Skip to main content
Top

2021 | OriginalPaper | Chapter

Architectural Design for Additive Manufacturing Construction: Lesson Learned from Design for Additive Manufacturing

Authors : Vikrom Laovisutthichai, Weisheng Lu, Fan Xue

Published in: Proceedings of the 24th International Symposium on Advancement of Construction Management and Real Estate

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Additive Manufacturing (AM) is widely studied in many fields, including aeronautics, automotive, medicine, and construction. Some researchers expect AM to benefit construction practice in terms of reducing waste, alleviating time overrun, and breaking design limitations. With the high-level customizability of AM construction, designers are less constrained, e.g., by design standardization, in designing bio-inspired forms, natural curves, and uniqueness in construction projects. Nevertheless, AM technology also faces challenges, such as high printing cost, inability to print, and weak structure during a layer-by-layer printing process. Design for Additive Manufacturing (DfAM) has, therefore, been proposed for the construction industry. This paper revisits the lessons learned from the problems and the DfAM solutions to real-life cases. First, due to AM’s capability to construct without casting molds, self-support structure, e.g., plate and shell structure, should be included in the designs. Secondly, according to DfAM guidelines, a large amount of temporary support structure, overhang, thin feature, and flat surface are among the major factors affecting the efficiency of AM. In comparison, there are several architectural elements, such as long-span structure, cantilever part, thin wall, and flat roof can be the barriers to AM in construction. In order to promote the application of AM in construction and achieve higher efficiency, new DfAM guidelines for the construction sector are demanded.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yossef, M., & Chen, A. (2015). Applicability and limitations of 3D printing for civil structures. In Civil, Construction and Environmental Engineering Conference Presentations and Proceedings, 35. Yossef, M., & Chen, A. (2015). Applicability and limitations of 3D printing for civil structures. In Civil, Construction and Environmental Engineering Conference Presentations and Proceedings, 35.
2.
go back to reference Li, C. C., & Qi, J. X. (2017). Structural analysis of 3D printing. Advances in Computer Science Research, 75, 289–293. Li, C. C., & Qi, J. X. (2017). Structural analysis of 3D printing. Advances in Computer Science Research, 75, 289–293.
3.
go back to reference Van, N. R. (2012). The future of dental devices is digital. Dental Materials: Official Publication of the Academy of Dental Materials, 28(1), 3–12.CrossRef Van, N. R. (2012). The future of dental devices is digital. Dental Materials: Official Publication of the Academy of Dental Materials, 28(1), 3–12.CrossRef
4.
go back to reference Shen, B. X., & Guan, Y. P. (2016). A design of color mixing fused deposition modeling 3D printer. Journal of Beijing Information Science & Technology University, 31(5), 60–63. Shen, B. X., & Guan, Y. P. (2016). A design of color mixing fused deposition modeling 3D printer. Journal of Beijing Information Science & Technology University, 31(5), 60–63.
5.
go back to reference Perkins, I., & Skitmore, M. (2015). Three-dimensional printing in the construction industry: A review. International Journal of Construction Management, 15(1), 1–9.CrossRef Perkins, I., & Skitmore, M. (2015). Three-dimensional printing in the construction industry: A review. International Journal of Construction Management, 15(1), 1–9.CrossRef
7.
go back to reference Buchanan, C., & Gardner, L. (2019). Metal 3D printing in construction: A review of methods, research, applications. Opportunities and Challenges. Engineering Structures, 180, 332–348.CrossRef Buchanan, C., & Gardner, L. (2019). Metal 3D printing in construction: A review of methods, research, applications. Opportunities and Challenges. Engineering Structures, 180, 332–348.CrossRef
8.
go back to reference Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction? Procedia Engineering, 151, 292–299.CrossRef Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction? Procedia Engineering, 151, 292–299.CrossRef
9.
