Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Architectured Materials with Inclusions Having Negative Poisson’s Ratio or Negative Stiffness

Authors : E. Pasternak, A. V. Dyskin

Published in: Architectured Materials in Nature and Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Architectured materials with negative Poisson’s ratio (auxetic materials) have been subject of interest for quite some time. The effect of negative Poisson’s ratio is achieved macroscopically through various types of microstructure made of conventional materials. There also exist (unstable) microstructures that, under certain boundary conditions, exhibit negative stiffness. In this chapter we review the microstructures that which generate macroscopic negative Poisson’s ratio and negative stiffness, determine their effective moduli and discuss general properties of the materials with such microstructures. We then consider hybrid materials consisting of conventional (positive Poisson’s ratio and positive moduli) matrix and randomly positioned inclusions having either negative Poisson’s ratio or a negative stiffness (one of the moduli being negative). We use the differential scheme of the self-consisting method to derive the effective moduli of such hybrids keeping in the framework of linear time-independent theory. We demonstrate that the inclusions of both types can, depending on their properties, either increase or decrease the effective moduli.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K.L. Alderson, K.E. Evans, The fabrication of microporous polyethylene having a negative Poisson’s ratio. Polymer 33(20), 4435–4438 (1992)CrossRef K.L. Alderson, K.E. Evans, The fabrication of microporous polyethylene having a negative Poisson’s ratio. Polymer 33(20), 4435–4438 (1992)CrossRef
2.
go back to reference K.L. Alderson, K.E. Evans, Modelling concurrent deformation mechanism in auxetic microporous polymers. J. Mater. Sci. 32, 2797–2809 (1997)CrossRef K.L. Alderson, K.E. Evans, Modelling concurrent deformation mechanism in auxetic microporous polymers. J. Mater. Sci. 32, 2797–2809 (1997)CrossRef
3.
go back to reference K.L. Alderson, K.E. Evans, Auxetic materials: the positive side of being negative. Eng. Sci. Educ. J. 9(4), 148–154 (2000)CrossRef K.L. Alderson, K.E. Evans, Auxetic materials: the positive side of being negative. Eng. Sci. Educ. J. 9(4), 148–154 (2000)CrossRef
4.
go back to reference A. Alderson, K.E. Evans, Rotation and dilation deformation mechanism for auxetic behaviour in the α-cristolobite tetrahedral framework structure. Phys. Chem. Miner. 28(10), 711–718 (2001)CrossRef A. Alderson, K.E. Evans, Rotation and dilation deformation mechanism for auxetic behaviour in the α-cristolobite tetrahedral framework structure. Phys. Chem. Miner. 28(10), 711–718 (2001)CrossRef
5.
go back to reference A. Alderson, K.E. Evans, Molecular origin of auxetic behavior in tetrahedral framework silicates. Phys. Rev. Lett. 89, 225503 (2002)CrossRef A. Alderson, K.E. Evans, Molecular origin of auxetic behavior in tetrahedral framework silicates. Phys. Rev. Lett. 89, 225503 (2002)CrossRef
6.
go back to reference A. Alderson, K.L. Alderson, Auxetic materials. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 221(4), 565–575 (2007)CrossRef A. Alderson, K.L. Alderson, Auxetic materials. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 221(4), 565–575 (2007)CrossRef
7.
go back to reference K.L. Alderson, V.R. Simkins, V.L. Coenen, P.J. Davies, A. Alderson, K.E. Evans, How to make auxetic fibre reinforced composites. Phys. Status Solidi B 242(3), 509–518 (2005)CrossRef K.L. Alderson, V.R. Simkins, V.L. Coenen, P.J. Davies, A. Alderson, K.E. Evans, How to make auxetic fibre reinforced composites. Phys. Status Solidi B 242(3), 509–518 (2005)CrossRef
8.
go back to reference K.L. Alderson, V.L. Coenen, The low velocity impact response of auxetic carbon fibre laminates. Phys. Status Solidi B 245(3), 489–496 (2008)CrossRef K.L. Alderson, V.L. Coenen, The low velocity impact response of auxetic carbon fibre laminates. Phys. Status Solidi B 245(3), 489–496 (2008)CrossRef
9.
go back to reference K.L. Alderson, A.P. Pickles, P.J. Neale, K.E. Evans, Auxetic polyethylene: the effect of a negative Poisson’s ratio on hardness. Acta Metall. Mater 42(7), 2261–2266 (1994)CrossRef K.L. Alderson, A.P. Pickles, P.J. Neale, K.E. Evans, Auxetic polyethylene: the effect of a negative Poisson’s ratio on hardness. Acta Metall. Mater 42(7), 2261–2266 (1994)CrossRef
10.
go back to reference K.L. Alderson, A. Fitzgerald, K.E. Evans, The strain dependent indentation resilience of auxetic microporous polyethylene. J. Mater. Sci. 35, 4039–4047 (2000)CrossRef K.L. Alderson, A. Fitzgerald, K.E. Evans, The strain dependent indentation resilience of auxetic microporous polyethylene. J. Mater. Sci. 35, 4039–4047 (2000)CrossRef
11.
go back to reference K.L. Alderson, R.S. Webber, A.P. Kettle, K.E. Evans, Novel fabrication route for auxetic polyethylene. Part 1. Process. Microstruct. Polym. Eng. Sci. 45(4), 568–578 (2005)CrossRef K.L. Alderson, R.S. Webber, A.P. Kettle, K.E. Evans, Novel fabrication route for auxetic polyethylene. Part 1. Process. Microstruct. Polym. Eng. Sci. 45(4), 568–578 (2005)CrossRef
13.
go back to reference R.F. Almgren, An isotropic three-dimensional structure with Poisson’s ratio = −1. J. Elast. 15, 427–430 (1985)CrossRef R.F. Almgren, An isotropic three-dimensional structure with Poisson’s ratio = −1. J. Elast. 15, 427–430 (1985)CrossRef
14.
go back to reference O. Andersen, U. Waag, L. Schneider, G. Stephani, B. Kieback, Novel metallic hollow sphere structures. Adv. Eng. Mater. 2(4), 192–195 (2000)CrossRef O. Andersen, U. Waag, L. Schneider, G. Stephani, B. Kieback, Novel metallic hollow sphere structures. Adv. Eng. Mater. 2(4), 192–195 (2000)CrossRef
15.
go back to reference M.F. Ashby, Y.J.M. Bréchet, Designing hybrid materials. Acta Mater. 51, 5801–5821 (2003)CrossRef M.F. Ashby, Y.J.M. Bréchet, Designing hybrid materials. Acta Mater. 51, 5801–5821 (2003)CrossRef
16.
go back to reference M. Assidi, J.-F. Ganghoffer, Composites with auxetic inclusions showing both an auxetic behaviour and enhancement of their mechanical properties. Compos. Struct. 94, 2373–2382 (2012)CrossRef M. Assidi, J.-F. Ganghoffer, Composites with auxetic inclusions showing both an auxetic behaviour and enhancement of their mechanical properties. Compos. Struct. 94, 2373–2382 (2012)CrossRef
17.
go back to reference D. Attard, J.N. Grima, Modelling of hexagonal honeycombs exhibiting zero Poisson’s ratio. Phys. Status Solidi B 248(1), 52–59 (2011)CrossRef D. Attard, J.N. Grima, Modelling of hexagonal honeycombs exhibiting zero Poisson’s ratio. Phys. Status Solidi B 248(1), 52–59 (2011)CrossRef
18.
go back to reference D. Attard, E. Manicaro, J.N. Grima, On rotating rigid parallelograms and their potential for exhibiting auxetic behaviour. Phys. Status Solidi B 246(9), 2033–2044 (2009)CrossRef D. Attard, E. Manicaro, J.N. Grima, On rotating rigid parallelograms and their potential for exhibiting auxetic behaviour. Phys. Status Solidi B 246(9), 2033–2044 (2009)CrossRef
19.
