Skip to main content
Top
Published in: Optical Memory and Neural Networks 1/2023

01-03-2023

Applications of Fluorescence Spectroscopy and Machine Learning Methods for Monitoring of Elimination of Carbon Nanoagents from the Body

Authors: O. E. Sarmanova, A. D. Kudryashov, K. A. Laptinskiy, S. A. Burikov, M. Yu. Khmeleva, A. A. Fedyanina, S. A. Dolenko, P. V. Golubtsov, T. A. Dolenko

Published in: Optical Memory and Neural Networks | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The study considers the application of artificial neural networks to solve the inverse problem of fluorescence (FL) spectroscopy for monitoring the elimination of carbon nanocomplexes’ components from the body – the problem of determining the concentrations of carbon dots (CD) and the anticancer drug doxorubicin (Dox) excreted from the body with urine. The problem was solved in three ways using three sets of FL spectroscopy data: spectral data obtained by exciting FL of urine together with CD and Dox with radiation of 405 nm, 532 nm wavelength as well as spectra obtained by combining these data. Multilayer perceptrons (MLP) were applied to the obtained spectral data, which enabled the determination of the concentrations of CD and Dox in urine. To increase the accuracy of monitoring the excretion of CD and Dox with urine, principal component analysis and autoencoders were additionally used. The conducted studies showed that the best results of solving this problem are provided by the application of a MLP to spectral data compressed using an autoencoder. This approach allows us to determine the concentration of CD in urine with MAE of 39 ng/mL (3.3% of the upper limit of the concentration range) and the concentration of Dox with MAE of 27 ng/mL (2.8% of the upper limit of the concentration range). The proposed approach shows results comparable with analogues, however it lacks several significant drawbacks such as rigid fixation of the CD concentration in the suspension, and it can be used for simultaneous rapid monitoring of a number of substances.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B.G.M. Vandenginste, D.L. Massart, L.M.C. Buydens, S. De Jong, P.J. Lewi, and J. Smeyers-Verbeke, Handbook of chemometrics and qualimetrics (Elsevier, Amsterdam, 1998). B.G.M. Vandenginste, D.L. Massart, L.M.C. Buydens, S. De Jong, P.J. Lewi, and J. Smeyers-Verbeke, Handbook of chemometrics and qualimetrics (Elsevier, Amsterdam, 1998).
2.
go back to reference Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521 (7553), 436–444 (2015).CrossRef Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521 (7553), 436–444 (2015).CrossRef
3.
go back to reference Å. Rinnan, F. Van Den Berg, and S.B. Engelsen, Review of the most common pre-processing techniques for near-infrared spectra, Trac-Trend Anal. Chem. 28 (10), 1201–1222 (2009). Å. Rinnan, F. Van Den Berg, and S.B. Engelsen, Review of the most common pre-processing techniques for near-infrared spectra, Trac-Trend Anal. Chem. 28 (10), 1201–1222 (2009).
4.
go back to reference S. Burikov, S. Dolenko, T. Dolenko, S. Patsaeva, and V. Yuzhakov, Decomposition of water Raman stretching band with a combination of optimization methods, Mol. Phys. 108 (6), 739-747 (2010).CrossRef S. Burikov, S. Dolenko, T. Dolenko, S. Patsaeva, and V. Yuzhakov, Decomposition of water Raman stretching band with a combination of optimization methods, Mol. Phys. 108 (6), 739-747 (2010).CrossRef
5.
go back to reference O. Devos, L. Duponchel, Parallel genetic algorithm co-optimization of spectral pre-processing and wavelength selection for PLS regression, Chemometr. Intell. Lab. 107 (1), 50–58 (2011).CrossRef O. Devos, L. Duponchel, Parallel genetic algorithm co-optimization of spectral pre-processing and wavelength selection for PLS regression, Chemometr. Intell. Lab. 107 (1), 50–58 (2011).CrossRef
6.