go back to reference Booth, J. W., Alperovich, J., Chawla, P., Ma, J., Reid, T. N., & Ramani, K. (2017). The design for additive manufacturing worksheet. Jounal of Mechanical Design, 139(10), 100904.CrossRef Booth, J. W., Alperovich, J., Chawla, P., Ma, J., Reid, T. N., & Ramani, K. (2017). The design for additive manufacturing worksheet. Jounal of Mechanical Design, 139(10), 100904.CrossRef
10.
go back to reference Hague, R., Mansour, S., & Saleh, N. (2004). Material and design considerations for rapid manufacturing. International Journal of Production Research, 42(22), 4691–4708.CrossRef Hague, R., Mansour, S., & Saleh, N. (2004). Material and design considerations for rapid manufacturing. International Journal of Production Research, 42(22), 4691–4708.CrossRef
11.
go back to reference Campbell, I., Bourell, D., & Gibson, I. (2012). Additive manufacturing: rapid prototyping comes of age. Rapid Prototyping J, 18(4), 255–258.CrossRef Campbell, I., Bourell, D., & Gibson, I. (2012). Additive manufacturing: rapid prototyping comes of age. Rapid Prototyping J, 18(4), 255–258.CrossRef
12.
go back to reference Pruß, H., & Vietor, T. (2015). Design for fiber-reinforced additive manufacturing. Journal of Mechanical Design, 137(11), 111409.CrossRef Pruß, H., & Vietor, T. (2015). Design for fiber-reinforced additive manufacturing. Journal of Mechanical Design, 137(11), 111409.CrossRef
13.
go back to reference Seepersad, C. C., Allison, J., & Sharpe, C. (2017). The need for effective design guides in additive manufacturing. In Proceedings of the 21th International Conference on Engineering Design (ICED17) (Vol. 5, pp. 309–316). Seepersad, C. C., Allison, J., & Sharpe, C. (2017). The need for effective design guides in additive manufacturing. In Proceedings of the 21th International Conference on Engineering Design (ICED17) (Vol. 5, pp. 309–316).
14.
go back to reference ASTM. (2012). Standard terminology for additive manufacturing technologies. PA: ASTM International. ASTM. (2012). Standard terminology for additive manufacturing technologies. PA: ASTM International.
15.
go back to reference Shen, L. Y., Lee, K. H., & Zhang, Z. H. (1996). Application of BOT system for infrastructure projects in China. Journal of Construction Engineering and Management, 122(4), 319–323.CrossRef Shen, L. Y., Lee, K. H., & Zhang, Z. H. (1996). Application of BOT system for infrastructure projects in China. Journal of Construction Engineering and Management, 122(4), 319–323.CrossRef
17.
go back to reference Liu, L. G., Xu, W. P., Wang, W. M., Yang, Z. W., & Liu, X. P. (2015). Survey on geometric computing in 3D printing. Chinese Journal of Computers, 38(6), 1243–1267. Liu, L. G., Xu, W. P., Wang, W. M., Yang, Z. W., & Liu, X. P. (2015). Survey on geometric computing in 3D printing. Chinese Journal of Computers, 38(6), 1243–1267.
18.
go back to reference Li, J., Myant, C., & Wu, B. (2016). The current landscape for additive manufacturing research. Imperial College Additive Manufacturing Network. Li, J., Myant, C., & Wu, B. (2016). The current landscape for additive manufacturing research. Imperial College Additive Manufacturing Network.
19.
go back to reference Nematollahi, B., Xia, M., & Sanjayan, J. (2017). Current progress of 3D concrete printing technologies. In: 34th International Symposium on Automation and Robotics in Construction. Nematollahi, B., Xia, M., & Sanjayan, J. (2017). Current progress of 3D concrete printing technologies. In: 34th International Symposium on Automation and Robotics in Construction.
20.
go back to reference Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G. F., & Thorpe, T. (2012). Developments in construction-scale additive manufacturing processes. Automation in Construction, 21(1), 262–268.CrossRef Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G. F., & Thorpe, T. (2012). Developments in construction-scale additive manufacturing processes. Automation in Construction, 21(1), 262–268.CrossRef
22.
go back to reference Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., et al. (2016). Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals Manufacturing Technology, 65(2), 737–760.CrossRef Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., et al. (2016). Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals Manufacturing Technology, 65(2), 737–760.CrossRef
Metadata
Title
Architectural Design for Additive Manufacturing Construction: Lesson Learned from Design for Additive Manufacturing
Authors
Vikrom Laovisutthichai
Weisheng Lu
Fan Xue
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-8892-1_96