go back to reference D. Attard, E. Manicaro, R. Gatt, J.N. Grima, On the properties of auxetic rotating stretching squares. Phys. Status Solidi B 246(9), 2045–2054 (2009)CrossRef D. Attard, E. Manicaro, R. Gatt, J.N. Grima, On the properties of auxetic rotating stretching squares. Phys. Status Solidi B 246(9), 2045–2054 (2009)CrossRef
20.
go back to reference K.M. Azzopardi, G.-P. Brincat, J.N. Grima, R. Gatt, Advances in the study of deformation mechanism of stishovite. Phys. Status Solidi B 252, 1486–1491 (2015)CrossRef K.M. Azzopardi, G.-P. Brincat, J.N. Grima, R. Gatt, Advances in the study of deformation mechanism of stishovite. Phys. Status Solidi B 252, 1486–1491 (2015)CrossRef
21.
go back to reference S. Babaee, J. Shim, J.C. Weaver, E.R. Chen, N. Patel, K. Bertoldi, 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013)CrossRef S. Babaee, J. Shim, J.C. Weaver, E.R. Chen, N. Patel, K. Bertoldi, 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013)CrossRef
22.
go back to reference E. Bafekrpour, A.V. Dyskin, E. Pasternak, A. Molotnikov, Y. Estrin, Internally architectured materials with directionally asymmetric friction. Sci. Rep. 5, 10732 (2015)CrossRef E. Bafekrpour, A.V. Dyskin, E. Pasternak, A. Molotnikov, Y. Estrin, Internally architectured materials with directionally asymmetric friction. Sci. Rep. 5, 10732 (2015)CrossRef
23.
go back to reference G.D. Barrera, J.A.O. Bruno, T.H.K. Barron, N.L. Allan, Negative thermal expansion: a topical review. J. Phys.: Condens. Matter 17, R217–R252 (2005) G.D. Barrera, J.A.O. Bruno, T.H.K. Barron, N.L. Allan, Negative thermal expansion: a topical review. J. Phys.: Condens. Matter 17, R217–R252 (2005)
24.
go back to reference R. Bathurst, L. Rothenburg, Note on a random isotropic granular material with negative Poisson’s ratio. Int. J. Eng. Sci. 26, 373–383 (1988)CrossRef R. Bathurst, L. Rothenburg, Note on a random isotropic granular material with negative Poisson’s ratio. Int. J. Eng. Sci. 26, 373–383 (1988)CrossRef
25.
go back to reference R.H. Baughman, D.S. Galvao, Crystalline networks with unusual predicted mechanical and thermal properties. Nature 365, 735–737 (1993)CrossRef R.H. Baughman, D.S. Galvao, Crystalline networks with unusual predicted mechanical and thermal properties. Nature 365, 735–737 (1993)CrossRef
26.
go back to reference R.H. Baughman, J.M. Shacklette, A.A. Zakhidov, S. Stafström, Negative Poisson’s ratios as a common feature of cubic metals. Nature 392, 362–365 (1998)CrossRef R.H. Baughman, J.M. Shacklette, A.A. Zakhidov, S. Stafström, Negative Poisson’s ratios as a common feature of cubic metals. Nature 392, 362–365 (1998)CrossRef
27.
go back to reference R.H. Baughman, S. Stafström, C. Cui, S.O. Dantas, Materials with negative compressibilities in one or more dimensions. Science 279, 1522–1524 (1998)CrossRef R.H. Baughman, S. Stafström, C. Cui, S.O. Dantas, Materials with negative compressibilities in one or more dimensions. Science 279, 1522–1524 (1998)CrossRef
28.
go back to reference R.H. Baughman, S.O. Socrates, S. Stafström, A.A. Zakhidov, T.B. Mitchell, D.H.E. Dubin, Negative Poisson’s ratios for extreme states of matter. Science 288, 2018–2022 (2000)CrossRef R.H. Baughman, S.O. Socrates, S. Stafström, A.A. Zakhidov, T.B. Mitchell, D.H.E. Dubin, Negative Poisson’s ratios for extreme states of matter. Science 288, 2018–2022 (2000)CrossRef
29.
go back to reference Z.P. Bažant, L. Cedolin, Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories (Oxford University Press, Oxford, 1991) Z.P. Bažant, L. Cedolin, Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories (Oxford University Press, Oxford, 1991)
30.
go back to reference K. Bertoldi, P.M. Reis, S. Willshaw, T. Mullin, Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010)CrossRef K. Bertoldi, P.M. Reis, S. Willshaw, T. Mullin, Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010)CrossRef
31.
go back to reference A. Bezazi, F. Scarpa, Tensile fatigue of conventional and negative Poisson’s ratio open cell PU foams. Int. J. Fatigue 31, 488–494 (2009)CrossRef A. Bezazi, F. Scarpa, Tensile fatigue of conventional and negative Poisson’s ratio open cell PU foams. Int. J. Fatigue 31, 488–494 (2009)CrossRef
32.
go back to reference M. Bianchi, F. Scarpa, M. Banse, C.W. Smith, Novel generation of auxetic open cell foams for curved and arbitrary shapes. Acta Mater. 59, 686–691 (2011)CrossRef M. Bianchi, F. Scarpa, M. Banse, C.W. Smith, Novel generation of auxetic open cell foams for curved and arbitrary shapes. Acta Mater. 59, 686–691 (2011)CrossRef
33.
go back to reference R. Blumenfeld, Auxetic strains—insight from iso-auxetic materials. Mol. Simul. 31(13), 867–871 (2005)CrossRef R. Blumenfeld, Auxetic strains—insight from iso-auxetic materials. Mol. Simul. 31(13), 867–871 (2005)CrossRef
34.
go back to reference R. Blumenfeld, S.F. Edwards, Theory of strains in auxetic materials. J. Supercond. Novel Magn. 25(3), 565–571 (2012)CrossRef R. Blumenfeld, S.F. Edwards, Theory of strains in auxetic materials. J. Supercond. Novel Magn. 25(3), 565–571 (2012)CrossRef
35.
go back to reference A.C. Brańka, K.W. Wojciechowski, Auxeticity of cubic materials: the role of repulsive core interaction. J. Non-Cryst. Solids 354, 4143–4145 (2008)CrossRef A.C. Brańka, K.W. Wojciechowski, Auxeticity of cubic materials: the role of repulsive core interaction. J. Non-Cryst. Solids 354, 4143–4145 (2008)CrossRef
36.
go back to reference A.C. Brańka, D.M. Heyes, K.W. Wojciechowski, Auxeticity of cubic materials under pressure. Phys. Status Solidi B 248, 96–104 (2011)CrossRef A.C. Brańka, D.M. Heyes, K.W. Wojciechowski, Auxeticity of cubic materials under pressure. Phys. Status Solidi B 248, 96–104 (2011)CrossRef
37.
go back to reference W.M. Bruner, Comment on ‘Seismic velocities in dry and saturated cracked solids’ by Richard J. O’Connell and Bernard Budiansky. J. Geophys. Res. 81(14), 2573–2576 (1976)CrossRef W.M. Bruner, Comment on ‘Seismic velocities in dry and saturated cracked solids’ by Richard J. O’Connell and Bernard Budiansky. J. Geophys. Res. 81(14), 2573–2576 (1976)CrossRef
38.
go back to reference B. Budiansky, On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13(4), 223–227 (1965)CrossRef B. Budiansky, On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13(4), 223–227 (1965)CrossRef
39.
