Skip to main content
Top

2012 | OriginalPaper | Chapter

Applications of Computational Methods to Simulations of Proteins Dynamics

Author : Wieslaw Nowak

Published in: Handbook of Computational Chemistry

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Advances in computer technology offer great opportunities for new explorations of protein structure and dynamics. Sound and well-established theoretical models may be successfully used for searching new biochemical phenomena, correlations, and protein properties. In this review the fast-growing field of computer simulations of protein dynamics is presented. The principles of currently used computational methods are outlined and representative examples of their recent advanced applications are given. In particular, protein folding studies, protein-drug interactions, transport phenomena, ion channels activity, molecular machines mechanics, origins of molecular diseases, and simulations of single molecule AFM experiments are addressed.
Experimentalists and management will not only become used to accepting the use of molecular modeling, but they will expect it. (Phillip R. Westmoreland)
WTEC Panel Report on Applications of Molecular and Materials Modeling,NIST 2002 (USA)

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Achary, M. S., & Nagarajaram, H. A. (2009). Effects of disease causing mutations on the essential motions in proteins. Journal of Biomolecular Structure and Dynamics, 26, 609. Achary, M. S., & Nagarajaram, H. A. (2009). Effects of disease causing mutations on the essential motions in proteins. Journal of Biomolecular Structure and Dynamics, 26, 609.
go back to reference Adcock, S. A., & McCammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106, 1589. Adcock, S. A., & McCammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106, 1589.
go back to reference Aksimentiev, A., Balabin, I. A., Fillingame, R. H., & Schulten, K. (2004). Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. Biophysical Journal, 86, 1332. Aksimentiev, A., Balabin, I. A., Fillingame, R. H., & Schulten, K. (2004). Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. Biophysical Journal, 86, 1332.
go back to reference Aksimentiev, A., Brunner, R., Cohen, J., Comer, J., Cruz-Chu, E., Hardy, D., et al. (2008). Computer modeling in biotechnology: A partner in development. Methods in Molecular Biology, 474, 181. Aksimentiev, A., Brunner, R., Cohen, J., Comer, J., Cruz-Chu, E., Hardy, D., et al. (2008). Computer modeling in biotechnology: A partner in development. Methods in Molecular Biology, 474, 181.
go back to reference Alder, B. J., & Wainwright, T. E. (1957). Phase transition for a hard sphere system. Journal of Chemical Physics, 27, 1208. Alder, B. J., & Wainwright, T. E. (1957). Phase transition for a hard sphere system. Journal of Chemical Physics, 27, 1208.
go back to reference Aleksandrov, A., Thompson, D., & Simonson, T. (2010). Alchemical free energy simulations for biological complexes: Powerful but temperamental. Journal of Molecular Recognition, 23, 117. Aleksandrov, A., Thompson, D., & Simonson, T. (2010). Alchemical free energy simulations for biological complexes: Powerful but temperamental. Journal of Molecular Recognition, 23, 117.
go back to reference Aliev, A. E., & Courtier-Murias, D. (2010). Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly. The Journal of Physical Chemistry B, 114, 12358. Aliev, A. E., & Courtier-Murias, D. (2010). Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly. The Journal of Physical Chemistry B, 114, 12358.
go back to reference Allen, M. P., & Tildesley, D. J. (1987). Computer simulation of liquids. Oxford: Clarendon Press. Allen, M. P., & Tildesley, D. J. (1987). Computer simulation of liquids. Oxford: Clarendon Press.
go back to reference Alvarez-Paggi, D., Martin, D. F., DeBiase, P. M., Hildebrandt, P., Marti, M. A., & Murgida, D. H. (2010). Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes. Journal of the American Chemical Society, 132, 5769. Alvarez-Paggi, D., Martin, D. F., DeBiase, P. M., Hildebrandt, P., Marti, M. A., & Murgida, D. H. (2010). Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes. Journal of the American Chemical Society, 132, 5769.
go back to reference Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17, 412. Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17, 412.
go back to reference Aqvist, J., Luzhkov, V. B., & Brandsdal, B. O. (2002). Ligand binding affinities from MD simulations. Accounts of Chemical Research, 35, 358. Aqvist, J., Luzhkov, V. B., & Brandsdal, B. O. (2002). Ligand binding affinities from MD simulations. Accounts of Chemical Research, 35, 358.
go back to reference Ash, W. L., Zlomislic, M. R., Oloo, E. O., & Tieleman, D. P. (2004). Computer simulations of membrane proteins. Biochimica et Biophysica Acta, 1666, 158. Ash, W. L., Zlomislic, M. R., Oloo, E. O., & Tieleman, D. P. (2004). Computer simulations of membrane proteins. Biochimica et Biophysica Acta, 1666, 158.
go back to reference Avila, C. L., Drechsel, N. J., Alcantara, R., & Ville-Freixa, J. (2011). Multiscale molecular dynamics of protein aggregation. Current Protein & Peptide Science, 12(3), 221–234. Avila, C. L., Drechsel, N. J., Alcantara, R., & Ville-Freixa, J. (2011). Multiscale molecular dynamics of protein aggregation. Current Protein & Peptide Science, 12(3), 221–234.
go back to reference Ayton, G. S., Noid, W. G., & Voth, G. A. (2007). Multiscale modeling of biomolecular systems: In serial and in parallel. Current Opinion in Structural Biology, 17, 192. Ayton, G. S., Noid, W. G., & Voth, G. A. (2007). Multiscale modeling of biomolecular systems: In serial and in parallel. Current Opinion in Structural Biology, 17, 192.
go back to reference Ayton, G. S., Lyman, E., & Voth, G. A. (2010). Hierarchical coarse-graining strategy for protein-membrane systems to access mesoscopic scales. Faraday Discuss, 144, 347. Ayton, G. S., Lyman, E., & Voth, G. A. (2010). Hierarchical coarse-graining strategy for protein-membrane systems to access mesoscopic scales. Faraday Discuss, 144, 347.
go back to reference Bahar, I., & Rader, A. J. (2005). Coarse-grained normal mode analysis in structural biology. Current Opinion in Structural Biology, 15, 586. Bahar, I., & Rader, A. J. (2005). Coarse-grained normal mode analysis in structural biology. Current Opinion in Structural Biology, 15, 586.
go back to reference Banci, L. (2003). Molecular dynamics simulations of metalloproteins. Current Opinion in Chemical Biology, 7, 143. Banci, L. (2003). Molecular dynamics simulations of metalloproteins. Current Opinion in Chemical Biology, 7, 143.
go back to reference Bashford, D., & Case, D. A. (2000). Generalized born models of macromolecular solvation effects. Annual Review of Physical Chemistry, 51, 129. Bashford, D., & Case, D. A. (2000). Generalized born models of macromolecular solvation effects. Annual Review of Physical Chemistry, 51, 129.
go back to reference Becker, O. M., & Karplus, M. (2006). A guide to biomolecular simulations (Vol. 4). Dordrecht: Springer. Becker, O. M., & Karplus, M. (2006). A guide to biomolecular simulations (Vol. 4). Dordrecht: Springer.
go back to reference Becker, T., Bhushan, S., Jarasch, A., Armache, J. P., Funes, S., Jossinet, F., et al. (2009). Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science, 326, 1369. Becker, T., Bhushan, S., Jarasch, A., Armache, J. P., Funes, S., Jossinet, F., et al. (2009). Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science, 326, 1369.
go back to reference Beckstein, O., Biggin, P. C., Bond, P., Bright, J. N., Domene, C., Grottesi, A., et al. (2003). Ion channel gating: Insights via molecular simulations. FEBS Letters, 555, 85. Beckstein, O., Biggin, P. C., Bond, P., Bright, J. N., Domene, C., Grottesi, A., et al. (2003). Ion channel gating: Insights via molecular simulations. FEBS Letters, 555, 85.
go back to reference Berendsen, H. J. C. E. (1976). Proceedings of the CECAM workshop on models for protein dynamics. Orsay: University of Paris. Berendsen, H. J. C. E. (1976). Proceedings of the CECAM workshop on models for protein dynamics. Orsay: University of Paris.
go back to reference Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28, 235. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28, 235.
go back to reference Biarnes, X., Bongarzone, S., Vargiu, A. V., Carloni, P., & Ruggerone, P. (2011). Molecular motions in drug design: The coming age of the metadynamics method. Journal of Computer-Aided Molecular Design, 25, 395. Biarnes, X., Bongarzone, S., Vargiu, A. V., Carloni, P., & Ruggerone, P. (2011). Molecular motions in drug design: The coming age of the metadynamics method. Journal of Computer-Aided Molecular Design, 25, 395.
go back to reference Bikiel, D. E., Boechi, L., Capece, L., Crespo, A., De Biase, P. M., Di Lella, S., et al. (2006). Modeling heme proteins using atomistic simulations. Physical Chemistry Chemical Physics, 8, 5611. Bikiel, D. E., Boechi, L., Capece, L., Crespo, A., De Biase, P. M., Di Lella, S., et al. (2006). Modeling heme proteins using atomistic simulations. Physical Chemistry Chemical Physics, 8, 5611.
go back to reference Boas, F. E., & Harbury, P. B. (2007). Potential energy functions for protein design. Current Opinion in Structural Biology, 17, 199. Boas, F. E., & Harbury, P. B. (2007). Potential energy functions for protein design. Current Opinion in Structural Biology, 17, 199.
