.
go back to reference A. Endruweit, M.S. Johnson, Curing of composite components by ultraviolet radiation: A review. Polym. Compos. 27,119–128 (2006) A. Endruweit, M.S. Johnson, Curing of composite components by ultraviolet radiation: A review. Polym. Compos. 27,119–128 (2006)
3.
go back to reference J. Kindernay, A. Blažková, J. Rudá et al., Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer. J. Photochem. Photobiol. A 151, 229–236 (2002)CrossRef J. Kindernay, A. Blažková, J. Rudá et al., Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer. J. Photochem. Photobiol. A 151, 229–236 (2002)CrossRef
4.
go back to reference A. Uhl, R.W. Mills, R.W. Vowles et al., Knoop hardness depth profiles and compressive strength of selected dental composites polymerized with halogen and LED light curing technologies. J. Biomed. Mater. Res. 63, 729–738 (2002)CrossRef A. Uhl, R.W. Mills, R.W. Vowles et al., Knoop hardness depth profiles and compressive strength of selected dental composites polymerized with halogen and LED light curing technologies. J. Biomed. Mater. Res. 63, 729–738 (2002)CrossRef
5.
go back to reference D.L. Leonard, D.G. Charlton, H.W. Roberts et al., Polymerization efficiency of LED curing lights. J. Esthet. Restor. Dent. 14, 286–295 (2002)CrossRef D.L. Leonard, D.G. Charlton, H.W. Roberts et al., Polymerization efficiency of LED curing lights. J. Esthet. Restor. Dent. 14, 286–295 (2002)CrossRef
6.
go back to reference C. Kurachi, A.M. Tuboy, D.V. Magalhães et al., Hardness evaluation of a dental composite polymerized with experimental LED-based devices. Dent. Mater. 17, 309–317 (2001)CrossRef C. Kurachi, A.M. Tuboy, D.V. Magalhães et al., Hardness evaluation of a dental composite polymerized with experimental LED-based devices. Dent. Mater. 17, 309–317 (2001)CrossRef
7.
go back to reference K.S. Vandewalle, H.W. Roberts, J.L. Nadrus et al., Effect of light dispersion of LED curing lights on resin composite polymerization. J. Esthet. Restor. Dent. 17, 244–255 (2005)CrossRef K.S. Vandewalle, H.W. Roberts, J.L. Nadrus et al., Effect of light dispersion of LED curing lights on resin composite polymerization. J. Esthet. Restor. Dent. 17, 244–255 (2005)CrossRef
8.
go back to reference D.C. Neckers, A.V. Fedorov, K.C. Anayaogu et al., Performance of the light emitting diodes versus conventional light sources in the UV light cured formulations. J. Appl. Polym. Sci. 105, 803–808 (2007)CrossRef D.C. Neckers, A.V. Fedorov, K.C. Anayaogu et al., Performance of the light emitting diodes versus conventional light sources in the UV light cured formulations. J. Appl. Polym. Sci. 105, 803–808 (2007)CrossRef
9.
go back to reference S.L. McDermott, J.E. Walsh, R.G. Howard, A comparison of the emission characteristics of UV-LEDs and fluorescent lamps for polymerization applications. Opt. Laser Technol. 40, 487–493 (2007)CrossRef S.L. McDermott, J.E. Walsh, R.G. Howard, A comparison of the emission characteristics of UV-LEDs and fluorescent lamps for polymerization applications. Opt. Laser Technol. 40, 487–493 (2007)CrossRef
10.
go back to reference Strehmel B (2013) Akzente durch Licht und Polymere- Photopolymere als ökologische und rationelle Produktionsverfahren für zahlreiche industrielle Anwendungen. CHEManager 6/2013 Strehmel B (2013) Akzente durch Licht und Polymere- Photopolymere als ökologische und rationelle Produktionsverfahren für zahlreiche industrielle Anwendungen. CHEManager 6/2013
11.
go back to reference C. Decker, Photoinitiated curing of multifunctional monomers. Acta Polym. 45, 333–347 (1994)CrossRef C. Decker, Photoinitiated curing of multifunctional monomers. Acta Polym. 45, 333–347 (1994)CrossRef
12.