go back to reference B. Budiansky, R.J. O’Connell, Elastic moduli of a cracked solid. Int. J. Solid Struct. 12(2), 81–97 (1976)CrossRef B. Budiansky, R.J. O’Connell, Elastic moduli of a cracked solid. Int. J. Solid Struct. 12(2), 81–97 (1976)CrossRef
40.
go back to reference L. Cabras, M. Brun, Auxetic two-dimensional lattices with Poisson’s ratio arbitrarily close to −1. Proc. R. Soc. London. Sect. B 470, 20140538 (2014)CrossRef L. Cabras, M. Brun, Auxetic two-dimensional lattices with Poisson’s ratio arbitrarily close to −1. Proc. R. Soc. London. Sect. B 470, 20140538 (2014)CrossRef
41.
go back to reference L. Cabras, M. Brun, Effective properties of a new auxetic triangular lattice: an analytical approach. Frattura ed Integrità Strutturale 29, 9–18 (2014)CrossRef L. Cabras, M. Brun, Effective properties of a new auxetic triangular lattice: an analytical approach. Frattura ed Integrità Strutturale 29, 9–18 (2014)CrossRef
42.
go back to reference B.D. Caddock, K.E. Evans, Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties. J. Phys. D Appl. Phys. 22, 1877–1882 (1989)CrossRef B.D. Caddock, K.E. Evans, Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties. J. Phys. D Appl. Phys. 22, 1877–1882 (1989)CrossRef
43.
go back to reference F. Cardin, M. Favretti, Dynamics of a chain of springs with non-convex potential energy. Math. Mech. Solids 8, 651–668 (2003)CrossRef F. Cardin, M. Favretti, Dynamics of a chain of springs with non-convex potential energy. Math. Mech. Solids 8, 651–668 (2003)CrossRef
44.
go back to reference A. Carrella, T.P. Brennan, T.P. Waters, Demonstrator to show the effects of negative stiffness on the natural frequency of a simple oscillator. Proc. IMechE Part C J. Mech. Eng. Sci. 222, 1189–1192 (2008)CrossRef A. Carrella, T.P. Brennan, T.P. Waters, Demonstrator to show the effects of negative stiffness on the natural frequency of a simple oscillator. Proc. IMechE Part C J. Mech. Eng. Sci. 222, 1189–1192 (2008)CrossRef
45.
go back to reference A.R. Champneys, G.W. Hunt, J.M.T. Thompson, Localisation and Solitary Waves in Solid Mechanics (World Scientific, Singapore, 1984), pp. 1–28 A.R. Champneys, G.W. Hunt, J.M.T. Thompson, Localisation and Solitary Waves in Solid Mechanics (World Scientific, Singapore, 1984), pp. 1–28
46.
go back to reference N. Chan, K.E. Evans, Fabrication methods for auxetic foams. J. Mater. Sci. 32, 5945–5953 (1997)CrossRef N. Chan, K.E. Evans, Fabrication methods for auxetic foams. J. Mater. Sci. 32, 5945–5953 (1997)CrossRef
47.
go back to reference L. Chen, C. Liu, J. Wang, W. Zhang, C. Hu, S. Fan, Auxetic materials with large negative Poisson’s ratios based on highly oriented carbon nanotube structures. Appl. Phys. Lett. 94, 253111 (2009)CrossRef L. Chen, C. Liu, J. Wang, W. Zhang, C. Hu, S. Fan, Auxetic materials with large negative Poisson’s ratios based on highly oriented carbon nanotube structures. Appl. Phys. Lett. 94, 253111 (2009)CrossRef
48.
go back to reference Y.J. Chen, F. Scarpa, I.R. Farrow, Y.J. Liu, J.S. Leng, Composite flexible skin with large negative Poisson’s ratio range: numerical and experimental analysis. Smart Mater. Struct. 22, 045005 (2013)CrossRef Y.J. Chen, F. Scarpa, I.R. Farrow, Y.J. Liu, J.S. Leng, Composite flexible skin with large negative Poisson’s ratio range: numerical and experimental analysis. Smart Mater. Struct. 22, 045005 (2013)CrossRef
49.
go back to reference J.B. Choi, R.S. Lakes, Nonlinear properties of metallic cellular materials with a negative Poisson’s ratio. J. Mater. Sci. 27(19), 5375–5381 (1992)CrossRef J.B. Choi, R.S. Lakes, Nonlinear properties of metallic cellular materials with a negative Poisson’s ratio. J. Mater. Sci. 27(19), 5375–5381 (1992)CrossRef
50.
go back to reference J.B. Choi, R.S. Lakes, Nonlinear properties of polymer cellular materials with a negative Poisson’s ratio. J. Mater. Sci. 27(19), 4678–4684 (1992)CrossRef J.B. Choi, R.S. Lakes, Nonlinear properties of polymer cellular materials with a negative Poisson’s ratio. J. Mater. Sci. 27(19), 4678–4684 (1992)CrossRef
51.
go back to reference J.B. Choi, R.S. Lakes, Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis. Int. J. Fract. 80, 73–83 (1996)CrossRef J.B. Choi, R.S. Lakes, Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis. Int. J. Fract. 80, 73–83 (1996)CrossRef
52.
go back to reference A. Choi, T. Sim, J.H. Mun, Quasi-stiffness of the knee joint in flexion and extension during the golf swing. J. Sports Sci. 33(16), 1682–1691 (2015)CrossRef A. Choi, T. Sim, J.H. Mun, Quasi-stiffness of the knee joint in flexion and extension during the golf swing. J. Sports Sci. 33(16), 1682–1691 (2015)CrossRef
53.
go back to reference V.L. Coenen, K.L. Alderson, Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates. Phys. Status Solidi B 248(1), 66–72 (2011)CrossRef V.L. Coenen, K.L. Alderson, Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates. Phys. Status Solidi B 248(1), 66–72 (2011)CrossRef
54.
go back to reference N.G.W. Cook, The failure of rock. Int. J. Rock Mech. Min. Sci. 2, 389–403 (1965)CrossRef N.G.W. Cook, The failure of rock. Int. J. Rock Mech. Min. Sci. 2, 389–403 (1965)CrossRef
55.
go back to reference D.M. Correa, T.D. Klatt, S. Cortes, M. Haberman, D. Kovar, C. Seepersad, Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyping J. 21(2), 193–200 (2015)CrossRef D.M. Correa, T.D. Klatt, S. Cortes, M. Haberman, D. Kovar, C. Seepersad, Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyping J. 21(2), 193–200 (2015)CrossRef
56.
go back to reference D.M. Correa, C. Seepersad, M. Haberman, Mechanical design of negative stiffness honeycomb materials. Integrating Mater. Manuf. Innov. 4(1), 1–11 (2015)CrossRef D.M. Correa, C. Seepersad, M. Haberman, Mechanical design of negative stiffness honeycomb materials. Integrating Mater. Manuf. Innov. 4(1), 1–11 (2015)CrossRef
57.
go back to reference S. Czarnecki, P. Wawruch, The emergence of auxetic material as a result of optimal isotropic design. Phys. Status Solidi B 252, 1620–1630 (2015)CrossRef S. Czarnecki, P. Wawruch, The emergence of auxetic material as a result of optimal isotropic design. Phys. Status Solidi B 252, 1620–1630 (2015)CrossRef
58.
go back to reference L. Dong, R.S. Lakes, Advanced damper with negative structural stiffness elements. Smart Mater. Struct. 21(7), 075026 (2012)CrossRef L. Dong, R.S. Lakes, Advanced damper with negative structural stiffness elements. Smart Mater. Struct. 21(7), 075026 (2012)CrossRef
59.