go back to reference C.M. Valensise, A. Giuseppi, F. Vernuccio, A. De la Cadena, G. Cerullo, and D. Polli, Removing non-resonant background from CARS spectra via deep learning, APL Photonics 5 (6), 061305 (2020).CrossRef C.M. Valensise, A. Giuseppi, F. Vernuccio, A. De la Cadena, G. Cerullo, and D. Polli, Removing non-resonant background from CARS spectra via deep learning, APL Photonics 5 (6), 061305 (2020).CrossRef
7.
go back to reference I. Isaev, E. Obornev, I. Obornev, E. Rodionov, M. Shimelevich, V. Shirokiy, and S. Dolenko, Using Domain Knowledge for Feature Selection in Neural Network Solution of the Inverse Problem of Magnetotelluric Sounding, Adv. Intell. Syst. Cybern. 310, 115–126 (2020). I. Isaev, E. Obornev, I. Obornev, E. Rodionov, M. Shimelevich, V. Shirokiy, and S. Dolenko, Using Domain Knowledge for Feature Selection in Neural Network Solution of the Inverse Problem of Magnetotelluric Sounding, Adv. Intell. Syst. Cybern. 310, 115–126 (2020).
8.
go back to reference A. Efitorov, S. Dolenko, T. Dolenko, K. Laptinskiy, and S. Burikov, Use of Wavelet Neural Networks to Solve Inverse Problems in Spectroscopy of Multi-component Solutions, Stud. Comp. Intell. 856, 285–294 (2020). A. Efitorov, S. Dolenko, T. Dolenko, K. Laptinskiy, and S. Burikov, Use of Wavelet Neural Networks to Solve Inverse Problems in Spectroscopy of Multi-component Solutions, Stud. Comp. Intell. 856, 285–294 (2020).
9.
go back to reference E. Guevara, J.C. Torres-Galván, M.G. Ramírez-Elías, C. Luevano-Contreras, and F.J. González, Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools, Biomed. Opt. Express. 9 (10), 4998–5010 (2018).CrossRef E. Guevara, J.C. Torres-Galván, M.G. Ramírez-Elías, C. Luevano-Contreras, and F.J. González, Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools, Biomed. Opt. Express. 9 (10), 4998–5010 (2018).CrossRef
10.
go back to reference S. Khan, R. Ullah, A. Khan, R. Ashraf, H. Ali, M. Bilal, and M. Saleem, Analysis of hepatitis B virus infection in blood sera using Raman spectroscopy and machine learning, Photodiagn. Photodyn. 23, 89–93 (2018).CrossRef S. Khan, R. Ullah, A. Khan, R. Ashraf, H. Ali, M. Bilal, and M. Saleem, Analysis of hepatitis B virus infection in blood sera using Raman spectroscopy and machine learning, Photodiagn. Photodyn. 23, 89–93 (2018).CrossRef
11.
go back to reference E. Rodriguez-Diaz, D. Manolakos, H. Christman, M.A. Bonning, J.K. Geisse, O.M. A’Amar, and I.J. Bigio, Optical spectroscopy as a method for skin cancer risk assessment, Photochem. Photobiol. 95 (6), 1441–1445 (2019).CrossRef E. Rodriguez-Diaz, D. Manolakos, H. Christman, M.A. Bonning, J.K. Geisse, O.M. A’Amar, and I.J. Bigio, Optical spectroscopy as a method for skin cancer risk assessment, Photochem. Photobiol. 95 (6), 1441–1445 (2019).CrossRef
12.
go back to reference J. Xue, Y. Pu, J. Smith, X.Gao, C. Wang, and B. Wu, Identifying metastatic ability of prostate cancer cell lines using native fluorescence spectroscopy and machine learning methods, Sci. Rep. 11 (1), 2282 (2021).CrossRef J. Xue, Y. Pu, J. Smith, X.Gao, C. Wang, and B. Wu, Identifying metastatic ability of prostate cancer cell lines using native fluorescence spectroscopy and machine learning methods, Sci. Rep. 11 (1), 2282 (2021).CrossRef
13.
go back to reference X. Wang, Z. Wang, J. Weng, C. Wen, H. Chen, and X. Wang, A new effective machine learning framework for sepsis diagnosis, IEEE Access 6, 48300–48310 (2018).CrossRef X. Wang, Z. Wang, J. Weng, C. Wen, H. Chen, and X. Wang, A new effective machine learning framework for sepsis diagnosis, IEEE Access 6, 48300–48310 (2018).CrossRef
14.
go back to reference I. Olaetxea, A. Valero, E. Lopez, H. Lafuente, A. Izeta, I. Jaunarena, and A. Seifert, Machine Learning-Assisted Raman Spectroscopy for pH and Lactate Sensing in Body Fluids, Anal. Chem. 92 (20), 13888–13895 (2020).CrossRef I. Olaetxea, A. Valero, E. Lopez, H. Lafuente, A. Izeta, I. Jaunarena, and A. Seifert, Machine Learning-Assisted Raman Spectroscopy for pH and Lactate Sensing in Body Fluids, Anal. Chem. 92 (20), 13888–13895 (2020).CrossRef