go back to reference J.H. Lee, R.K. Prud’homme, I.A. Aksay, Cure depth in photopolymerization: Experiments and theory. J. Mater. Res. 16, 3536–3544 (2001)CrossRef J.H. Lee, R.K. Prud’homme, I.A. Aksay, Cure depth in photopolymerization: Experiments and theory. J. Mater. Res. 16, 3536–3544 (2001)CrossRef
13.
go back to reference J. Ortyl, R. Popielarz, New photoinitiators for cationic polymerization. Polimery 57, 510–517 (2012)CrossRef J. Ortyl, R. Popielarz, New photoinitiators for cationic polymerization. Polimery 57, 510–517 (2012)CrossRef
15.
go back to reference N.S. Allen, Photoinitiators for UV and visible curing of coatings: Mechanisms and properties. J. Photochem. Photobiol. A 100, 101–107 (1996)CrossRef N.S. Allen, Photoinitiators for UV and visible curing of coatings: Mechanisms and properties. J. Photochem. Photobiol. A 100, 101–107 (1996)CrossRef
16.
go back to reference C. Belon, X. Allonas, C. Croutxé-Barghorn et al., Overcoming the oxygen inhibition in the photopolymerization of acrylates: A study of the beneficial effects of triphenylphosphine. J. Polym. Sci. Part A: Polym. Chem. 48, 2462–2469 (2010)CrossRef C. Belon, X. Allonas, C. Croutxé-Barghorn et al., Overcoming the oxygen inhibition in the photopolymerization of acrylates: A study of the beneficial effects of triphenylphosphine. J. Polym. Sci. Part A: Polym. Chem. 48, 2462–2469 (2010)CrossRef
17.
go back to reference K. Studer, C. Decker, E. Beck et al., Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I. Prog. Org. Coat. 48, 92–100 (2003)CrossRef K. Studer, C. Decker, E. Beck et al., Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I. Prog. Org. Coat. 48, 92–100 (2003)CrossRef
18.
go back to reference K. Studer, C. Decker, E. Beck et al., Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part II. Prog. Org. Coat. 48, 101–111 (2003)CrossRef K. Studer, C. Decker, E. Beck et al., Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part II. Prog. Org. Coat. 48, 101–111 (2003)CrossRef
19.
go back to reference D.A. Bolon, K.K. Webb, Barrier coats versus inert atmospheres. The elimination of oxygen inhibition in free-radical polymerizations. J. Appl. Polym. Sci. 22, 2543–2551 (1978)CrossRef D.A. Bolon, K.K. Webb, Barrier coats versus inert atmospheres. The elimination of oxygen inhibition in free-radical polymerizations. J. Appl. Polym. Sci. 22, 2543–2551 (1978)CrossRef
20.
go back to reference C. Decker, The use of UV irradiation in polymerization. Polym. Int. 45, 133–141 (1998)CrossRef C. Decker, The use of UV irradiation in polymerization. Polym. Int. 45, 133–141 (1998)CrossRef
21.
go back to reference C. Decker, T. Nguyen Thi Viet, D. Decker et al., UV-radiation curing of acrylate/epoxide systems. Polymer 42, 5531–5541 (2001)CrossRef C. Decker, T. Nguyen Thi Viet, D. Decker et al., UV-radiation curing of acrylate/epoxide systems. Polymer 42, 5531–5541 (2001)CrossRef
22.
go back to reference J.R. Nowers, J.A. Constanzo, B. Narasimhan, Structure-property relationships in acrylate/epoxy interpenetrating polymer networks: Effects of the reaction sequence and composition. J. Appl. Polym. Sci. 104, 891–901 (2007)CrossRef J.R. Nowers, J.A. Constanzo, B. Narasimhan, Structure-property relationships in acrylate/epoxy interpenetrating polymer networks: Effects of the reaction sequence and composition. J. Appl. Polym. Sci. 104, 891–901 (2007)CrossRef
23.
go back to reference C. Decker, Kinetic study and new applications of UV radiation curing. Macromol. Rapid Commun. 23, 1067–1093 (2002)CrossRef C. Decker, Kinetic study and new applications of UV radiation curing. Macromol. Rapid Commun. 23, 1067–1093 (2002)CrossRef
25.