go back to reference L. Dong, R.S. Lakes, Advanced damper with high stiffness and high hysteresis damping based on negative structural stiffness. Int. J. Solids Struct. 50(14–15), 2416–2423 (2013)CrossRef L. Dong, R.S. Lakes, Advanced damper with high stiffness and high hysteresis damping based on negative structural stiffness. Int. J. Solids Struct. 50(14–15), 2416–2423 (2013)CrossRef
60.
go back to reference L. Dong, D.S. Stone, R.S. Lakes, Anelastic anomalies and negative Poisson’s ratio in tetragonal BaTiO3 ceramics. Appl. Phys. Lett. 96, 141904 (2010)CrossRef L. Dong, D.S. Stone, R.S. Lakes, Anelastic anomalies and negative Poisson’s ratio in tetragonal BaTiO3 ceramics. Appl. Phys. Lett. 96, 141904 (2010)CrossRef
61.
go back to reference J.P. Donoghue, K.L. Alderson, K.E. Evans, The fracture toughness of composite laminates with a negative Poisson’s ratio. Phys. Status Solidi B 246, 2011–2017 (2009)CrossRef J.P. Donoghue, K.L. Alderson, K.E. Evans, The fracture toughness of composite laminates with a negative Poisson’s ratio. Phys. Status Solidi B 246, 2011–2017 (2009)CrossRef
62.
go back to reference W.J. Drugan, Elastic composite materials having a negative stiffness phase can be stable. Phys. Rev. Lett. 98(5), 055502 (2007)CrossRef W.J. Drugan, Elastic composite materials having a negative stiffness phase can be stable. Phys. Rev. Lett. 98(5), 055502 (2007)CrossRef
63.
go back to reference A.V. Dyskin, E. Pasternak, Effective anti-plane shear modulus of a material with negative stiffness inclusions, in 9th HSTAM10, Limassol, Cyprus 12–14 July, 2010, Vardoulakis mini-symposia—Wave Propagation, paper 116, ed. by P. Papanastasiou, E. Papamichos, A. Zervos, M. Stavropoulou (2010), pp. 129–136 A.V. Dyskin, E. Pasternak, Effective anti-plane shear modulus of a material with negative stiffness inclusions, in 9th HSTAM10, Limassol, Cyprus 12–14 July, 2010, Vardoulakis mini-symposia—Wave Propagation, paper 116, ed. by P. Papanastasiou, E. Papamichos, A. Zervos, M. Stavropoulou (2010), pp. 129–136
64.
go back to reference A.V. Dyskin, E. Pasternak, Friction and localisation associated with non-spherical particles, in Advances in Bifurcation and Degradation in Geomaterials. Proceedings of the 9th International Workshop on Bifurcation and Degradation in Geomaterials, ed. by S. Bonelli, C. Dascalu, F. Nicot (Springer, 2011), pp. 53–58. ISBN/ISSN 978-94-007-1420-5 A.V. Dyskin, E. Pasternak, Friction and localisation associated with non-spherical particles, in Advances in Bifurcation and Degradation in Geomaterials. Proceedings of the 9th International Workshop on Bifurcation and Degradation in Geomaterials, ed. by S. Bonelli, C. Dascalu, F. Nicot (Springer, 2011), pp. 53–58. ISBN/ISSN 978-94-007-1420-5
65.
go back to reference A.V. Dyskin, E. Pasternak, Elastic composite with negative stiffness inclusions in antiplane strain. Int. J. Eng. Sci. 58, 45–56 (2012)CrossRef A.V. Dyskin, E. Pasternak, Elastic composite with negative stiffness inclusions in antiplane strain. Int. J. Eng. Sci. 58, 45–56 (2012)CrossRef
66.
go back to reference A.V. Dyskin, E. Pasternak, Mechanical effect of rotating non-spherical particles on failure in compression. Phil. Mag. 92(28–30), 3451–3473 (2012)CrossRef A.V. Dyskin, E. Pasternak, Mechanical effect of rotating non-spherical particles on failure in compression. Phil. Mag. 92(28–30), 3451–3473 (2012)CrossRef
67.
go back to reference A.V. Dyskin, E. Pasternak, Rock mass instability caused by incipient block rotation, in Harmonising Rock Engineering and the Environment, Proceedings of 12th International Congress on Rock Mechanics, ed. by Q. Qian, Y. Zhou (CRC Press, Balkema, 2012c), pp. 201–204 A.V. Dyskin, E. Pasternak, Rock mass instability caused by incipient block rotation, in Harmonising Rock Engineering and the Environment, Proceedings of 12th International Congress on Rock Mechanics, ed. by Q. Qian, Y. Zhou (CRC Press, Balkema, 2012c), pp. 201–204
68.
go back to reference A.V. Dyskin, E. Pasternak, Rock and rock mass instability caused by rotation of non-spherical grains or blocks, in Rock Engineering & Technology for Sustainable Underground Construction. Proceedings of Eurock 2012, paper 102P (2012d) A.V. Dyskin, E. Pasternak, Rock and rock mass instability caused by rotation of non-spherical grains or blocks, in Rock Engineering & Technology for Sustainable Underground Construction. Proceedings of Eurock 2012, paper 102P (2012d)
69.
go back to reference A.V. Dyskin, E. Pasternak, Bifurcation in rolling of non-spherical grains and fluctuations in macroscopic friction. Acta Mech. 225(8), 2217–2226 (2014)CrossRef A.V. Dyskin, E. Pasternak, Bifurcation in rolling of non-spherical grains and fluctuations in macroscopic friction. Acta Mech. 225(8), 2217–2226 (2014)CrossRef
70.
go back to reference A.V. Dyskin, E. Pasternak, Negative stiffness: Is thermodynamics defeated? in Proceedings of 8th Australasian Congress on Applied Mechanics: ACAM 8 (Melbourne, Australia, 2014) A.V. Dyskin, E. Pasternak, Negative stiffness: Is thermodynamics defeated? in Proceedings of 8th Australasian Congress on Applied Mechanics: ACAM 8 (Melbourne, Australia, 2014)
72.
go back to reference M. Esin, E. Pasternak, A. Dyskin, Stability of chains of oscillators with negative stiffness normal, shear and rotational springs. Int. J. Eng. Sci. 108, 16–33 (2016)CrossRef M. Esin, E. Pasternak, A. Dyskin, Stability of chains of oscillators with negative stiffness normal, shear and rotational springs. Int. J. Eng. Sci. 108, 16–33 (2016)CrossRef
73.
go back to reference M. Esin, E. Pasternak, A.V. Dyskin, Stability of 2D discrete mass-spring systems with negative stiffness springs. Phys. Status Solidi (B) Basic Res. 253(7), 1395–1409 (2016b) M. Esin, E. Pasternak, A.V. Dyskin, Stability of 2D discrete mass-spring systems with negative stiffness springs. Phys. Status Solidi (B) Basic Res. 253(7), 1395–1409 (2016b)
74.
go back to reference U.E. Essien, A.O. Akankpo, M.U. Igboekwe, Poisson’s ratio of surface soils and shallow sediments determined from seismic compressional and shear wave velocities. Int. J. Geosci. 5(12), 1540–1546 (2014)CrossRef U.E. Essien, A.O. Akankpo, M.U. Igboekwe, Poisson’s ratio of surface soils and shallow sediments determined from seismic compressional and shear wave velocities. Int. J. Geosci. 5(12), 1540–1546 (2014)CrossRef
75.
go back to reference Y. Estrin, A.V. Dyskin, E. Pasternak, S. Schaare, S. Stanchits, A.J. Kanel-Belov, Negative stiffness of a layer with topologically interlocked elements. Scripta Mater. 50(2), 291–294 (2003)CrossRef Y. Estrin, A.V. Dyskin, E. Pasternak, S. Schaare, S. Stanchits, A.J. Kanel-Belov, Negative stiffness of a layer with topologically interlocked elements. Scripta Mater. 50(2), 291–294 (2003)CrossRef
76.