15.
go back to reference X. Jintao, Y. Liming, L. Yufei, L. Chunyan, and C. Han, Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR), Spectrochim. Acta A 179, 250-254 (2017).CrossRef X. Jintao, Y. Liming, L. Yufei, L. Chunyan, and C. Han, Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR), Spectrochim. Acta A 179, 250-254 (2017).CrossRef
16.
go back to reference Z. Li, H. Zhang, B.T. Nguyen, S. Luo, P.Y. Liu, J. Zou, and A.Q. Liu, Smart ring resonator–based sensor for multicomponent chemical analysis via machine learning, Photonics Res. 9 (2), B38–B44 (2021).CrossRef Z. Li, H. Zhang, B.T. Nguyen, S. Luo, P.Y. Liu, J. Zou, and A.Q. Liu, Smart ring resonator–based sensor for multicomponent chemical analysis via machine learning, Photonics Res. 9 (2), B38–B44 (2021).CrossRef
17.
go back to reference T.A. Dolenko, S.A. Burikov, A.M. Vervald, I.I. Vlasov, S.A. Dolenko, K.A. Laptinskiy, J.M. Rosenholm, and O.A. Shenderova, Use of neural network algorithms for optical imaging of fluorescent biomarkers based on carbon nanoparticles, J. Biomed. Opt. 19 (11), 117007 (2014).CrossRef T.A. Dolenko, S.A. Burikov, A.M. Vervald, I.I. Vlasov, S.A. Dolenko, K.A. Laptinskiy, J.M. Rosenholm, and O.A. Shenderova, Use of neural network algorithms for optical imaging of fluorescent biomarkers based on carbon nanoparticles, J. Biomed. Opt. 19 (11), 117007 (2014).CrossRef
18.
go back to reference K.A. Laptinskiy, S.A. Burikov, S.A. Dolenko, A.O. Efitorov, O.E. Sarmanova, O.A. Shenderova, I.I. Vlasov, and T.A. Dolenko, Monitoring of nanodiamonds in human urine using artificial neural networks, Phys. Status Solidi A 213 (10), 2614–2622 (2016).CrossRef K.A. Laptinskiy, S.A. Burikov, S.A. Dolenko, A.O. Efitorov, O.E. Sarmanova, O.A. Shenderova, I.I. Vlasov, and T.A. Dolenko, Monitoring of nanodiamonds in human urine using artificial neural networks, Phys. Status Solidi A 213 (10), 2614–2622 (2016).CrossRef
19.
go back to reference O.E. Sarmanova, S.A. Burikov, S.A. Dolenko, I.V. Isaev, K.A. Laptinskiy, N. Prabhakar, D. SenKaraman, J.M. Rosenholm, O.A. Shenderova, and T.A. Dolenko, A method for optical imaging and monitoring of the excretion of fluorescent nanocomposites from the body using artificial neural networks, Nanomed.-Nanotechnol. 14 (4), 1371–1380 (2018). O.E. Sarmanova, S.A. Burikov, S.A. Dolenko, I.V. Isaev, K.A. Laptinskiy, N. Prabhakar, D. SenKaraman, J.M. Rosenholm, O.A. Shenderova, and T.A. Dolenko, A method for optical imaging and monitoring of the excretion of fluorescent nanocomposites from the body using artificial neural networks, Nanomed.-Nanotechnol. 14 (4), 1371–1380 (2018).
20.
go back to reference X. Gao and B. Wu, Breast cancer diagnosis using fluorescence spectroscopy with dual-wavelength excitation and machine learning, Proc. SPIE 10873, 108731F (2019). X. Gao and B. Wu, Breast cancer diagnosis using fluorescence spectroscopy with dual-wavelength excitation and machine learning, Proc. SPIE 10873, 108731F (2019).
21.
go back to reference Z. Xu, Z. Wang, M. Liu, B. Yan, X. Ren, and Z. Gao, Machine learning assisted dual-channel carbon quantum dots-based fluorescence sensor array for detection of tetracyclines, Spectrochim. Acta A 232, 118147 (2020).CrossRef Z. Xu, Z. Wang, M. Liu, B. Yan, X. Ren, and Z. Gao, Machine learning assisted dual-channel carbon quantum dots-based fluorescence sensor array for detection of tetracyclines, Spectrochim. Acta A 232, 118147 (2020).CrossRef
22.
go back to reference D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” arXiv preprint arXiv:2003.05991, (2020). D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” arXiv preprint arXiv:2003.05991, (2020).