go back to reference Boiteux, C., Kraszewski, S., Ramseyer, C., & Girardet, C. (2007). Ion conductance vs. pore gating and selectivity in KcsA channel: Modeling achievements and perspectives. Journal of Molecular Modeling, 13, 699. Boiteux, C., Kraszewski, S., Ramseyer, C., & Girardet, C. (2007). Ion conductance vs. pore gating and selectivity in KcsA channel: Modeling achievements and perspectives. Journal of Molecular Modeling, 13, 699.
go back to reference Borell B. (2008). Chemistry: Power play. Nature, 451, 240. Borell B. (2008). Chemistry: Power play. Nature, 451, 240.
go back to reference Brooks, B. R., Brooks, C. L., 3rd, Mackerell, A. D., Jr., Nilsson, L., Petrella, R. J., Roux, B., et al. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30, 1545. Brooks, B. R., Brooks, C. L., 3rd, Mackerell, A. D., Jr., Nilsson, L., Petrella, R. J., Roux, B., et al. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30, 1545.
go back to reference Buda, F. (2009). Introduction to theory/modeling methods in photosynthesis, Photosynthesis Research, 102(2–3), 437–441. Buda, F. (2009). Introduction to theory/modeling methods in photosynthesis, Photosynthesis Research, 102(2–3), 437–441.
go back to reference Carnevale, V., Raugei, S., Neri, M., Pantano, S., Micheletti, C., & Carloni, P. (2009). Multi-scale modeling of HIV-1 proteins. Journal of Molecular Structure-Theochem, 898, 97. Carnevale, V., Raugei, S., Neri, M., Pantano, S., Micheletti, C., & Carloni, P. (2009). Multi-scale modeling of HIV-1 proteins. Journal of Molecular Structure-Theochem, 898, 97.
go back to reference Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., et al. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26, 1668. Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., et al. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26, 1668.
go back to reference Chen, J., & Brooks, C. L., 3rd. (2008). Implicit modeling of nonpolar solvation for simulating protein folding and conformational transitions. Physical Chemistry Chemical Physics, 10, 471. Chen, J., & Brooks, C. L., 3rd. (2008). Implicit modeling of nonpolar solvation for simulating protein folding and conformational transitions. Physical Chemistry Chemical Physics, 10, 471.
go back to reference Chen, J., Brooks, C. L., 3rd, & Khandogin, J. (2008). Recent advances in implicit solvent-based methods for biomolecular simulations. Current Opinion in Structural Biology, 18, 140. Chen, J., Brooks, C. L., 3rd, & Khandogin, J. (2008). Recent advances in implicit solvent-based methods for biomolecular simulations. Current Opinion in Structural Biology, 18, 140.
go back to reference Chou, K. C. (2004). Structural bioinformatics and its impact to biomedical science. Current Medicinal Chemistry, 11, 2105. Chou, K. C. (2004). Structural bioinformatics and its impact to biomedical science. Current Medicinal Chemistry, 11, 2105.
go back to reference Christ, C. D., Mark, A. E., & van Gunsteren, W. F. (2010). Basic ingredients of free energy calculations: A review. Journal of Computational Chemistry, 31, 1569. Christ, C. D., Mark, A. E., & van Gunsteren, W. F. (2010). Basic ingredients of free energy calculations: A review. Journal of Computational Chemistry, 31, 1569.
go back to reference Christen, M., Hunenberger, P. H., Bakowies, D., Baron, R., Burgi, R., Geerke, D. P., et al. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 26, 1719. Christen, M., Hunenberger, P. H., Bakowies, D., Baron, R., Burgi, R., Geerke, D. P., et al. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 26, 1719.
go back to reference Chu, J.-W., Ayton, G. S., Izvekov, S., & Voth, G. A. (2007). Emerging methods for multiscale simulation of biomolecular systems. Molecular Physics, 105, 167. Chu, J.-W., Ayton, G. S., Izvekov, S., & Voth, G. A. (2007). Emerging methods for multiscale simulation of biomolecular systems. Molecular Physics, 105, 167.
go back to reference Clementi, C. (2008). Coarse-grained models of protein folding: Toy models or predictive tools? Current Opinion in Structural Biology, 18, 10. Clementi, C. (2008). Coarse-grained models of protein folding: Toy models or predictive tools? Current Opinion in Structural Biology, 18, 10.
go back to reference Cohen, J., Olsen, K. W., & Schulten, K. (2008). Finding gas migration pathways in proteins using implicit ligand sampling. Methods in Enzymology, 437, 439. Cohen, J., Olsen, K. W., & Schulten, K. (2008). Finding gas migration pathways in proteins using implicit ligand sampling. Methods in Enzymology, 437, 439.
go back to reference Cornell, W., & Nam, K. (2009). Steroid hormone binding receptors: Application of homology modeling, induced fit docking, and molecular dynamics to study structure-function relationships. Current Topics in Medicinal Chemistry, 9, 844. Cornell, W., & Nam, K. (2009). Steroid hormone binding receptors: Application of homology modeling, induced fit docking, and molecular dynamics to study structure-function relationships. Current Topics in Medicinal Chemistry, 9, 844.
go back to reference Cukier, R. I. (2004). Theory and simulation of proton-coupled electron transfer, hydrogen-atom transfer, and proton translocation in proteins. Biochimica et Biophysica Acta, 1655, 37. Cukier, R. I. (2004). Theory and simulation of proton-coupled electron transfer, hydrogen-atom transfer, and proton translocation in proteins. Biochimica et Biophysica Acta, 1655, 37.
go back to reference Dahl, J. P. (2001). Introduction to the quantum world of atoms and molecules. Singapore: World Scientific Publishing Co. Dahl, J. P. (2001). Introduction to the quantum world of atoms and molecules. Singapore: World Scientific Publishing Co.
go back to reference Dal Peraro, M., Ruggerone, P., Raugei, S., Gervasi, F., & Elber, R. (2005). Long-timescale simulation methods. Current Opinion in Structural Biology, 15, 151. Dal Peraro, M., Ruggerone, P., Raugei, S., Gervasi, F., & Elber, R. (2005). Long-timescale simulation methods. Current Opinion in Structural Biology, 15, 151.
go back to reference Dal Peraro, M., Ruggerone, P., Raugei, S., Gervasio, F. L., & Carloni, P. (2007). Investigating biological systems using first principles Car-Parrinello molecular dynamics simulations. Current Opinion in Structural Biology, 17, 149. Dal Peraro, M., Ruggerone, P., Raugei, S., Gervasio, F. L., & Carloni, P. (2007). Investigating biological systems using first principles Car-Parrinello molecular dynamics simulations. Current Opinion in Structural Biology, 17, 149.
go back to reference DeMarco, M. L., & Daggett, V. (2009). Characterization of cell-surface prion protein relative to its recombinant analogue: Insights from molecular dynamics simulations of diglycosylated, membrane-bound human prion protein. Journal of Neurochemistry, 109, 60. DeMarco, M. L., & Daggett, V. (2009). Characterization of cell-surface prion protein relative to its recombinant analogue: Insights from molecular dynamics simulations of diglycosylated, membrane-bound human prion protein. Journal of Neurochemistry, 109, 60.
go back to reference Deng, Y., & Roux, B. (2009). Computations of standard binding free energies with molecular dynamics simulations. The Journal of Physical Chemistry B, 113, 2234. Deng, Y., & Roux, B. (2009). Computations of standard binding free energies with molecular dynamics simulations. The Journal of Physical Chemistry B, 113, 2234.
go back to reference Dittrich, M., Freddolino, P. L., & Schulten, K. (2005). When light falls in LOV: A quantum mechanical/ molecular mechanical study of photoexcitation in Phot-LOV1 of Chlamydomonas reinhardtii. The Journal of Physical Chemistry B, 109, 13006. Dittrich, M., Freddolino, P. L., & Schulten, K. (2005). When light falls in LOV: A quantum mechanical/ molecular mechanical study of photoexcitation in Phot-LOV1 of Chlamydomonas reinhardtii. The Journal of Physical Chemistry B, 109, 13006.
go back to reference Dittrich, M., & Schulten, K. (2006). PcrA helicase, a prototype ATP-driven molecular motor. Structure, 14, 1345. Dittrich, M., & Schulten, K. (2006). PcrA helicase, a prototype ATP-driven molecular motor. Structure, 14, 1345.
go back to reference Dodson, G. G., Lane, D. P., & Verma, C. S. (2008). Molecular simulations of protein dynamics: New windows on mechanisms in biology. EMBO Reports, 9, 144. Dodson, G. G., Lane, D. P., & Verma, C. S. (2008). Molecular simulations of protein dynamics: New windows on mechanisms in biology. EMBO Reports, 9, 144.
go back to reference Duan, Y., & Kollman, P. A. (1998). Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science, 282, 740. Duan, Y., & Kollman, P. A. (1998). Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science, 282, 740.
go back to reference Ekonomiuk, D., Kielbasinski, M., & Kolinski, A. (2005). Protein modeling with reduced representation: Statistical potentials and protein folding mechanism. Acta Biochimica Polonica, 52, 741. Ekonomiuk, D., Kielbasinski, M., & Kolinski, A. (2005). Protein modeling with reduced representation: Statistical potentials and protein folding mechanism. Acta Biochimica Polonica, 52, 741.
go back to reference Elber, R., Ghosh, A., & Cardenas, A. (2002). Long time dynamics of complex systems. Accounts of Chemical Research, 35, 396. Elber, R., Ghosh, A., & Cardenas, A. (2002). Long time dynamics of complex systems. Accounts of Chemical Research, 35, 396.