go back to reference J.S.O. Evans, T.A. Mary, A.W. Sleight, Negative thermal expansion materials. Phys. B 241–243, 311–316 (1998) J.S.O. Evans, T.A. Mary, A.W. Sleight, Negative thermal expansion materials. Phys. B 241–243, 311–316 (1998)
77.
go back to reference K.E. Evans, K.L. Alderson, The static and dynamic moduli of auxetic microporous polyethylene. J. Mater. Sci. 11, 1721–1724 (1992) K.E. Evans, K.L. Alderson, The static and dynamic moduli of auxetic microporous polyethylene. J. Mater. Sci. 11, 1721–1724 (1992)
78.
go back to reference K.E. Evans, A. Alderson, Auxetic materials: Functional materials and structures from lateral thinking! Adv. Mater. 12(9), 617–628 (2000)CrossRef K.E. Evans, A. Alderson, Auxetic materials: Functional materials and structures from lateral thinking! Adv. Mater. 12(9), 617–628 (2000)CrossRef
79.
go back to reference K.E. Evans, B.D. Caddock, Microporous materials with negative Poisson’s ratios: II. Mechanisms and interpretation. J. Phys. D: Appl. Phys. 22(12), 1883–1887 (1989)CrossRef K.E. Evans, B.D. Caddock, Microporous materials with negative Poisson’s ratios: II. Mechanisms and interpretation. J. Phys. D: Appl. Phys. 22(12), 1883–1887 (1989)CrossRef
80.
go back to reference K.E. Evans, M.A. Nkansah, I.J. Hutchinson, S.C. Rogers, Molecular network design. Nature 353, 124 (1991)CrossRef K.E. Evans, M.A. Nkansah, I.J. Hutchinson, S.C. Rogers, Molecular network design. Nature 353, 124 (1991)CrossRef
81.
go back to reference B.A. Fulcher, D.W. Shahan, M.R. Haberman, C.C. Seepersad, P.S. Wilson, Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vibr. Acoust.-Trans. ASME 136(3), 31009 (2014)CrossRef B.A. Fulcher, D.W. Shahan, M.R. Haberman, C.C. Seepersad, P.S. Wilson, Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vibr. Acoust.-Trans. ASME 136(3), 31009 (2014)CrossRef
82.
go back to reference C.J. Gantes, J.J. Connor, L.D. Logcher, Y. Rosenfeld, Structural analysis and design of deployable structures. Comput. Struct. 32(3–4), 661–669 (1989)CrossRef C.J. Gantes, J.J. Connor, L.D. Logcher, Y. Rosenfeld, Structural analysis and design of deployable structures. Comput. Struct. 32(3–4), 661–669 (1989)CrossRef
83.
go back to reference N. Gaspar, X.J. Ren, C.W. Smith, J.N. Grima, K.E. Evans, Novel honeycombs with auxetic behaviour. Acta Mater. 53, 2439–2445 (2005)CrossRef N. Gaspar, X.J. Ren, C.W. Smith, J.N. Grima, K.E. Evans, Novel honeycombs with auxetic behaviour. Acta Mater. 53, 2439–2445 (2005)CrossRef
84.
go back to reference N. Gaspar, C.W. Smith, K.E. Evans, Auxetic behaviour and anisotropic heterogeneity. Acta Mater. 57, 875–880 (2009)CrossRef N. Gaspar, C.W. Smith, K.E. Evans, Auxetic behaviour and anisotropic heterogeneity. Acta Mater. 57, 875–880 (2009)CrossRef
85.
go back to reference N. Gaspar, A granular material with a negative Poisson’s ratio. Mech. Mater. 42, 673–677 (2010)CrossRef N. Gaspar, A granular material with a negative Poisson’s ratio. Mech. Mater. 42, 673–677 (2010)CrossRef
86.
go back to reference N. Gaspar, C.W. Smith, A. Alderson, J.N. Grima, K.E. Evans, A generalised three-dimensional tethered-nodule model for auxetic materials. J. Mater. Sci. 46, 372–384 (2011)CrossRef N. Gaspar, C.W. Smith, A. Alderson, J.N. Grima, K.E. Evans, A generalised three-dimensional tethered-nodule model for auxetic materials. J. Mater. Sci. 46, 372–384 (2011)CrossRef
87.
go back to reference R. Gatt, L. Mizzi, K.M. Azzopardi, J.N. Grima, A force-field based analysis of the deformation mechanism in α-cristobalite. Phys. Status Solidi B 252, 1479–1485 (2015)CrossRef R. Gatt, L. Mizzi, K.M. Azzopardi, J.N. Grima, A force-field based analysis of the deformation mechanism in α-cristobalite. Phys. Status Solidi B 252, 1479–1485 (2015)CrossRef
88.
go back to reference L.N. Germanovich, A.V. Dyskin, Virial expansions in problems of effective characteristics. Part I. General concepts. J. Mech. Compos. Mater. 30(2), 222–237 (1994)CrossRef L.N. Germanovich, A.V. Dyskin, Virial expansions in problems of effective characteristics. Part I. General concepts. J. Mech. Compos. Mater. 30(2), 222–237 (1994)CrossRef
89.
go back to reference L.N. Germanovich, A.V. Dyskin, Virial expansions in problems of effective characteristics. Part II. Anti-plane deformation of fibre composite. Analysis of self-consistent methods. J. Mech. Compos. Mater. 30(2), 234–243 (1994)CrossRef L.N. Germanovich, A.V. Dyskin, Virial expansions in problems of effective characteristics. Part II. Anti-plane deformation of fibre composite. Analysis of self-consistent methods. J. Mech. Compos. Mater. 30(2), 234–243 (1994)CrossRef
91.
go back to reference G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011)CrossRef G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011)CrossRef
92.
go back to reference J.N. Grima, K.E. Evans, Auxetic behavior from rotating triangles. J. Mater. Sci. 41, 3193–3196 (2006)CrossRef J.N. Grima, K.E. Evans, Auxetic behavior from rotating triangles. J. Mater. Sci. 41, 3193–3196 (2006)CrossRef
94.
go back to reference J.N. Grima, R. Jackson, A. Alderson, K.E. Evans, Do zeolites have negative Poisson’s ratios? Adv. Mater. 12(24), 1912–1918 (2000)CrossRef J.N. Grima, R. Jackson, A. Alderson, K.E. Evans, Do zeolites have negative Poisson’s ratios? Adv. Mater. 12(24), 1912–1918 (2000)CrossRef
95.
go back to reference J.N. Grima, A. Alderson, K.E. Evans, Auxetic behaviour from rotating rigid units. Phys. Status Solidi B 242(3), 561–575 (2005)CrossRef J.N. Grima, A. Alderson, K.E. Evans, Auxetic behaviour from rotating rigid units. Phys. Status Solidi B 242(3), 561–575 (2005)CrossRef
96.
go back to reference J.N. Grima, R. Gatt, N. Ravirala, A. Alderson, K.E. Evans, Negative Poisson’s ratios in cellular foam materials. Mater. Sci. Eng., A 423(1–2), 214–218 (2006)CrossRef J.N. Grima, R. Gatt, N. Ravirala, A. Alderson, K.E. Evans, Negative Poisson’s ratios in cellular foam materials. Mater. Sci. Eng., A 423(1–2), 214–218 (2006)CrossRef
97.
go back to reference J.N. Grima, P.S. Farrugia, R. Gatt, V. Zammit, A system with adjustable positive or negative thermal expansion. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 463, 1585–1596 (2007)CrossRef J.N. Grima, P.S. Farrugia, R. Gatt, V. Zammit, A system with adjustable positive or negative thermal expansion. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 463, 1585–1596 (2007)CrossRef
98.