go back to reference F. Stahl, A.A. Ashworth, K.D. Jandt et al., Light-emitting diode (LED) polymerisation of dental composites: flexural properties and polymerization potential. Biomaterials 21, 1379–1385 (2000)CrossRef F. Stahl, A.A. Ashworth, K.D. Jandt et al., Light-emitting diode (LED) polymerisation of dental composites: flexural properties and polymerization potential. Biomaterials 21, 1379–1385 (2000)CrossRef
26.
go back to reference J.W. Stansbury, Curing dental resins and composites by photopolymerization. J. Esthet. Dent. 12, 300–308 (2000)CrossRef J.W. Stansbury, Curing dental resins and composites by photopolymerization. J. Esthet. Dent. 12, 300–308 (2000)CrossRef
27.
go back to reference S.Y. Kim, I.B. Lee, B.H. Cho et al., Curing effectiveness of a light emitting diode on dentin bonding agents. J. Biomed. Mater. Res. 77B, 164–170 (2006)CrossRef S.Y. Kim, I.B. Lee, B.H. Cho et al., Curing effectiveness of a light emitting diode on dentin bonding agents. J. Biomed. Mater. Res. 77B, 164–170 (2006)CrossRef
28.
go back to reference G. Ullrich, B. Ganster, U. Salz et al., Photoinitiators with functional groups. IX. Hydrophilic bisacylphosphine oxides for acidic aqueous formulations. J. Polym. Sci. A Polym. Chem. 44, 1686–1700 (2006)CrossRef G. Ullrich, B. Ganster, U. Salz et al., Photoinitiators with functional groups. IX. Hydrophilic bisacylphosphine oxides for acidic aqueous formulations. J. Polym. Sci. A Polym. Chem. 44, 1686–1700 (2006)CrossRef
29.
go back to reference N. Moszner, F. Zeuner, I. Lamparth et al., Benzoylgermanium derivatives as novel visible-light photoinitiators for dental composites. Macromol. Mat. Eng. 294, 877–886 (2009)CrossRef N. Moszner, F. Zeuner, I. Lamparth et al., Benzoylgermanium derivatives as novel visible-light photoinitiators for dental composites. Macromol. Mat. Eng. 294, 877–886 (2009)CrossRef
30.
go back to reference C. Vallo, S. Asmussen, G. Arenas et al., Photoinitiation rate profiles during polymerization of a dimethacrylate-based resin photoinitiated with camphorquinone/amine. Influence of an initiator photobleaching rate. Eur. Polym. J. 45, 515–522 (2009)CrossRef C. Vallo, S. Asmussen, G. Arenas et al., Photoinitiation rate profiles during polymerization of a dimethacrylate-based resin photoinitiated with camphorquinone/amine. Influence of an initiator photobleaching rate. Eur. Polym. J. 45, 515–522 (2009)CrossRef
31.
go back to reference K. Karthick, K. Sivakumar, P. Geetha et al., Polymerization shrinkage of composites—A review. J. Indian Acad. Dent. Spec. 2, 32–36 (2011) K. Karthick, K. Sivakumar, P. Geetha et al., Polymerization shrinkage of composites—A review. J. Indian Acad. Dent. Spec. 2, 32–36 (2011)
32.
go back to reference C.M. Chung, J.G. Kim, M.S. Kim et al., Development of a new photocurable composite resin with reduced curing shrinkage. Dent. Mater. 18, 174–178 (2002)CrossRef C.M. Chung, J.G. Kim, M.S. Kim et al., Development of a new photocurable composite resin with reduced curing shrinkage. Dent. Mater. 18, 174–178 (2002)CrossRef
33.
go back to reference J.G. Kim, C.M. Chung, Trifunctional methacrylate monomers and their photocured composites with reduced curing shrinkage, water sorption, and water solubility. Biomaterials 24, 3845–3851 (2003)CrossRef J.G. Kim, C.M. Chung, Trifunctional methacrylate monomers and their photocured composites with reduced curing shrinkage, water sorption, and water solubility. Biomaterials 24, 3845–3851 (2003)CrossRef
34.
go back to reference C.N. Bowman, N.B. Cramer, J.W. Stansbury, Recent advances and developments in composite dental restorative materials. J. Dent. Res. 90, 402–416 (2011)CrossRef C.N. Bowman, N.B. Cramer, J.W. Stansbury, Recent advances and developments in composite dental restorative materials. J. Dent. Res. 90, 402–416 (2011)CrossRef
35.