go back to reference Elcock, A. H., Sept, D., & McCammon, J. A. (2001). Computer simulation of protein–protein interactions. The Journal of Physical Chemistry B, 105, 1504. Elcock, A. H., Sept, D., & McCammon, J. A. (2001). Computer simulation of protein–protein interactions. The Journal of Physical Chemistry B, 105, 1504.
go back to reference Ensign, D. L., Kasson, P. M., & Pande, V. S. (2007). Heterogeneity even at the speed limit of folding: Large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. Journal of Molecular Biology, 374, 806. Ensign, D. L., Kasson, P. M., & Pande, V. S. (2007). Heterogeneity even at the speed limit of folding: Large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. Journal of Molecular Biology, 374, 806.
go back to reference Flechsig, H., & Mikhailov, A. S. (2010). Tracing entire operation cycles of molecular motor hepatitis C virus helicase in structurally resolved dynamical simulations. Proceedings of the National Academy of Sciences of the United States of America, 107, 20875. Flechsig, H., & Mikhailov, A. S. (2010). Tracing entire operation cycles of molecular motor hepatitis C virus helicase in structurally resolved dynamical simulations. Proceedings of the National Academy of Sciences of the United States of America, 107, 20875.
go back to reference Frankel, D., & Smit, B. (2001). Understanding molecular simulation (2nd ed.). San Diego: Academic. Frankel, D., & Smit, B. (2001). Understanding molecular simulation (2nd ed.). San Diego: Academic.
go back to reference Freddolino, P. L., Arkhipov, A. S., Larson, S. B., McPherson, A., & Schulten, K. (2006a). Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure, 14, 437. Freddolino, P. L., Arkhipov, A. S., Larson, S. B., McPherson, A., & Schulten, K. (2006a). Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure, 14, 437.
go back to reference Freddolino, P. L., Dittrich, M., & Schulten, K. (2006b). Dynamic switching mechanisms in LOV1 and LOV2 domains of plant phototropins. Biophysical Journal, 91, 3630. Freddolino, P. L., Dittrich, M., & Schulten, K. (2006b). Dynamic switching mechanisms in LOV1 and LOV2 domains of plant phototropins. Biophysical Journal, 91, 3630.
go back to reference Freddolino, P. L., Liu, F., Gruebele, M., & Schulten, K. (2008). Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophysical Journal, 94, L75. Freddolino, P. L., Liu, F., Gruebele, M., & Schulten, K. (2008). Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophysical Journal, 94, L75.
go back to reference Freddolino, P. L., Park, S., Roux, B., & Schulten, K. (2009). Force field bias in protein folding simulations. Biophysical Journal, 96, 3772. Freddolino, P. L., Park, S., Roux, B., & Schulten, K. (2009). Force field bias in protein folding simulations. Biophysical Journal, 96, 3772.
go back to reference Freddolino, P. L., Harrison, C. B., Liu, Y., & Schulten, K. (2010). Challenges in protein folding simulations: Timescale, representation, and analysis. Nature Physics, 6, 751. Freddolino, P. L., Harrison, C. B., Liu, Y., & Schulten, K. (2010). Challenges in protein folding simulations: Timescale, representation, and analysis. Nature Physics, 6, 751.
go back to reference Freddolino, P. L., & Schulten, K. (2009). Common structural transitions in explicit-solvent simulations of villin headpiece folding. Biophysical Journal, 97, 2338. Freddolino, P. L., & Schulten, K. (2009). Common structural transitions in explicit-solvent simulations of villin headpiece folding. Biophysical Journal, 97, 2338.
go back to reference Galeazzi, R. (2009). Molecular dynamics as a tool in rational drug design: Current status and some major applications. Current Computer-Aided Drug Design, 5, 225. Galeazzi, R. (2009). Molecular dynamics as a tool in rational drug design: Current status and some major applications. Current Computer-Aided Drug Design, 5, 225.
go back to reference Galera-Prat, A., Gomez-Sicilia, A., Oberhauser, A. F., Cieplak, M., & Carrion-Vazquez, M. (2010). Understanding biology by stretching proteins: Recent progress. Current Opinion in Structural Biology, 20, 63. Galera-Prat, A., Gomez-Sicilia, A., Oberhauser, A. F., Cieplak, M., & Carrion-Vazquez, M. (2010). Understanding biology by stretching proteins: Recent progress. Current Opinion in Structural Biology, 20, 63.
go back to reference Gallicchio, E., & Levy, R. M. (2011). Advances in all atom sampling methods for modeling protein-ligand binding affinities. Current Opinion in Structural Biology, 161, 161–166. Gallicchio, E., & Levy, R. M. (2011). Advances in all atom sampling methods for modeling protein-ligand binding affinities. Current Opinion in Structural Biology, 161, 161–166.
go back to reference Gao, M., Sotomayor, M., Villa, E., Lee, E. H., & Schulten, K. (2006). Molecular mechanisms of cellular mechanics. Physical Chemistry Chemical Physics, 8, 3692. Gao, M., Sotomayor, M., Villa, E., Lee, E. H., & Schulten, K. (2006). Molecular mechanisms of cellular mechanics. Physical Chemistry Chemical Physics, 8, 3692.
go back to reference Grubmueller, H. (2004). “Proteins as molecular machines: Force probe simulations” published in Computational soft matter: From synthetic polymers to proteins, lecture notes. In N. Attig, K. Binder, H. Grubmueller & K. Kremer (Eds.), NIC series (Vol. 23, pp. 401–422). Julich: John von Neumann Institute for Computing. ISBN 3-00-012641-4. Grubmueller, H. (2004). “Proteins as molecular machines: Force probe simulations” published in Computational soft matter: From synthetic polymers to proteins, lecture notes. In N. Attig, K. Binder, H. Grubmueller & K. Kremer (Eds.), NIC series (Vol. 23, pp. 401–422). Julich: John von Neumann Institute for Computing. ISBN 3-00-012641-4.
go back to reference Gu, J., & Bourne, P. E. (Eds.). (2009). Structural bioinformatics (2nd ed.). Hoboken: Wiley-Blackwell. Gu, J., & Bourne, P. E. (Eds.). (2009). Structural bioinformatics (2nd ed.). Hoboken: Wiley-Blackwell.
go back to reference Gumbart, J., Wang, Y., Aksimentiev, A., Tajkhorshid, E., & Schulten, K. (2005). Molecular dynamics simulations of proteins in lipid bilayers. Current Opinion in Structural Biology, 15, 423. Gumbart, J., Wang, Y., Aksimentiev, A., Tajkhorshid, E., & Schulten, K. (2005). Molecular dynamics simulations of proteins in lipid bilayers. Current Opinion in Structural Biology, 15, 423.
go back to reference Guvench, O., & MacKerell, A. D., Jr. (2008). Comparison of protein force fields for molecular dynamics simulations. Methods in Molecular Biology, 443, 63. Guvench, O., & MacKerell, A. D., Jr. (2008). Comparison of protein force fields for molecular dynamics simulations. Methods in Molecular Biology, 443, 63.
go back to reference Haile, M. (1992). Molecular dynamics simulation: Elementary methods. New York: Wiley. Haile, M. (1992). Molecular dynamics simulation: Elementary methods. New York: Wiley.
go back to reference Hansson, T. O. C., & van Gunsteren, W. (2002). Molecular dynamics simulations. Current Opinion in Structural Biology, 12, 190. Hansson, T. O. C., & van Gunsteren, W. (2002). Molecular dynamics simulations. Current Opinion in Structural Biology, 12, 190.
go back to reference Hardy, D. J., Stone, J. E., & Schulten, K. (2009). Multilevel summation of electrostatic potentials using graphics processing units. Parallel Computing, 35, 164. Hardy, D. J., Stone, J. E., & Schulten, K. (2009). Multilevel summation of electrostatic potentials using graphics processing units. Parallel Computing, 35, 164.
go back to reference Hayashi, S., Tajkhorshid, E., & Schulten, K. (2009). Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation. Biophysical Journal, 96, 403. Hayashi, S., Tajkhorshid, E., & Schulten, K. (2009). Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation. Biophysical Journal, 96, 403.
go back to reference Henzler-Wildman, K., & Kern, D. (2007). Dynamic personalities of proteins. Nature, 450, 964. Henzler-Wildman, K., & Kern, D. (2007). Dynamic personalities of proteins. Nature, 450, 964.
go back to reference Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435. Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435.
go back to reference Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65, 712. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65, 712.
go back to reference Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51, 69. Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51, 69.
go back to reference Houriez, C., Ferre, N., Masella, M., & Siri, D. (2008). Prediction of nitroxide hyperfine coupling constants in solution from combined nanosecond scale simulations and quantum computations. Journal of Chemical Physics, 128, 244504. Houriez, C., Ferre, N., Masella, M., & Siri, D. (2008). Prediction of nitroxide hyperfine coupling constants in solution from combined nanosecond scale simulations and quantum computations. Journal of Chemical Physics, 128, 244504.
go back to reference Hsin, J., Arkhipov, A., Yin, Y., Stone, J. E., & Schulten, K. (2008). Using VMD: An introductory tutorial. Current Protocols in Bioinformatics, Chapter 5, p. Unit 5 7. Hsin, J., Arkhipov, A., Yin, Y., Stone, J. E., & Schulten, K. (2008). Using VMD: An introductory tutorial. Current Protocols in Bioinformatics, Chapter 5, p. Unit 5 7.
go back to reference Hub, J. S., & de Groot, B. L. (2009). Detection of functional modes in protein dynamics. PLoS Computational Biology, 5, e1000480. Hub, J. S., & de Groot, B. L. (2009). Detection of functional modes in protein dynamics. PLoS Computational Biology, 5, e1000480.