23.
24.
go back to reference S.K. Kumar, On weight initialization in deep neural networks, arXiv preprint arXiv:1704.08863, (2017). S.K. Kumar, On weight initialization in deep neural networks, arXiv preprint arXiv:1704.08863, (2017).
25.
go back to reference D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv preprint arXiv:1412.6980, (2014). D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv preprint arXiv:1412.6980, (2014).
26.
go back to reference A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems (O’Reilly Media, Sebastopol, 2019). A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems (O’Reilly Media, Sebastopol, 2019).
27.
go back to reference S.M. Lundberg and S.I. Lee, A unified approach to interpreting model predictions, in 31st Conf. Neural Inform. Process. Syst. (Long Beach, 2017) pp. 4768–4777. S.M. Lundberg and S.I. Lee, A unified approach to interpreting model predictions, in 31st Conf. Neural Inform. Process. Syst. (Long Beach, 2017) pp. 4768–4777.
28.
go back to reference B. Wang, S. Wang, Y. Wang, Y. Lv, H. Wu, X. Ma, and M. Tan, Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer, Biotechnol. Lett. 38 (1), 191–201 (2016).CrossRef B. Wang, S. Wang, Y. Wang, Y. Lv, H. Wu, X. Ma, and M. Tan, Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer, Biotechnol. Lett. 38 (1), 191–201 (2016).CrossRef
29.
go back to reference I.V. Gerdova, S.A. Dolenko, T.A. Dolenko, I.V. Churina, and V.V. Fadeev, New opportunity solutions to inverse problems in laser spectroscopy involving artificial neural networks, Izv. Akad. Nauk. Fiz. 66 (8), 1116–1124 (2002). I.V. Gerdova, S.A. Dolenko, T.A. Dolenko, I.V. Churina, and V.V. Fadeev, New opportunity solutions to inverse problems in laser spectroscopy involving artificial neural networks, Izv. Akad. Nauk. Fiz. 66 (8), 1116–1124 (2002).
30.
go back to reference R. Jia, D. Dao, B. Wang, F.A. Hubis, N. Hynes, N.M. Gürel, and C.J. Spanos, Towards efficient data valuation based on the shapley value, in 22nd Intern. Conf. Artif. Intell. Stati. PMLR (2019) pp. 1167–1176. R. Jia, D. Dao, B. Wang, F.A. Hubis, N. Hynes, N.M. Gürel, and C.J. Spanos, Towards efficient data valuation based on the shapley value, in 22nd Intern. Conf. Artif. Intell. Stati. PMLR (2019) pp. 1167–1176.
31.
go back to reference I. Isaev, O. Sarmanova, S. Burikov, T. Dolenko, K. Laptinskiy, and S. Dolenko, Feature Selection in Neural Network Solution of Inverse Problem Based on Integration of Optical Spectroscopic Methods, Stud. Comp. Intell. 925, 234–241 (2021). I. Isaev, O. Sarmanova, S. Burikov, T. Dolenko, K. Laptinskiy, and S. Dolenko, Feature Selection in Neural Network Solution of Inverse Problem Based on Integration of Optical Spectroscopic Methods, Stud. Comp. Intell. 925, 234–241 (2021).
32.
go back to reference M. Yang, Y. Yan, E. Liu, X. Hu, H. Hao, and J. Fan, Polyethyleneimine-functionalized carbon dots as a fluorescent probe for doxorubicin hydrochloride by an inner filter effect, Opti. Mater. 112, 110743 (2021).CrossRef M. Yang, Y. Yan, E. Liu, X. Hu, H. Hao, and J. Fan, Polyethyleneimine-functionalized carbon dots as a fluorescent probe for doxorubicin hydrochloride by an inner filter effect, Opti. Mater. 112, 110743 (2021).CrossRef
Metadata
Title
Applications of Fluorescence Spectroscopy and Machine Learning Methods for Monitoring of Elimination of Carbon Nanoagents from the Body
Authors
O. E. Sarmanova
A. D. Kudryashov
K. A. Laptinskiy
S. A. Burikov
M. Yu. Khmeleva
A. A. Fedyanina
S. A. Dolenko
P. V. Golubtsov
T. A. Dolenko
Publication date
01-03-2023
Publisher
Pleiades Publishing
Published in
Optical Memory and Neural Networks / Issue 1/2023
Print ISSN: 1060-992X
Electronic ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X23010046

Other articles of this Issue 1/2023

Optical Memory and Neural Networks 1/2023 Go to the issue

Premium Partner