go back to reference H. Wang, X. Miao, M. Zhu et al., Synthesis of dental resins using diatomite and nano-sized SiO2 and TiO2. Prog. Nat. Sci. 22, 94–99 (2012)CrossRef H. Wang, X. Miao, M. Zhu et al., Synthesis of dental resins using diatomite and nano-sized SiO2 and TiO2. Prog. Nat. Sci. 22, 94–99 (2012)CrossRef
36.
go back to reference M. Zhu, F. Liu, R. Wang et al., Novel Ag nanocrystals based dental resin composites with enhanced mechanical and antibacterial properties. Prog. Nat. Sci. 23, 573–578 (2013)CrossRef M. Zhu, F. Liu, R. Wang et al., Novel Ag nanocrystals based dental resin composites with enhanced mechanical and antibacterial properties. Prog. Nat. Sci. 23, 573–578 (2013)CrossRef
37.
go back to reference H. Schweikl, Die biologische Wirkung von Monomeren zahnärztlicher Komposite: Charakterisierung induzierter Genmutationen in vitro und molekulare Analyse HPRT-defizienter V79-Zellen. Dissertation, University of Regensburg (1997) H. Schweikl, Die biologische Wirkung von Monomeren zahnärztlicher Komposite: Charakterisierung induzierter Genmutationen in vitro und molekulare Analyse HPRT-defizienter V79-Zellen. Dissertation, University of Regensburg (1997)
38.
go back to reference H. Schweikl, G. Spagnuolo, G. Schmalz, Genetic and cellular toxicology of dental resin monomers. J. Dent. Res. 85, 870–877 (2006)CrossRef H. Schweikl, G. Spagnuolo, G. Schmalz, Genetic and cellular toxicology of dental resin monomers. J. Dent. Res. 85, 870–877 (2006)CrossRef
39.
go back to reference M. Goldberg, In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin. Oral. Invest. 12, 1–8 (2008)CrossRef M. Goldberg, In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin. Oral. Invest. 12, 1–8 (2008)CrossRef
40.
go back to reference A. Uhl, R.W. Mills, K.D. Jandt, Polymerization and light-induced heat of dental composites cured with LED and halogen technology. Biomaterials 24, 1809–1820 (2003)CrossRef A. Uhl, R.W. Mills, K.D. Jandt, Polymerization and light-induced heat of dental composites cured with LED and halogen technology. Biomaterials 24, 1809–1820 (2003)CrossRef
41.
go back to reference G. Ergün, F. Eğilmez, M.B. Üctaşli et al., Effect of light curing type on cytotoxicity of dentine-bonding agents. Int. Endod. J. 40, 216–223 (2007)CrossRef G. Ergün, F. Eğilmez, M.B. Üctaşli et al., Effect of light curing type on cytotoxicity of dentine-bonding agents. Int. Endod. J. 40, 216–223 (2007)CrossRef
42.
go back to reference D. Yang, H. Li, R. Niu et al., Photocrosslinkable tissue adhesives based on dextrans. Carbohydr. Polym. 86, 1578–1585 (2011)CrossRef D. Yang, H. Li, R. Niu et al., Photocrosslinkable tissue adhesives based on dextrans. Carbohydr. Polym. 86, 1578–1585 (2011)CrossRef
43.
go back to reference D. Yang, T. Wang, J. Nie, Dextran and gelatin based photocrosslinkable tissue adhesive. Carbohydr. Polym. 90, 1428–1436 (2012)CrossRef D. Yang, T. Wang, J. Nie, Dextran and gelatin based photocrosslinkable tissue adhesive. Carbohydr. Polym. 90, 1428–1436 (2012)CrossRef
44.
go back to reference D. Yang, T. Wang, X. Mu et al., The photocrosslinkable tissue adhesive based on copolymeric dextran/HEMA. Carbohydr. Polym. 91, 1423–1431 (2013) D. Yang, T. Wang, X. Mu et al., The photocrosslinkable tissue adhesive based on copolymeric dextran/HEMA. Carbohydr. Polym. 91, 1423–1431 (2013)
45.