go back to reference Hub, J. S., Grubmuller, H., & de Groot, B. L. (2009). Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handbook of Experimental Pharmacology, 190, 57. Hub, J. S., Grubmuller, H., & de Groot, B. L. (2009). Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handbook of Experimental Pharmacology, 190, 57.
go back to reference Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33.
go back to reference Ikeguchi, M. (2009). Water transport in aquaporins: Molecular dynamics simulations. Frontiers in Bioscience, 14, 1283. Ikeguchi, M. (2009). Water transport in aquaporins: Molecular dynamics simulations. Frontiers in Bioscience, 14, 1283.
go back to reference Jorgensen, W. L., & Tiradorives, J. (1988). The OPLS potential functions for proteins – energy minimizations for crystals of cyclic-peptides and crambin. Journal of the American Chemical Society, 110, 1657. Jorgensen, W. L., & Tiradorives, J. (1988). The OPLS potential functions for proteins – energy minimizations for crystals of cyclic-peptides and crambin. Journal of the American Chemical Society, 110, 1657.
go back to reference Kannan, S., & Zacharias, M. (2009). Simulated annealing coupled replica exchange molecular dynamics – an efficient conformational sampling method. Journal of Structural Biology, 166, 288. Kannan, S., & Zacharias, M. (2009). Simulated annealing coupled replica exchange molecular dynamics – an efficient conformational sampling method. Journal of Structural Biology, 166, 288.
go back to reference Karplus, M. (2003). Molecular dynamics of biological macromolecules: A brief history and perspective. Biopolymers, 68, 350. Karplus, M. (2003). Molecular dynamics of biological macromolecules: A brief history and perspective. Biopolymers, 68, 350.
go back to reference Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9, 646. Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9, 646.
go back to reference Kassler, K., Horn, A. H. C., & Sticht, H. (2010). Effect of pathogenic mutations on the structure and dynamics of Alzheimer’s A beta(42)-amyloid oligomers. Journal of Molecular Modeling, 16, 1011. Kassler, K., Horn, A. H. C., & Sticht, H. (2010). Effect of pathogenic mutations on the structure and dynamics of Alzheimer’s A beta(42)-amyloid oligomers. Journal of Molecular Modeling, 16, 1011.
go back to reference Khafizov, K., Lattanzi, G., & Carloni, P. (2009). G protein inactive and active forms investigated by simulation methods. Proteins-Structure Function and Bioinformatics, 75, 919. Khafizov, K., Lattanzi, G., & Carloni, P. (2009). G protein inactive and active forms investigated by simulation methods. Proteins-Structure Function and Bioinformatics, 75, 919.
go back to reference Khalili-Araghi, F., Gumbart, J., Wen, P. C., Sotomayor, M., Tajkhorshid, E., & Schulten, K. (2009). Molecular dynamics simulations of membrane channels and transporters. Current Opinion in Structural Biology, 19, 128. Khalili-Araghi, F., Gumbart, J., Wen, P. C., Sotomayor, M., Tajkhorshid, E., & Schulten, K. (2009). Molecular dynamics simulations of membrane channels and transporters. Current Opinion in Structural Biology, 19, 128.
go back to reference Kholmurodov, K. T., Altaisky, M. V., Puzynin, I. V., Darden, T., & Filatov, F. P. (2003). Methods of molecular dynamics for simulation of physical and biological processes. Physics of Particles and Nuclei, 34, 244. Kholmurodov, K. T., Altaisky, M. V., Puzynin, I. V., Darden, T., & Filatov, F. P. (2003). Methods of molecular dynamics for simulation of physical and biological processes. Physics of Particles and Nuclei, 34, 244.
go back to reference Khurana, E., Devane, R. H., Dal Peraro, M., & Klein, M. L. (2011). Computational study of drug binding to the membrane-bound tetrameric M2 peptide bundle from influenza A virus. Biochimica et Biophysica Acta, 1808, 530. Khurana, E., Devane, R. H., Dal Peraro, M., & Klein, M. L. (2011). Computational study of drug binding to the membrane-bound tetrameric M2 peptide bundle from influenza A virus. Biochimica et Biophysica Acta, 1808, 530.
go back to reference Klein, M. L., & Shinoda, W. (2008). Large-scale molecular dynamics simulations of self- assembling systems. Science, 321, 798. Klein, M. L., & Shinoda, W. (2008). Large-scale molecular dynamics simulations of self- assembling systems. Science, 321, 798.
go back to reference Klepeis, J. L., Pieja, M. J., & Floudas, C. A. (2003). Hybrid global optimization algorithms for protein structure prediction: Alternating hybrids. Biophysical Journal, 84, 869. Klepeis, J. L., Pieja, M. J., & Floudas, C. A. (2003). Hybrid global optimization algorithms for protein structure prediction: Alternating hybrids. Biophysical Journal, 84, 869.
go back to reference Klepeis, J. L., Lindorff-Larsen, K., Dror, R. O., & Shaw, D. E. (2009). Long-timescale molecular dynamics simulations of protein structure and function. Current Opinion in Structural Biology, 19, 120. Klepeis, J. L., Lindorff-Larsen, K., Dror, R. O., & Shaw, D. E. (2009). Long-timescale molecular dynamics simulations of protein structure and function. Current Opinion in Structural Biology, 19, 120.
go back to reference Kmiecik, S., Gront, D., & Kolinski, A. (2007). Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field. BMC Structural Biology, 7, 43. Kmiecik, S., Gront, D., & Kolinski, A. (2007). Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field. BMC Structural Biology, 7, 43.
go back to reference Knapp, B., & Schreiner, W. (2009). Graphical user interfaces for molecular dynamics-quo vadis? Bioinformatics and Biology Insights, 3, 103. Knapp, B., & Schreiner, W. (2009). Graphical user interfaces for molecular dynamics-quo vadis? Bioinformatics and Biology Insights, 3, 103.
go back to reference Knoll, P., & Mirzaei, S. (2003). Development of an interactive molecular dynamics simulation software package. Review of Scientific Instruments, 74, 2483. Knoll, P., & Mirzaei, S. (2003). Development of an interactive molecular dynamics simulation software package. Review of Scientific Instruments, 74, 2483.
go back to reference Kolomeisky, A. B., & Fisher, M. E. (2007). Molecular motors: A theorist’s perspective. Annual Review of Physical Chemistry, 58, 675. Kolomeisky, A. B., & Fisher, M. E. (2007). Molecular motors: A theorist’s perspective. Annual Review of Physical Chemistry, 58, 675.
go back to reference Kremer, K. (2003). Computer simulations for macromolecular science. Macromolecular Chemistry and Physics, 204, 257. Kremer, K. (2003). Computer simulations for macromolecular science. Macromolecular Chemistry and Physics, 204, 257.
go back to reference Kubiak, K., & Nowak, W. (2008). Molecular dynamics simulations of the photoactive protein nitrile hydratase. Biophysical Journal, 94, 3824. Kubiak, K., & Nowak, W. (2008). Molecular dynamics simulations of the photoactive protein nitrile hydratase. Biophysical Journal, 94, 3824.
go back to reference Kuczera, K., Jas, G. S., & Elber, R. (2009). Kinetics of helix unfolding: Molecular dynamics simulations with milestoning. The Journal of Physical Chemistry A, 113, 7461. Kuczera, K., Jas, G. S., & Elber, R. (2009). Kinetics of helix unfolding: Molecular dynamics simulations with milestoning. The Journal of Physical Chemistry A, 113, 7461.
go back to reference Kupfer, L., Hinrichs, W., & Groschup, M. H. (2009). Prion protein misfolding. Current Molecular Medicine, 9, 826. Kupfer, L., Hinrichs, W., & Groschup, M. H. (2009). Prion protein misfolding. Current Molecular Medicine, 9, 826.
go back to reference Lange, O. E., Schafer, L. V., & Grubmuller, H. (2006). Flooding in GROMACS: Accelerated barrier crossings in molecular dynamics. Journal of Computational Chemistry, 27, 1693. Lange, O. E., Schafer, L. V., & Grubmuller, H. (2006). Flooding in GROMACS: Accelerated barrier crossings in molecular dynamics. Journal of Computational Chemistry, 27, 1693.
go back to reference Lauria, A., Tutone, M., Ippolito, M., Pantano, L., & Almerico, A. M. (2010). Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: The investigation of p53-MDM2 interaction and its inhibition by small molecules. Current Medicinal Chemistry, 17, 3142. Lauria, A., Tutone, M., Ippolito, M., Pantano, L., & Almerico, A. M. (2010). Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: The investigation of p53-MDM2 interaction and its inhibition by small molecules. Current Medicinal Chemistry, 17, 3142.
go back to reference Le, L., Lee, E., Schulten, K., & Truong, T. N. (2009). Molecular modeling of swine influenza A/H1N1, Spanish H1N1, and avian H5N1 flu N1 neuraminidases bound to Tamiflu and Relenza. PLoS Currents: Influenza, 1, RRN1015. Le, L., Lee, E., Schulten, K., & Truong, T. N. (2009). Molecular modeling of swine influenza A/H1N1, Spanish H1N1, and avian H5N1 flu N1 neuraminidases bound to Tamiflu and Relenza. PLoS Currents: Influenza, 1, RRN1015.
go back to reference Leach, A. (2001). Molecular modelling: Principles and applications (2nd ed.). Harlow: Prentice Hall. Leach, A. (2001). Molecular modelling: Principles and applications (2nd ed.). Harlow: Prentice Hall.