go back to reference J.N. Grima, R. Caruana-Gauci, M.R. Dudek, K.W. Wojciechowski, R. Gatt, Smart metamaterials with tunable auxetic and other properties. Smart Mater. Struct. 22, 084016 (2013)CrossRef J.N. Grima, R. Caruana-Gauci, M.R. Dudek, K.W. Wojciechowski, R. Gatt, Smart metamaterials with tunable auxetic and other properties. Smart Mater. Struct. 22, 084016 (2013)CrossRef
99.
go back to reference J.N. Grima, B. Ellul, R. Gatt, D. Attard, Negative thermal expansion from disc, cylindrical, and needle shaped inclusions. Phys. Status Solidi B 250, 2051–2056 (2013)CrossRef J.N. Grima, B. Ellul, R. Gatt, D. Attard, Negative thermal expansion from disc, cylindrical, and needle shaped inclusions. Phys. Status Solidi B 250, 2051–2056 (2013)CrossRef
100.
go back to reference J.N. Grima, R. Cauchi, R. Gatt, D. Attard, Honeycomb composites with auxetic out-of-plane characteristics. Compos. Struct. 106, 150–159 (2013)CrossRef J.N. Grima, R. Cauchi, R. Gatt, D. Attard, Honeycomb composites with auxetic out-of-plane characteristics. Compos. Struct. 106, 150–159 (2013)CrossRef
101.
go back to reference J.N. Grima, S. Winczewski, L. Mizzi, M.C. Grech, R. Cauchi, R. Gatt, Tailoring graphene to achieve negative Poisson’s ratio properties. Adv. Mater. 27, 1455–1459 (2015)CrossRef J.N. Grima, S. Winczewski, L. Mizzi, M.C. Grech, R. Cauchi, R. Gatt, Tailoring graphene to achieve negative Poisson’s ratio properties. Adv. Mater. 27, 1455–1459 (2015)CrossRef
102.
go back to reference J.N. Grima, L. Mizzi, K.M. Azzopardi, R. Gatt, Auxetic perforated mechanical metamaterials with randomly oriented cuts. Adv. Mater. 28(2), 385–389 (2015)CrossRef J.N. Grima, L. Mizzi, K.M. Azzopardi, R. Gatt, Auxetic perforated mechanical metamaterials with randomly oriented cuts. Adv. Mater. 28(2), 385–389 (2015)CrossRef
103.
go back to reference J.N. Grima, D. Attard, R. Gatt, R.N. Cassar, A novel process for the manufacture of auxetic foams and for their re-conversion to conventional form. Adv. Eng. Mater. 11(7), 533–535 (2009)CrossRef J.N. Grima, D. Attard, R. Gatt, R.N. Cassar, A novel process for the manufacture of auxetic foams and for their re-conversion to conventional form. Adv. Eng. Mater. 11(7), 533–535 (2009)CrossRef
104.
go back to reference J.N. Grima, R.N. Cassar, R. Gatt, On the effect of hydrostatic pressure on the auxetic character of NAT-type silicates. J. Non-Cryst. Solids 355, 1307–1312 (2009)CrossRef J.N. Grima, R.N. Cassar, R. Gatt, On the effect of hydrostatic pressure on the auxetic character of NAT-type silicates. J. Non-Cryst. Solids 355, 1307–1312 (2009)CrossRef
105.
go back to reference J.N. Grima, B. Ellul, R. Gatt, D. Attard, Negative thermal expansion from disc cylindrical, and needle shaped inclusions. Phys. Status Solidi B 250(10), 2051–2056 (2012) J.N. Grima, B. Ellul, R. Gatt, D. Attard, Negative thermal expansion from disc cylindrical, and needle shaped inclusions. Phys. Status Solidi B 250(10), 2051–2056 (2012)
106.
go back to reference J.N. Grima, E. Chetcuti, E. Manicaro, D. Attard, M. Camilleri, R. Gatt, K.E. Evans, On the auxetic properties of generic rotating rigid triangles. Proc. R. Soc. A 468, 810–830 (2012)CrossRef J.N. Grima, E. Chetcuti, E. Manicaro, D. Attard, M. Camilleri, R. Gatt, K.E. Evans, On the auxetic properties of generic rotating rigid triangles. Proc. R. Soc. A 468, 810–830 (2012)CrossRef
107.
go back to reference J.N. Grima, E. Manicaro, D. Attard, Auxetic behaviour from connected different-sized squares and rectangles. Proc. R. Soc. A 467, 439–458 (2010)CrossRef J.N. Grima, E. Manicaro, D. Attard, Auxetic behaviour from connected different-sized squares and rectangles. Proc. R. Soc. A 467, 439–458 (2010)CrossRef
108.
go back to reference D.J. Gunton, G.A. Saunders, The Young’s modulus and Poisson’s ratio of arsenic, antimony and bismuth. J. Mater. Sci. 7, 1061–1068 (1972)CrossRef D.J. Gunton, G.A. Saunders, The Young’s modulus and Poisson’s ratio of arsenic, antimony and bismuth. J. Mater. Sci. 7, 1061–1068 (1972)CrossRef
109.
go back to reference Y. Guo, W.A. Goddard III, Is carbon nitride harder than diamond? No, but its girth increases when stretched (negative Poisson ratio). Chem. Phys. Let. 237, 72–76 (1995)CrossRef Y. Guo, W.A. Goddard III, Is carbon nitride harder than diamond? No, but its girth increases when stretched (negative Poisson ratio). Chem. Phys. Let. 237, 72–76 (1995)CrossRef
110.
go back to reference C.S. Ha, E. Hestekin, J. Li, M.E. Plesha, R.S. Lakes, Controllable thermal expansion of large magnitude in chiral negative Poisson’s ratio lattices. Phys. Status Solidi B 252, 1431–1434 (2015)CrossRef C.S. Ha, E. Hestekin, J. Li, M.E. Plesha, R.S. Lakes, Controllable thermal expansion of large magnitude in chiral negative Poisson’s ratio lattices. Phys. Status Solidi B 252, 1431–1434 (2015)CrossRef
111.
go back to reference L.J. Hall, V.R. Coluci, D.S. Galvão, M.E. Kozlov, M. Zhang, S.O. Dantas, R.H. Baughman, Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320, 504–507 (2008)CrossRef L.J. Hall, V.R. Coluci, D.S. Galvão, M.E. Kozlov, M. Zhang, S.O. Dantas, R.H. Baughman, Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320, 504–507 (2008)CrossRef
112.
go back to reference Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)CrossRef Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)CrossRef
113.
go back to reference E.W. Hawkes, E.V. Eason, A.T. Asbeck, M.R. Cutkosky, IEEE/ASME Trans. Mechatron. 18, 518 (2013) E.W. Hawkes, E.V. Eason, A.T. Asbeck, M.R. Cutkosky, IEEE/ASME Trans. Mechatron. 18, 518 (2013)
114.
go back to reference G.F. Hawkins, M.J. O’Brien, C.Y. Tang, Proceedings of SPIE. Smart Mater. III 5648, 37 (2004)CrossRef G.F. Hawkins, M.J. O’Brien, C.Y. Tang, Proceedings of SPIE. Smart Mater. III 5648, 37 (2004)CrossRef
115.
go back to reference T.A.M. Hewage, K.L. Alderson, A. Alderson, F. Scarpa, Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson’s ratio properties. Adv. Mater. 28, 10323–10332 (2016)CrossRef T.A.M. Hewage, K.L. Alderson, A. Alderson, F. Scarpa, Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson’s ratio properties. Adv. Mater. 28, 10323–10332 (2016)CrossRef
116.
go back to reference R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. (Lond.) A65, 349–354 (1952)CrossRef R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. (Lond.) A65, 349–354 (1952)CrossRef
117.