go back to reference M. Beck, UV-LED lamps: A viable alternative for UV inkjet applications. Radtech Rep November/December 39–45 (2009) M. Beck, UV-LED lamps: A viable alternative for UV inkjet applications. Radtech Rep November/December 39–45 (2009)
46.
go back to reference R. Chartoff, M. Pilkenton, J. Lewman, Effect of oxygen on the crosslinking and mechanical properties of a thermoset formed by free-radical photocuring. J. Appl. Polym. Sci. 119, 2359–2370 (2011)CrossRef R. Chartoff, M. Pilkenton, J. Lewman, Effect of oxygen on the crosslinking and mechanical properties of a thermoset formed by free-radical photocuring. J. Appl. Polym. Sci. 119, 2359–2370 (2011)CrossRef
47.
go back to reference E. Kumacheva, Z. Nie, Patterning surfaces with functional polymers. Nat. Mater. 7, 277–290 (2008)CrossRef E. Kumacheva, Z. Nie, Patterning surfaces with functional polymers. Nat. Mater. 7, 277–290 (2008)CrossRef
48.
go back to reference Z.G. Yang, C. Yang, Synthesis of low viscosity, fast UV curing solder resist based on epoxy resin for ink-jet printing. J. Appl. Polym. Sci. 129, 187–192 (2013)CrossRef Z.G. Yang, C. Yang, Synthesis of low viscosity, fast UV curing solder resist based on epoxy resin for ink-jet printing. J. Appl. Polym. Sci. 129, 187–192 (2013)CrossRef
49.
go back to reference S. Zankovych, T. Hoffmann, J. Seekamp et al., Nanoimprint lithography: Challenges and prospects. Nanotechnology 12, 91–95 (2001)CrossRef S. Zankovych, T. Hoffmann, J. Seekamp et al., Nanoimprint lithography: Challenges and prospects. Nanotechnology 12, 91–95 (2001)CrossRef
50.
go back to reference C.C. Wu, S.L. Hsu, W.C. Liao, A photo-polymerization resist for UV nanoimprint lithography. Microelectron. Eng. 86, 325–329 (2009)CrossRef C.C. Wu, S.L. Hsu, W.C. Liao, A photo-polymerization resist for UV nanoimprint lithography. Microelectron. Eng. 86, 325–329 (2009)CrossRef
51.
go back to reference I. Vasiev, A.I.M. Greer, A.Z. Khokhar et al., Self-folding nano- and micropatterned hydrogel tissue engineering scaffolds by single step photolithographic process. Microelectron. Eng. 108, 76–81 (2013)CrossRef I. Vasiev, A.I.M. Greer, A.Z. Khokhar et al., Self-folding nano- and micropatterned hydrogel tissue engineering scaffolds by single step photolithographic process. Microelectron. Eng. 108, 76–81 (2013)CrossRef
52.
go back to reference R. Schubert, T. Scherzer, M. Hinkefuss et al., VUV-induced micro-folding of acrylate-based coatings 1. Real-time methods for the determination of the micro-folding kinetics. Surf. Coat. Technol. 203, 1844–1849 (2009)CrossRef R. Schubert, T. Scherzer, M. Hinkefuss et al., VUV-induced micro-folding of acrylate-based coatings 1. Real-time methods for the determination of the micro-folding kinetics. Surf. Coat. Technol. 203, 1844–1849 (2009)CrossRef
53.
go back to reference R. Schubert, F. Frost, M. Hinkefuss et al., VUV-induced micro-folding of acrylate-based coatings 2. Characterization of surface properties. Surf. Coat. Technol. 203, 3734–3740 (Corrigendum: Surf. Coat. Technol. 204, 748) (2009) R. Schubert, F. Frost, M. Hinkefuss et al., VUV-induced micro-folding of acrylate-based coatings 2. Characterization of surface properties. Surf. Coat. Technol. 203, 3734–3740 (Corrigendum: Surf. Coat. Technol. 204, 748) (2009)
54.
go back to reference A.J. Crosby, D. Chandra, Self-wrinkling of UV-cured polymer films. Adv. Mater. 23, 3441–3445 (2011)CrossRef A.J. Crosby, D. Chandra, Self-wrinkling of UV-cured polymer films. Adv. Mater. 23, 3441–3445 (2011)CrossRef
55.