go back to reference Lee, E. H., Hsin, J., Sotomayor, M., Comellas, G., & Schulten, K. (2009). Discovery through the computational microscope. Structure, 17, 1295. Lee, E. H., Hsin, J., Sotomayor, M., Comellas, G., & Schulten, K. (2009). Discovery through the computational microscope. Structure, 17, 1295.
go back to reference Lee, G., Nowak, W., Jaroniec, J., Zhang, Q., & Marszalek, P. E. (2004). Nanomechanical control of glucopyranose rotamers. Journal of the American Chemical Society, 126, 6218. Lee, G., Nowak, W., Jaroniec, J., Zhang, Q., & Marszalek, P. E. (2004). Nanomechanical control of glucopyranose rotamers. Journal of the American Chemical Society, 126, 6218.
go back to reference Lee, K. H., Kuczera, K., & Banaszak Holl, M. M. (2011). The severity of osteogenesis imperfecta: A comparison to the relative free energy differences of collagen model peptides. Biopolymers, 95, 182. Lee, K. H., Kuczera, K., & Banaszak Holl, M. M. (2011). The severity of osteogenesis imperfecta: A comparison to the relative free energy differences of collagen model peptides. Biopolymers, 95, 182.
go back to reference Levitt, M., & Lifson, S. (1969). Refinement of protein conformation using a macromolecular energy minimization procedure. Journal of Molecular Biology, 46, 269. Levitt, M., & Lifson, S. (1969). Refinement of protein conformation using a macromolecular energy minimization procedure. Journal of Molecular Biology, 46, 269.
go back to reference Liu, J., & Nussinov, R. (2010). Molecular dynamics reveal the essential role of Linker motions in the function of Cullin-RING E3 ligases. Journal of Molecular Biology, 396, 1508. Liu, J., & Nussinov, R. (2010). Molecular dynamics reveal the essential role of Linker motions in the function of Cullin-RING E3 ligases. Journal of Molecular Biology, 396, 1508.
go back to reference Liwo, A., Czaplewski, C., Oldziej, S., & Scheraga, H. A. (2008). Computational techniques for efficient conformational sampling of proteins. Current Opinion in Structural Biology, 18, 134. Liwo, A., Czaplewski, C., Oldziej, S., & Scheraga, H. A. (2008). Computational techniques for efficient conformational sampling of proteins. Current Opinion in Structural Biology, 18, 134.
go back to reference Lonsdale, R., Ranaghan, K. E., & Mulholland, A. J. (2010). Computational enzymology. Chemical Communications, 46, 2354. Lonsdale, R., Ranaghan, K. E., & Mulholland, A. J. (2010). Computational enzymology. Chemical Communications, 46, 2354.
go back to reference Ma, J., Flynn, T. C., Cui, Q., Leslie, A. G., Walker, J. E., & Karplus, M. (2002). A dynamic analysis of the rotation mechanism for conformational change in F(1)-ATPase. Structure, 10, 921. Ma, J., Flynn, T. C., Cui, Q., Leslie, A. G., Walker, J. E., & Karplus, M. (2002). A dynamic analysis of the rotation mechanism for conformational change in F(1)-ATPase. Structure, 10, 921.
go back to reference Ma, J. P., & Karplus, M. (1997). Molecular switch in signal transduction: Reaction paths of the conformational changes in ras p21. Proceedings of the National Academy of Sciences of the United States of America, 94, 11905. Ma, J. P., & Karplus, M. (1997). Molecular switch in signal transduction: Reaction paths of the conformational changes in ras p21. Proceedings of the National Academy of Sciences of the United States of America, 94, 11905.
go back to reference Ma, B., & Levine, A. J. (2007). Probing potential binding modes of the p53 tetramer to DNA based on the symmetries encoded in p53 response elements. Nucleic Acids Research, 35, 7733. Ma, B., & Levine, A. J. (2007). Probing potential binding modes of the p53 tetramer to DNA based on the symmetries encoded in p53 response elements. Nucleic Acids Research, 35, 7733.
go back to reference MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., et al. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B, 102, 3586. MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., et al. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B, 102, 3586.
go back to reference Mackerell, A. D., Jr., & Nilsson, L. (2008). Molecular dynamics simulations of nucleic acid-protein complexes. Current Opinion in Structural Biology, 18, 194. Mackerell, A. D., Jr., & Nilsson, L. (2008). Molecular dynamics simulations of nucleic acid-protein complexes. Current Opinion in Structural Biology, 18, 194.
go back to reference Marti, M. A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F. J., & Estrin, D. A. (2008). Nitric oxide reactivity with globins as investigated through computer simulation. Methods in Enzymology, 437, 477. Marti, M. A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F. J., & Estrin, D. A. (2008). Nitric oxide reactivity with globins as investigated through computer simulation. Methods in Enzymology, 437, 477.
go back to reference Mayor, U., Guydosh, N. R., Johnson, C. M., Grossmann, J. G., Sato, S., Jas, G. S., et al. (2003). The complete folding pathway of a protein from nanoseconds to microseconds. Nature, 421, 863. Mayor, U., Guydosh, N. R., Johnson, C. M., Grossmann, J. G., Sato, S., Jas, G. S., et al. (2003). The complete folding pathway of a protein from nanoseconds to microseconds. Nature, 421, 863.
go back to reference McCammon, J. A., Gelin, B. R., & Karplus, M. (1977). Dynamics of folded proteins. Nature, 267, 585. McCammon, J. A., Gelin, B. R., & Karplus, M. (1977). Dynamics of folded proteins. Nature, 267, 585.
go back to reference Meirovitch, H. (2007). Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation. Current Opinion in Structural Biology, 17, 181. Meirovitch, H. (2007). Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation. Current Opinion in Structural Biology, 17, 181.
go back to reference Miao, L., & Schulten, K. (2009). Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure, 17, 449. Miao, L., & Schulten, K. (2009). Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure, 17, 449.
go back to reference Miller, B. T., Singh, R. P., Klauda, J. B., Hodoscek, M., Brooks, B. R., & Woodcock, H. L. (2008). CHARMMing: A new, flexible web portal for CHARMM. Journal of Chemical Information and Modeling, 48, 1920. Miller, B. T., Singh, R. P., Klauda, J. B., Hodoscek, M., Brooks, B. R., & Woodcock, H. L. (2008). CHARMMing: A new, flexible web portal for CHARMM. Journal of Chemical Information and Modeling, 48, 1920.
go back to reference Moraitakis, G., Purkiss, A. G., & Goodfellow, J. M. (2003). Simulated dynamics and biological molecules. Reports on Progress in Physics, 66, 483. Moraitakis, G., Purkiss, A. G., & Goodfellow, J. M. (2003). Simulated dynamics and biological molecules. Reports on Progress in Physics, 66, 483.
go back to reference Morra, G., Meli, M., & Colombo, G. (2008). Molecular dynamics simulations of proteins and peptides: From folding to drug design. Current Protein & Peptide Science, 9, 181. Morra, G., Meli, M., & Colombo, G. (2008). Molecular dynamics simulations of proteins and peptides: From folding to drug design. Current Protein & Peptide Science, 9, 181.
go back to reference Morra, G., Genoni, A., Neves, M. A., Merz, K. M., Jr., & Colombo, G (2010) Molecular recognition and drug-lead identification: What can molecular simulations tell us? Current Medicinal Chemistry, 17, 25. Morra, G., Genoni, A., Neves, M. A., Merz, K. M., Jr., & Colombo, G (2010) Molecular recognition and drug-lead identification: What can molecular simulations tell us? Current Medicinal Chemistry, 17, 25.
go back to reference Nielsen, S. O., Bulo, R. E., Moore, P. B., & Ensing, B. (2010). Recent progress in adaptive multiscale molecular dynamics simulations of soft matter. Physical Chemistry Chemical Physics, 12, 12401. Nielsen, S. O., Bulo, R. E., Moore, P. B., & Ensing, B. (2010). Recent progress in adaptive multiscale molecular dynamics simulations of soft matter. Physical Chemistry Chemical Physics, 12, 12401.
go back to reference Nowak, W., Czerminski, R., & Elber, R. (1991). Reaction path study of ligand diffusion in proteins: Application of the self penalty walk (SPW) method to calculate reaction coordinates for the motion of CO through leghemoglobin. Journal of the American Chemical Society, 113, 5627. Nowak, W., Czerminski, R., & Elber, R. (1991). Reaction path study of ligand diffusion in proteins: Application of the self penalty walk (SPW) method to calculate reaction coordinates for the motion of CO through leghemoglobin. Journal of the American Chemical Society, 113, 5627.
go back to reference Nowak, W., & Marszalek, P. (2005). Molecular dynamics simulations of single molecule atomic force microscope experiments. In J. Leszczynski (Ed.), Current trends in computational chemistry (pp. 47–83). Singapore: World Scientific. Nowak, W., & Marszalek, P. (2005). Molecular dynamics simulations of single molecule atomic force microscope experiments. In J. Leszczynski (Ed.), Current trends in computational chemistry (pp. 47–83). Singapore: World Scientific.
go back to reference Nowak, W., Wasilewski, S., & Peplowski, L. (2007). Steered molecular dynamics as a virtual atomic force microscope. In H. E. Ulrich, J. M. Hansmann, S. Mohanty & O. Zimmermann (Eds.), From computational biophysics to systems biology (CBSB07), Proceedings of the NIC Workshop 2007 (p. 251). Julich: John von Neumann Institute for Computing. Nowak, W., Wasilewski, S., & Peplowski, L. (2007). Steered molecular dynamics as a virtual atomic force microscope. In H. E. Ulrich, J. M. Hansmann, S. Mohanty & O. Zimmermann (Eds.), From computational biophysics to systems biology (CBSB07), Proceedings of the NIC Workshop 2007 (p. 251). Julich: John von Neumann Institute for Computing.