go back to reference R. Hill, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)CrossRef R. Hill, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)CrossRef
119.
go back to reference D.T. Ho, H. Kim, S.-Y. Kwon, S.Y. Kim, Auxeticity of face-centered cubic metal (001) nanoplates. Phys. Status Solidi B 252, 1492–1501 (2015)CrossRef D.T. Ho, H. Kim, S.-Y. Kwon, S.Y. Kim, Auxeticity of face-centered cubic metal (001) nanoplates. Phys. Status Solidi B 252, 1492–1501 (2015)CrossRef
120.
go back to reference X. Hou, H. Hu, V. Silberschmidt, A novel concept to develop composite structures with isotropic negative Poisson’s ratio: effects of random inclusions. Compos. Sci. Technol. 72, 1848–1854 (2012)CrossRef X. Hou, H. Hu, V. Silberschmidt, A novel concept to develop composite structures with isotropic negative Poisson’s ratio: effects of random inclusions. Compos. Sci. Technol. 72, 1848–1854 (2012)CrossRef
121.
go back to reference X. Hou, H. Hu, V. Silberschmidt, Numerical analysis of composite structure with in-plane isotropic negative Poisson’s ratio: effects of materials properties and geometry features of inclusions. Compos.: Part B 58, 152–159 (2014)CrossRef X. Hou, H. Hu, V. Silberschmidt, Numerical analysis of composite structure with in-plane isotropic negative Poisson’s ratio: effects of materials properties and geometry features of inclusions. Compos.: Part B 58, 152–159 (2014)CrossRef
122.
go back to reference T.P. Hughes, A. Marmier, K.E. Evans, Auxetic frameworks inspired by cubic crystals. Int. J. Solids Struct. 47, 1469–1476 (2010)CrossRef T.P. Hughes, A. Marmier, K.E. Evans, Auxetic frameworks inspired by cubic crystals. Int. J. Solids Struct. 47, 1469–1476 (2010)CrossRef
123.
go back to reference G.W. Hunt, H.-B. Mühlhaus, A.I.M. Whiting, Folding processes and solitary waves in structural geology, in Localisation and Solitary Waves in Solid Mechanics, ed. by A.R. Champneys, G.W. Hunt, J.M.T. Thompson (World Scientific, Singapore, 1984), pp. 332–348 G.W. Hunt, H.-B. Mühlhaus, A.I.M. Whiting, Folding processes and solitary waves in structural geology, in Localisation and Solitary Waves in Solid Mechanics, ed. by A.R. Champneys, G.W. Hunt, J.M.T. Thompson (World Scientific, Singapore, 1984), pp. 332–348
124.
go back to reference T. Jaglinski, R.S. Lakes, Anelastic instability in composites with negative stiffness inclusions. Philos. Mag. Lett. 84(12), 803–810 (2004)CrossRef T. Jaglinski, R.S. Lakes, Anelastic instability in composites with negative stiffness inclusions. Philos. Mag. Lett. 84(12), 803–810 (2004)CrossRef
125.
go back to reference T. Jaglinski, D. Kochmann, D. Stone, R.S. Lakes, Composite materials with viscoelastic stiffness greater than diamond. Science 315, 620–622 (2007)CrossRef T. Jaglinski, D. Kochmann, D. Stone, R.S. Lakes, Composite materials with viscoelastic stiffness greater than diamond. Science 315, 620–622 (2007)CrossRef
126.
go back to reference T. Jaglinski, P. Frascone, B. Moore, D.S. Stone, R.S. Lakes, Internal friction due to negative stiffness in the indium–thallium martensitic phase transformation. Phil. Mag. 86(27), 4285–4303 (2006)CrossRef T. Jaglinski, P. Frascone, B. Moore, D.S. Stone, R.S. Lakes, Internal friction due to negative stiffness in the indium–thallium martensitic phase transformation. Phil. Mag. 86(27), 4285–4303 (2006)CrossRef
127.
go back to reference T. Jaglinski, D. Stone, R.S. Lakes, Internal friction study of a composite with a negative stiffness constituent. J. Mater. Res. 20(09), 2523–2533 (2005)CrossRef T. Jaglinski, D. Stone, R.S. Lakes, Internal friction study of a composite with a negative stiffness constituent. J. Mater. Res. 20(09), 2523–2533 (2005)CrossRef
128.
go back to reference S. Jayanty, J. Crowe, L. Berhan, Auxetic fibre networks and their composites. Phys. Status Solidi B 248(1), 73–81 (2011)CrossRef S. Jayanty, J. Crowe, L. Berhan, Auxetic fibre networks and their composites. Phys. Status Solidi B 248(1), 73–81 (2011)CrossRef
129.
go back to reference H. Kalathur, R.S. Lakes, Column dampers with negative stiffness: high damping at small amplitude. Smart Mater. Struct. 22(8), 084013 (2013)CrossRef H. Kalathur, R.S. Lakes, Column dampers with negative stiffness: high damping at small amplitude. Smart Mater. Struct. 22(8), 084013 (2013)CrossRef
130.
go back to reference H. Kalathur, T.M. Hoang, R.S. Lakes, W.J. Drugan, Buckling mode jump at very close load values in unattached flat-end columns: theory and experiment. J. Appl. Mech.-Trans. ASME 81(4), 41010 (2014)CrossRef H. Kalathur, T.M. Hoang, R.S. Lakes, W.J. Drugan, Buckling mode jump at very close load values in unattached flat-end columns: theory and experiment. J. Appl. Mech.-Trans. ASME 81(4), 41010 (2014)CrossRef
131.
go back to reference P. Kanouté, D.P. Boso, J.L. Chaboche, B.A. Schrefler, Multiscale methods for composites: a review. Arch. Comput. Methods Eng. 16, 31–75 (2009)CrossRef P. Kanouté, D.P. Boso, J.L. Chaboche, B.A. Schrefler, Multiscale methods for composites: a review. Arch. Comput. Methods Eng. 16, 31–75 (2009)CrossRef
132.
go back to reference N. Keskar, J.R. Chelikowsky, Negative Poisson’s ratio in crystalline SiO2 from first-principles calculations. Nature 358, 222–224 (1992)CrossRef N. Keskar, J.R. Chelikowsky, Negative Poisson’s ratio in crystalline SiO2 from first-principles calculations. Nature 358, 222–224 (1992)CrossRef
133.
go back to reference D.M. Kochmann, W.J. Drugan, Dynamic stability analysis of an elastic composite material having a negative-stiffness phase. J. Mech. Phys. Solids 57(7), 1122–1138 (2009)CrossRef D.M. Kochmann, W.J. Drugan, Dynamic stability analysis of an elastic composite material having a negative-stiffness phase. J. Mech. Phys. Solids 57(7), 1122–1138 (2009)CrossRef
134.
go back to reference D.M. Kochmann, G.W. Milton, Rigorous bounds on the effective moduli of composites and inhomogeneous bodies with negative-stiffness phases. J. Mech. Phys. Solids 71, 46–63 (2014)CrossRef D.M. Kochmann, G.W. Milton, Rigorous bounds on the effective moduli of composites and inhomogeneous bodies with negative-stiffness phases. J. Mech. Phys. Solids 71, 46–63 (2014)CrossRef
135.
go back to reference D.M. Kochmann, G.N. Venturini, Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity. Smart Mater. Struct. 22, 084004–084011 (2013)CrossRef D.M. Kochmann, G.N. Venturini, Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity. Smart Mater. Struct. 22, 084004–084011 (2013)CrossRef
136.