go back to reference V. Landry, B. Riedl, P. Blanchet, Nanoclay dispersion effects on UV coatings curing. Prog. Org. Coat. 62, 400–408 (2008)CrossRef V. Landry, B. Riedl, P. Blanchet, Nanoclay dispersion effects on UV coatings curing. Prog. Org. Coat. 62, 400–408 (2008)CrossRef
56.
go back to reference C. Decker, L. Keller, K. Zahouily et al., Synthesis of nanocomposite polymers by UV-radiation curing. Polymer 46, 6640–6648 (2005)CrossRef C. Decker, L. Keller, K. Zahouily et al., Synthesis of nanocomposite polymers by UV-radiation curing. Polymer 46, 6640–6648 (2005)CrossRef
57.
go back to reference S.U. Pang, G. Li, D. Jerro et al., Fast joining of composite pipes using UV curing FRP composites. Polym. Compos. 25, 298–306 (2004)CrossRef S.U. Pang, G. Li, D. Jerro et al., Fast joining of composite pipes using UV curing FRP composites. Polym. Compos. 25, 298–306 (2004)CrossRef
58.
go back to reference R. Dilg, Schlauchlining im Sammler. Verfahren, Regelwerke, Materialien, Einbau-/Aushärtetechniken und Entwicklungen. 3R Int. 46, 621–627 (2010) R. Dilg, Schlauchlining im Sammler. Verfahren, Regelwerke, Materialien, Einbau-/Aushärtetechniken und Entwicklungen. 3R Int. 46, 621–627 (2010)
59.
go back to reference F.P.W. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials 31, 6121–6130 (2010)CrossRef F.P.W. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials 31, 6121–6130 (2010)CrossRef
60.
go back to reference S.H. Park, D.Y. Yang, K.S. Lee, Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser Photon. Rev. 3, 1–12 (2009)CrossRef S.H. Park, D.Y. Yang, K.S. Lee, Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser Photon. Rev. 3, 1–12 (2009)CrossRef
61.
go back to reference A. Spangenberg, N. Hobeika, F. Stehlin et al., Recent advances in two-photon stereolithography, in Updates in Advanced Lithography, ed. by S. Hosaka. InTech, pp. 35–63 A. Spangenberg, N. Hobeika, F. Stehlin et al., Recent advances in two-photon stereolithography, in Updates in Advanced Lithography, ed. by S. Hosaka. InTech, pp. 35–63
62.
go back to reference T. Billiet, M. Vandenhaute, J. Schelfhout et al., A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33, 6020–6041 (2012)CrossRef T. Billiet, M. Vandenhaute, J. Schelfhout et al., A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33, 6020–6041 (2012)CrossRef
63.
go back to reference P.M. Puri, H. Khajuria, B. Prakash et al., Stereolithography: Potential applications in forensic science. Res. J. Eng. Sci. 1, 47–50 (2012) P.M. Puri, H. Khajuria, B. Prakash et al., Stereolithography: Potential applications in forensic science. Res. J. Eng. Sci. 1, 47–50 (2012)
64.
go back to reference B.H. Kang, S.Y. Shin, Experiment of solidifying photo sensitive polymer by using UV LED, in Proceedings of the SPIE 7266, Optomechatronic Technologies, San Diego (2008) B.H. Kang, S.Y. Shin, Experiment of solidifying photo sensitive polymer by using UV LED, in Proceedings of the SPIE 7266, Optomechatronic Technologies, San Diego (2008)
65.
go back to reference R. Xie, D. Li, S. Chao, An inexpensive stereolithography technology with high power UV-LED light. Rapid Prototyping J. 17, 441–450 (2011)CrossRef R. Xie, D. Li, S. Chao, An inexpensive stereolithography technology with high power UV-LED light. Rapid Prototyping J. 17, 441–450 (2011)CrossRef
66.
go back to reference R. Xie, D. Li, Research on the curing performance of UV-LED light based stereolithography. Opt. Laser Technol. 44, 1163–1171 (2012)CrossRef R. Xie, D. Li, Research on the curing performance of UV-LED light based stereolithography. Opt. Laser Technol. 44, 1163–1171 (2012)CrossRef
Metadata
Title
Application of LEDs for UV-Curing
Authors
Christian Dreyer
Franziska Mildner
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-24100-5_15