go back to reference Olsen, S., Lamothe, K., & Martinez, T. J. (2010). Protonic gating of excited-state twisting and charge localization in GFP chromophores: A mechanistic hypothesis for reversible photoswitching. Journal of the American Chemical Society, 132, 1192. Olsen, S., Lamothe, K., & Martinez, T. J. (2010). Protonic gating of excited-state twisting and charge localization in GFP chromophores: A mechanistic hypothesis for reversible photoswitching. Journal of the American Chemical Society, 132, 1192.
go back to reference Orlowski, S., & Nowak, W. (2007). Locally enhanced sampling molecular dynamics study of the dioxygen transport in human cytoglobin. Journal of Molecular Modeling, 13, 715. Orlowski, S., & Nowak, W. (2007). Locally enhanced sampling molecular dynamics study of the dioxygen transport in human cytoglobin. Journal of Molecular Modeling, 13, 715.
go back to reference Orlowski, S., & Nowak, W. (2008). Topology and thermodynamics of gaseous ligands diffusion paths in human neuroglobin. Biosystems, 94, 263. Orlowski, S., & Nowak, W. (2008). Topology and thermodynamics of gaseous ligands diffusion paths in human neuroglobin. Biosystems, 94, 263.
go back to reference Paci, E. (2002). High pressure simulations of biomolecules. BBA-Protein Structure and Molecular Enzymology, 1595, 185. Paci, E. (2002). High pressure simulations of biomolecules. BBA-Protein Structure and Molecular Enzymology, 1595, 185.
go back to reference Paci, E., Caflisch, A., Pluckthun, A., & Karplus, M. (2001). Forces and energetics of hapten-antibody dissociation: A biased molecular dynamics simulation study. Journal of Molecular Biology, 314, 589. Paci, E., Caflisch, A., Pluckthun, A., & Karplus, M. (2001). Forces and energetics of hapten-antibody dissociation: A biased molecular dynamics simulation study. Journal of Molecular Biology, 314, 589.
go back to reference Pande, V. S., Baker, I., Chapman, J., Elmer, S. P., Khaliq, S., Larson, S. M., et al. (2003). Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers, 68, 91. Pande, V. S., Baker, I., Chapman, J., Elmer, S. P., Khaliq, S., Larson, S. M., et al. (2003). Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers, 68, 91.
go back to reference Papaleo, E., & Invernizzi, G. (2011). Conformational diseases: Structural studies of aggregation of polyglutamine proteins. Current Computer-Aided Drug Design, 7, 23. Papaleo, E., & Invernizzi, G. (2011). Conformational diseases: Structural studies of aggregation of polyglutamine proteins. Current Computer-Aided Drug Design, 7, 23.
go back to reference Peplowski, L., Kubiak, K., & Nowak, W. (2008). Mechanical aspects of nitrile hydratase enzymatic activity. Steered molecular dynamics simulations of Pseudonocardia thermophila JCM 3095. Chemical Physics Letters, 467, 144. Peplowski, L., Kubiak, K., & Nowak, W. (2008). Mechanical aspects of nitrile hydratase enzymatic activity. Steered molecular dynamics simulations of Pseudonocardia thermophila JCM 3095. Chemical Physics Letters, 467, 144.
go back to reference Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., et al. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., et al. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781.
go back to reference Piana, S., Sarkar, K., Lindorff-Larsen, K., Guo, M., Gruebele, M., & Shaw, D. E. (2011). Computational design and experimental testing of the fastest-folding beta-sheet protein. Journal of Molecular Biology, 405, 43. Piana, S., Sarkar, K., Lindorff-Larsen, K., Guo, M., Gruebele, M., & Shaw, D. E. (2011). Computational design and experimental testing of the fastest-folding beta-sheet protein. Journal of Molecular Biology, 405, 43.
go back to reference Pohorille, A., Jarzynski, C., & Chipot, C. (2010). Good practices in free-energy calculations. The Journal of Physical Chemistry B, 114, 10235. Pohorille, A., Jarzynski, C., & Chipot, C. (2010). Good practices in free-energy calculations. The Journal of Physical Chemistry B, 114, 10235.
go back to reference Rahman, A., & Stillinger, F. H. (1971). Molecular dynamics study of liquid water. Journal of Chemical Physics, 55, 3336. Rahman, A., & Stillinger, F. H. (1971). Molecular dynamics study of liquid water. Journal of Chemical Physics, 55, 3336.
go back to reference Rapaport, D. C. (1995). The art of molecular dynamics simulation. Cambridge, MA: Cambridge University Press. Rapaport, D. C. (1995). The art of molecular dynamics simulation. Cambridge, MA: Cambridge University Press.
go back to reference Rehm, S., Trodler, P., & Pleiss, J. (2010). Solvent-induced lid opening in lipases: A molecular dynamics study. Protein Science, 19, 2122. Rehm, S., Trodler, P., & Pleiss, J. (2010). Solvent-induced lid opening in lipases: A molecular dynamics study. Protein Science, 19, 2122.
go back to reference Rief, M., & Grubmuller, H. (2002). Force spectroscopy of single biomolecules. A EuropeanJournal of Chemical Physics and Physical Chemistry, 3, 255. Rief, M., & Grubmuller, H. (2002). Force spectroscopy of single biomolecules. A EuropeanJournal of Chemical Physics and Physical Chemistry, 3, 255.
go back to reference Rodrigues, J. R., Simoes, C. J. V., Silva, C. G., & Brito, R. M. M. (2010). Potentially amyloidogenic conformational intermediates populate the unfolding landscape of transthyretin: Insights from molecular dynamics simulations. Protein Science, 19, 202. Rodrigues, J. R., Simoes, C. J. V., Silva, C. G., & Brito, R. M. M. (2010). Potentially amyloidogenic conformational intermediates populate the unfolding landscape of transthyretin: Insights from molecular dynamics simulations. Protein Science, 19, 202.
go back to reference Romanowska, J., Setny, P., & Trylska, J. (2008). Molecular dynamics study of the ribosomal A-site. The Journal of Physical Chemistry B, 112, 15227. Romanowska, J., Setny, P., & Trylska, J. (2008). Molecular dynamics study of the ribosomal A-site. The Journal of Physical Chemistry B, 112, 15227.
go back to reference Rosales-Hernandez, M. C., Bermudez-Lugo, J., Garcia, J., Trujillo-Ferrara, J., & Correa-Basurto, J. (2009). Molecular modeling applied to anti-cancer drug development. Anti-Cancer Agents in Medicinal Chemistry, 9, 230. Rosales-Hernandez, M. C., Bermudez-Lugo, J., Garcia, J., Trujillo-Ferrara, J., & Correa-Basurto, J. (2009). Molecular modeling applied to anti-cancer drug development. Anti-Cancer Agents in Medicinal Chemistry, 9, 230.
go back to reference Rossle, S. C., & Frank, I. (2009). First-principles simulation of photoreactions in biological systems. Frontiers in Bioscience, 14, 4862. Rossle, S. C., & Frank, I. (2009). First-principles simulation of photoreactions in biological systems. Frontiers in Bioscience, 14, 4862.
go back to reference Roux, B., & Schulten, K. (2004). Computational studies of membrane channels. Structure, 12, 1343. Roux, B., & Schulten, K. (2004). Computational studies of membrane channels. Structure, 12, 1343.
go back to reference Russel, D., Lasker, K., Phillips, J., Schneidman-Duhovny, D., Velazquez-Muriel, J. A., & Sali, A. (2009). The structural dynamics of macromolecular processes. Current Opinion in Cell Biology, 21, 97. Russel, D., Lasker, K., Phillips, J., Schneidman-Duhovny, D., Velazquez-Muriel, J. A., & Sali, A. (2009). The structural dynamics of macromolecular processes. Current Opinion in Cell Biology, 21, 97.
go back to reference Sakudo, A., Xue, G. A., Kawashita, N., Ano, Y., Takagi, T., Shintani, H., et al. (2010). Structure of the prion protein and its gene: An analysis using bioinformatics and computer simulation. Current Protein & Peptide Science, 11, 166. Sakudo, A., Xue, G. A., Kawashita, N., Ano, Y., Takagi, T., Shintani, H., et al. (2010). Structure of the prion protein and its gene: An analysis using bioinformatics and computer simulation. Current Protein & Peptide Science, 11, 166.
go back to reference Sanbonmatsu, K. Y., & Tung, C. S. (2007). High performance computing in biology: Multimillion atom simulations of nanoscale systems. Journal of Structural Biology, 157, 470. Sanbonmatsu, K. Y., & Tung, C. S. (2007). High performance computing in biology: Multimillion atom simulations of nanoscale systems. Journal of Structural Biology, 157, 470.
go back to reference Sansom, M. S., Scott, K. A., & Bond, P. J. (2008). Coarse-grained simulation: A high-throughput computational approach to membrane proteins. Biochemical Society Transactions, 36, 27. Sansom, M. S., Scott, K. A., & Bond, P. J. (2008). Coarse-grained simulation: A high-throughput computational approach to membrane proteins. Biochemical Society Transactions, 36, 27.
go back to reference Schaeffer, R. D., Fersht, A., & Daggett, V. (2008). Combining experiment and simulation in protein folding: Closing the gap for small model systems. Current Opinion in Structural Biology, 18, 4. Schaeffer, R. D., Fersht, A., & Daggett, V. (2008). Combining experiment and simulation in protein folding: Closing the gap for small model systems. Current Opinion in Structural Biology, 18, 4.
go back to reference Scheraga, H. A., Khalili, M., & Liwo, A. (2007). Protein-folding dynamics: Overview of molecular simulation techniques. Annual Review of Physical Chemistry, 58, 57. Scheraga, H. A., Khalili, M., & Liwo, A. (2007). Protein-folding dynamics: Overview of molecular simulation techniques. Annual Review of Physical Chemistry, 58, 57.
go back to reference Scheres, S. H. (2010). Visualizing molecular machines in action: Single-particle analysis with structural variability. Advances in Protein Chemistry and Structural Biology, 81, 89. Scheres, S. H. (2010). Visualizing molecular machines in action: Single-particle analysis with structural variability. Advances in Protein Chemistry and Structural Biology, 81, 89.
go back to reference Schlegel, H. B. (2003). Exploring potential energy surfaces for chemical reactions: An overview of some practical methods. Journal of Computational Chemistry, 24, 1514. Schlegel, H. B. (2003). Exploring potential energy surfaces for chemical reactions: An overview of some practical methods. Journal of Computational Chemistry, 24, 1514.
go back to reference Schlick, T. (2002). Molecular modeling and simulation – an interdisciplinary guide. New York: Springer. Schlick, T. (2002). Molecular modeling and simulation – an interdisciplinary guide. New York: Springer.
go back to reference Schuyler, A. D., Carlson, H. A., & Feldman, E. L. (2009). Computational methods for predicting sites of functionally important dynamics. The Journal of Physical Chemistry B, 113, 6613. Schuyler, A. D., Carlson, H. A., & Feldman, E. L. (2009). Computational methods for predicting sites of functionally important dynamics. The Journal of Physical Chemistry B, 113, 6613.
go back to reference Schwede, T., & Peitsch, M. C. (2008). Computational structural biology: Methods and applications. Hackensack, NJ: World Scientific. Schwede, T., & Peitsch, M. C. (2008). Computational structural biology: Methods and applications. Hackensack, NJ: World Scientific.
go back to reference Sellis, D., Vlachakis, D., & Vlassi, M. (2009). Gromita: A fully integrated graphical user interface to Gromacs 4. Bioinformatics and Biology Insights, 3, 99. Sellis, D., Vlachakis, D., & Vlassi, M. (2009). Gromita: A fully integrated graphical user interface to Gromacs 4. Bioinformatics and Biology Insights, 3, 99.
go back to reference Sen, S., Andreatta, D., Ponomarev, S. Y., Beveridge, D. L., & Berg, M. A. (2009). Dynamics of water and ions near DNA: Comparison of simulation to time-resolved stokes-shift experiments. Journal of the American Chemical Society, 131, 1724. Sen, S., Andreatta, D., Ponomarev, S. Y., Beveridge, D. L., & Berg, M. A. (2009). Dynamics of water and ions near DNA: Comparison of simulation to time-resolved stokes-shift experiments. Journal of the American Chemical Society, 131, 1724.
go back to reference Shakhnovich, E. (2006). Protein folding thermodynamics and dynamics: Where physics, chemistry, and biology meet. Chemical Reviews, 106, 1559. Shakhnovich, E. (2006). Protein folding thermodynamics and dynamics: Where physics, chemistry, and biology meet. Chemical Reviews, 106, 1559.
go back to reference Sherwood, P., Brooks, B. R., & Sansom, M. S. (2008). Multiscale methods for macromolecular simulations. Current Opinion in Structural Biology, 18, 630. Sherwood, P., Brooks, B. R., & Sansom, M. S. (2008). Multiscale methods for macromolecular simulations. Current Opinion in Structural Biology, 18, 630.
go back to reference Shi, S., Pei, J., Sadreyev, R. I., Kinch, L. N., Majumdar, I., Tong, J., et al. (2009). Analysis of CASP8 targets, predictions and assessment methods. Database (Oxford), 2009, bap003. Shi, S., Pei, J., Sadreyev, R. I., Kinch, L. N., Majumdar, I., Tong, J., et al. (2009). Analysis of CASP8 targets, predictions and assessment methods. Database (Oxford), 2009, bap003.
go back to reference Showalter, S. A., & Bruschweiler, R. (2007). Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: Application to the AMBER99SB force field. Journal of Chemical Theory and Computation, 3, 961. Showalter, S. A., & Bruschweiler, R. (2007). Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: Application to the AMBER99SB force field. Journal of Chemical Theory and Computation, 3, 961.
go back to reference Simms A. M., Toofanny R. D., Kehl C., Benson N. C., and Daggett, V. (2008). Dynameomics: Design of a computational lab workflow and scientific data repository for protein simulations. Protein Engineering, Design and Selection, 21, 369. Simms A. M., Toofanny R. D., Kehl C., Benson N. C., and Daggett, V. (2008). Dynameomics: Design of a computational lab workflow and scientific data repository for protein simulations. Protein Engineering, Design and Selection, 21, 369.
go back to reference Simonson, T., Archontis, G., & Karplus, M. (2002). Free energy simulations come of age: Protein-ligand recognition. Accounts of Chemical Research, 35, 430. Simonson, T., Archontis, G., & Karplus, M. (2002). Free energy simulations come of age: Protein-ligand recognition. Accounts of Chemical Research, 35, 430.
go back to reference Sotomayor, M., & Schulten, K. (2007). Single-molecule experiments in vitro and in silico. Science, 316, 1144. Sotomayor, M., & Schulten, K. (2007). Single-molecule experiments in vitro and in silico. Science, 316, 1144.
go back to reference Spyrakis, F., BidonChanal, A., Barril, X., & Luque, F. J. (2011). Protein flexibility and ligand recognition: Challenges for molecular modeling. Current Topics in Medicinal Chemistry, 11, 192. Spyrakis, F., BidonChanal, A., Barril, X., & Luque, F. J. (2011). Protein flexibility and ligand recognition: Challenges for molecular modeling. Current Topics in Medicinal Chemistry, 11, 192.
go back to reference Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G., & Schulten, K. (2007). Accelerating molecular modeling applications with graphics processors. Journal of Computational Chemistry, 28, 2618. Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G., & Schulten, K. (2007). Accelerating molecular modeling applications with graphics processors. Journal of Computational Chemistry, 28, 2618.
go back to reference Straatsma, T. P., & McCammon, J. A. (1992). Computational alchemy. Annual Review of Physical Chemistry, 43, 407. Straatsma, T. P., & McCammon, J. A. (1992). Computational alchemy. Annual Review of Physical Chemistry, 43, 407.
go back to reference Straub, J. E., & Thirumalai, D. (2010). Toward a molecular theory of early and late events in monomer to amyloid fibril formation. Annual Review of Physical Chemistry, 62, 437. Straub, J. E., & Thirumalai, D. (2010). Toward a molecular theory of early and late events in monomer to amyloid fibril formation. Annual Review of Physical Chemistry, 62, 437.
go back to reference Strzelecki, J., Mikulska, K., Lekka, M., Kulik, A., Balter, A., & Nowak, W. (2009). AFM force spectroscopy and steered molecular dynamics simulation of protein contactin 4. Acta Physica Polonica A, 116, S156. Strzelecki, J., Mikulska, K., Lekka, M., Kulik, A., Balter, A., & Nowak, W. (2009). AFM force spectroscopy and steered molecular dynamics simulation of protein contactin 4. Acta Physica Polonica A, 116, S156.
go back to reference Sugita, Y. (2009). Free-energy landscapes of proteins in solution by generalized-ensemble simulations. Frontiers in Bioscience, 14, 1292. Sugita, Y. (2009). Free-energy landscapes of proteins in solution by generalized-ensemble simulations. Frontiers in Bioscience, 14, 1292.
go back to reference Sugita, Y., & Okamoto, Y. (1999). Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters, 314, 141. Sugita, Y., & Okamoto, Y. (1999). Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters, 314, 141.
go back to reference Sun, Q., Doerr, M., Li, Z., Smith, S. C., & Thiel, W. (2010). QM/MM studies of structural and energetic properties of the far-red fluorescent protein HcRed. Physical Chemistry Chemical Physics, 12, 2450. Sun, Q., Doerr, M., Li, Z., Smith, S. C., & Thiel, W. (2010). QM/MM studies of structural and energetic properties of the far-red fluorescent protein HcRed. Physical Chemistry Chemical Physics, 12, 2450.
go back to reference Tajkhorshid, E., Aksimentiev, A., Balabin, I., Gao, M., Isralewitz, B., Phillips, J. C., et al. (2003). Large scale simulation of protein mechanics and function. Advances in Protein Chemistry, 66, 195. Tajkhorshid, E., Aksimentiev, A., Balabin, I., Gao, M., Isralewitz, B., Phillips, J. C., et al. (2003). Large scale simulation of protein mechanics and function. Advances in Protein Chemistry, 66, 195.
go back to reference Tatke, S. S., Loong, C. K., D’Souza, N., Schoephoerster, R. T., & Prabhakaran, M. (2008). Large scale motions in a biosensor protein glucose oxidase: A combined approach by DENS, normal mode analysis, and molecular dynamics studies. Biopolymers, 89, 582. Tatke, S. S., Loong, C. K., D’Souza, N., Schoephoerster, R. T., & Prabhakaran, M. (2008). Large scale motions in a biosensor protein glucose oxidase: A combined approach by DENS, normal mode analysis, and molecular dynamics studies. Biopolymers, 89, 582.
go back to reference Tozzini, V. (2010). Multiscale modeling of proteins. Accounts of Chemical Research, 43, 220. Tozzini, V. (2010). Multiscale modeling of proteins. Accounts of Chemical Research, 43, 220.
go back to reference Tozzini, V., Trylska, J., Chang, C. E., & McCammon, J. A. (2007). Flap opening dynamics in HIV-1 protease explored with a coarse-grained model. Journal of Structural Biology, 157, 606. Tozzini, V., Trylska, J., Chang, C. E., & McCammon, J. A. (2007). Flap opening dynamics in HIV-1 protease explored with a coarse-grained model. Journal of Structural Biology, 157, 606.
go back to reference Trabuco, L. G., Villa, E., Schreiner, E., Harrison, C. B., & Schulten, K. (2009). Molecular dynamics flexible fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods, 49, 174. Trabuco, L. G., Villa, E., Schreiner, E., Harrison, C. B., & Schulten, K. (2009). Molecular dynamics flexible fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods, 49, 174.
go back to reference Trylska, J. (2010). Coarse-grained models to study dynamics of nanoscale biomolecules and their applications to the ribosome. Journal of Physics: Condensed Matter, 22, 453101. Trylska, J. (2010). Coarse-grained models to study dynamics of nanoscale biomolecules and their applications to the ribosome. Journal of Physics: Condensed Matter, 22, 453101.
go back to reference Urbanc, B., Betnel, M., Cruz, L., Bitan, G., & Teplow, D. B. (2010). Elucidation of amyloid beta-protein oligomerization mechanisms: Discrete molecular dynamics study. Journal of the American Chemical Society, 132, 4266. Urbanc, B., Betnel, M., Cruz, L., Bitan, G., & Teplow, D. B. (2010). Elucidation of amyloid beta-protein oligomerization mechanisms: Discrete molecular dynamics study. Journal of the American Chemical Society, 132, 4266.
go back to reference Van Der Kamp, M. W., Shaw, K. E., Woods, C. J., & Mulholland, A. J. (2008). Biomolecular simulation and modelling: Status, progress and prospects. Journal of the Royal Society Interface, 5, 173. Van Der Kamp, M. W., Shaw, K. E., Woods, C. J., & Mulholland, A. J. (2008). Biomolecular simulation and modelling: Status, progress and prospects. Journal of the Royal Society Interface, 5, 173.
go back to reference Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701.
go back to reference Van Gunsteren, W. F., Bakowies, D., Baron, R., Chandrasekhar, I. C. M., Daura, X., Gee, P., et al. (2006). Biomolecular modeling: Goals, problems, perspectives. Angewandte Chemie International Edition, 45, 4064. Van Gunsteren, W. F., Bakowies, D., Baron, R., Chandrasekhar, I. C. M., Daura, X., Gee, P., et al. (2006). Biomolecular modeling: Goals, problems, perspectives. Angewandte Chemie International Edition, 45, 4064.
go back to reference van Oijen, A. M. (2007). Single-molecule studies of complex systems: The replisome. Molecular BioSystems, 3, 117. van Oijen, A. M. (2007). Single-molecule studies of complex systems: The replisome. Molecular BioSystems, 3, 117.
go back to reference van Speybroeck, V., & Meier, R. J. (2003). A recent development in computational chemistry: Chemical reactions from first principles molecular dynamics simulations. Chemical Society Reviews, 32, 151. van Speybroeck, V., & Meier, R. J. (2003). A recent development in computational chemistry: Chemical reactions from first principles molecular dynamics simulations. Chemical Society Reviews, 32, 151.
go back to reference Vasquez, V., Sotomayor, M., Cordero-Morales, J., Schulten, K., & Perozo, E. (2008). A structural mechanism for MscS gating in lipid bilayers. Science, 321, 1210. Vasquez, V., Sotomayor, M., Cordero-Morales, J., Schulten, K., & Perozo, E. (2008). A structural mechanism for MscS gating in lipid bilayers. Science, 321, 1210.
go back to reference Vemparala, S., Domene, C., & Klein, M. L. (2010). Computational studies on the interactions of inhalational anesthetics with proteins. Accounts of Chemical Research, 43, 103. Vemparala, S., Domene, C., & Klein, M. L. (2010). Computational studies on the interactions of inhalational anesthetics with proteins. Accounts of Chemical Research, 43, 103.
go back to reference Villa, E., Balaeff, A., & Schulten, K. (2005). Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation. Proceedings of the National Academy of Sciences of the United States of America, 102, 6783. Villa, E., Balaeff, A., & Schulten, K. (2005). Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation. Proceedings of the National Academy of Sciences of the United States of America, 102, 6783.
go back to reference Vreede, J., Juraszek, J., & Bolhuis, P. G. (2010). Predicting the reaction coordinates of millisecond light-induced conformational changes in photoactive yellow protein. Proceedings of the National Academy of Sciences of the United States of America, 107, 2397. Vreede, J., Juraszek, J., & Bolhuis, P. G. (2010). Predicting the reaction coordinates of millisecond light-induced conformational changes in photoactive yellow protein. Proceedings of the National Academy of Sciences of the United States of America, 107, 2397.
go back to reference Wang, T., & Duan, Y. (2011). Retinal release from opsin in molecular dynamics simulations. Journal of Molecular Recognition, 24, 350. Wang, T., & Duan, Y. (2011). Retinal release from opsin in molecular dynamics simulations. Journal of Molecular Recognition, 24, 350.
go back to reference Wanko, M., Hoffmann, M., Frauenheim, T., & Elstner, M. (2006). Computational photochemistry of retinal proteins. Journal of Computer-Aided Molecular Design, 20, 511. Wanko, M., Hoffmann, M., Frauenheim, T., & Elstner, M. (2006). Computational photochemistry of retinal proteins. Journal of Computer-Aided Molecular Design, 20, 511.
go back to reference Warshel, A. (2002). Molecular dynamics simulations of biological reactions. Accounts of Chemical Research, 35, 385. Warshel, A. (2002). Molecular dynamics simulations of biological reactions. Accounts of Chemical Research, 35, 385.
go back to reference Warshel, A. (2003). Computer simulations of enzyme catalysis: Methods, progress, and insights. Annual Review of Biophysics and Biomolecular Structure, 32, 425. Warshel, A. (2003). Computer simulations of enzyme catalysis: Methods, progress, and insights. Annual Review of Biophysics and Biomolecular Structure, 32, 425.
go back to reference Warshel A., Kato M., & Pisliakov A.V. (2007). Polarizable force fields: History, test cases, and prospects. Journal of Chemical Theory and Computation, 3, 2034. Warshel A., Kato M., & Pisliakov A.V. (2007). Polarizable force fields: History, test cases, and prospects. Journal of Chemical Theory and Computation, 3, 2034.
go back to reference Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., & Weiner, P. (1984). A new force-field for molecular mechanical simulation of nucleic-acids and proteins. Journal of the American Chemical Society, 106, 765. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., & Weiner, P. (1984). A new force-field for molecular mechanical simulation of nucleic-acids and proteins. Journal of the American Chemical Society, 106, 765.
go back to reference Wong, V., & Case, D. A. (2008). Evaluating rotational diffusion from protein MD simulations. The Journal of Physical Chemistry B, 112, 6013. Wong, V., & Case, D. A. (2008). Evaluating rotational diffusion from protein MD simulations. The Journal of Physical Chemistry B, 112, 6013.
go back to reference Yu, J., Ha, T., & Schulten, K. (2007). How directional translocation is regulated in a DNA helicase motor. Biophysical Journal, 93, 3783. Yu, J., Ha, T., & Schulten, K. (2007). How directional translocation is regulated in a DNA helicase motor. Biophysical Journal, 93, 3783.
go back to reference Zhang, J., Li, W., Wang, J., Qin, M., Wu, L., Yan, Z., et al. (2009). Protein folding simulations: From coarse-grained model to all-atom model. IUBMB Life, 61, 627. Zhang, J., Li, W., Wang, J., Qin, M., Wu, L., Yan, Z., et al. (2009). Protein folding simulations: From coarse-grained model to all-atom model. IUBMB Life, 61, 627.
go back to reference Zhmurov, A., Dima, R. I., Kholodov, Y., & Barsegov, V. (2010). SOP-GPU: Accelerating biomolecular simulations in the centisecond timescale using graphics processors. Proteins, 78, 2984. Zhmurov, A., Dima, R. I., Kholodov, Y., & Barsegov, V. (2010). SOP-GPU: Accelerating biomolecular simulations in the centisecond timescale using graphics processors. Proteins, 78, 2984.
go back to reference Zhu, F., Tajkhorshid, E., & Schulten, K. (2004). Theory and simulation of water permeation in aquaporin-1. Biophysical Journal, 86, 50. Zhu, F., Tajkhorshid, E., & Schulten, K. (2004). Theory and simulation of water permeation in aquaporin-1. Biophysical Journal, 86, 50.
go back to reference Zink, M., & Grubmuller, H. (2009). Mechanical properties of the icosahedral shell of Southern bean mosaic virus: A molecular dynamics study. Biophysical Journal, 96, 1350. Zink, M., & Grubmuller, H. (2009). Mechanical properties of the icosahedral shell of Southern bean mosaic virus: A molecular dynamics study. Biophysical Journal, 96, 1350.
Metadata
Title
Applications of Computational Methods to Simulations of Proteins Dynamics
Author
Wieslaw Nowak
Copyright Year
2012
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0711-5_31

Premium Partner