go back to reference D.M. Kochmann, W.J. Drugan, Infinitely stiff composite via a rotation-stabilized negative-stiffness phase. Appl. Phys. Lett. 99, 011909 (2011)CrossRef D.M. Kochmann, W.J. Drugan, Infinitely stiff composite via a rotation-stabilized negative-stiffness phase. Appl. Phys. Lett. 99, 011909 (2011)CrossRef
137.
go back to reference A.G. Kolpakov, Determination of the average characteristics of elastic frameworks. Appl. Math. Mech. 49, 739–745 (1985)CrossRef A.G. Kolpakov, Determination of the average characteristics of elastic frameworks. Appl. Math. Mech. 49, 739–745 (1985)CrossRef
138.
go back to reference R.S. Lakes, Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude. Appl. Phys. Lett. 90, 221905 (2007)CrossRef R.S. Lakes, Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude. Appl. Phys. Lett. 90, 221905 (2007)CrossRef
139.
go back to reference R.S. Lakes, Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)CrossRef R.S. Lakes, Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)CrossRef
140.
go back to reference R.S. Lakes, Deformation mechanisms of negative Poisson’s ratio materials: structural aspects. J. Mater. Sci. 26, 2287–2292 (1991)CrossRef R.S. Lakes, Deformation mechanisms of negative Poisson’s ratio materials: structural aspects. J. Mater. Sci. 26, 2287–2292 (1991)CrossRef
142.
go back to reference R.S. Lakes, Extreme damping in composite materials with a negative stiffness phase. Phys. Rev. Let. 86(13), 2897–2900 (2001)CrossRef R.S. Lakes, Extreme damping in composite materials with a negative stiffness phase. Phys. Rev. Let. 86(13), 2897–2900 (2001)CrossRef
143.
go back to reference R.S. Lakes, Extreme damping in compliant composites with a negative-stiffness phase. Phil. Mag. Lett. 81(2), 95–100 (2001)CrossRef R.S. Lakes, Extreme damping in compliant composites with a negative-stiffness phase. Phil. Mag. Lett. 81(2), 95–100 (2001)CrossRef
144.
go back to reference R.S. Lakes, K. Elms, Indentability of conventional and negative Poisson’s ratio foams. J. Compos. Mater. 27, 1193–1202 (1993)CrossRef R.S. Lakes, K. Elms, Indentability of conventional and negative Poisson’s ratio foams. J. Compos. Mater. 27, 1193–1202 (1993)CrossRef
145.
go back to reference R.S. Lakes, W.J. Drugan, Dramatically stiffer elastic composite materials due to a negative stiffness phase? J. Mech. Phys. Solids 50, 979–1009 (2002)CrossRef R.S. Lakes, W.J. Drugan, Dramatically stiffer elastic composite materials due to a negative stiffness phase? J. Mech. Phys. Solids 50, 979–1009 (2002)CrossRef
146.
go back to reference R.S. Lakes, A. Lowe, Negative Poisson’s ratio foam as seat cushion material. Cell. Polym. 19, 157–167 (2000) R.S. Lakes, A. Lowe, Negative Poisson’s ratio foam as seat cushion material. Cell. Polym. 19, 157–167 (2000)
147.
go back to reference R.S. Lakes, P. Rosakis, A. Ruina, Microbuckling instability in elastomeric cellular solids. J. Mat. Sci 28, 4667–4672 (1993)CrossRef R.S. Lakes, P. Rosakis, A. Ruina, Microbuckling instability in elastomeric cellular solids. J. Mat. Sci 28, 4667–4672 (1993)CrossRef
148.
go back to reference R.S. Lakes, T. Lee, A. Bersie, Y.C. Wang, Extreme damping in composite materials with negative stiffness inclusions. Nature 410, 565–567 (2001)CrossRef R.S. Lakes, T. Lee, A. Bersie, Y.C. Wang, Extreme damping in composite materials with negative stiffness inclusions. Nature 410, 565–567 (2001)CrossRef
149.
go back to reference R.S. Lakes, K.W. Wojciechowski, Negative compressibility, negative Poisson’s ratio, and stability. Phys. Status Solidi 245, 545–551 (2008)CrossRef R.S. Lakes, K.W. Wojciechowski, Negative compressibility, negative Poisson’s ratio, and stability. Phys. Status Solidi 245, 545–551 (2008)CrossRef
150.
go back to reference L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig, 1959) L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig, 1959)
151.
go back to reference U.D. Larsen, O. Sigmund, S. Bouwstra, Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J. Microelectromech. Systems 6, 99–106 (1997)CrossRef U.D. Larsen, O. Sigmund, S. Bouwstra, Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J. Microelectromech. Systems 6, 99–106 (1997)CrossRef
152.
go back to reference M.L. Latash, V.M. Zatsiorsky, Joint stiffness: myth or reality? Hum. Mov. Sci. 12(6), 653–692 (1993)CrossRef M.L. Latash, V.M. Zatsiorsky, Joint stiffness: myth or reality? Hum. Mov. Sci. 12(6), 653–692 (1993)CrossRef
153.
go back to reference I.M. Lifshits, L.N. Rosentsveig, Zur Theorie der elastischen Eigenschaften yon Polykristallen. Zh. Eksp. Teor. Fiz. 16, 967–975 (1946) I.M. Lifshits, L.N. Rosentsveig, Zur Theorie der elastischen Eigenschaften yon Polykristallen. Zh. Eksp. Teor. Fiz. 16, 967–975 (1946)
154.
go back to reference T.-C. Lim, Out-of-plane modulus of semi-auxetic laminates. Eur. J. Mech. A/Solids 28, 752–756 (2009)CrossRef T.-C. Lim, Out-of-plane modulus of semi-auxetic laminates. Eur. J. Mech. A/Solids 28, 752–756 (2009)CrossRef
155.
go back to reference T.-C. Lim, Coefficient of thermal expansion of stacked auxetic and negative thermal expansion laminates. Phys. Status Solidi B 248(1), 140–147 (2011)CrossRef T.-C. Lim, Coefficient of thermal expansion of stacked auxetic and negative thermal expansion laminates. Phys. Status Solidi B 248(1), 140–147 (2011)CrossRef
156.
go back to reference T.-C. Lim, Thermal stresses in thin auxetic plates. J. Therm. Stresses 36(11), 1131–1140 (2012)CrossRef T.-C. Lim, Thermal stresses in thin auxetic plates. J. Therm. Stresses 36(11), 1131–1140 (2012)CrossRef
157.
go back to reference T.-C. Lim, Negative thermal expansion structures constructed from positive thermal expansion trusses. J. Mater. Sci. 47, 368–373 (2012)CrossRef T.-C. Lim, Negative thermal expansion structures constructed from positive thermal expansion trusses. J. Mater. Sci. 47, 368–373 (2012)CrossRef
158.
go back to reference T.-C. Lim, U. Rajendra Acharya, Counterintuitive modulus from semi-auxetic laminates. Phys. Status Solidi B 248(1), 60–65 (2011)CrossRef T.-C. Lim, U. Rajendra Acharya, Counterintuitive modulus from semi-auxetic laminates. Phys. Status Solidi B 248(1), 60–65 (2011)CrossRef
159.
go back to reference C. Lira, P. Innocenti, F. Scarpa, Transverse elastic shear of auxetic multi re-entrant honeycombs. Compos. Struct. 90, 314–322 (2010)CrossRef C. Lira, P. Innocenti, F. Scarpa, Transverse elastic shear of auxetic multi re-entrant honeycombs. Compos. Struct. 90, 314–322 (2010)CrossRef
160.
go back to reference C. Lira, F. Scarpa, M. Olszewska, M. Celuch, The SILICOMB cellular structure: mechanical and dielectric properties. Phys. Status Solidi B 246, 2055–2062 (2009)CrossRef C. Lira, F. Scarpa, M. Olszewska, M. Celuch, The SILICOMB cellular structure: mechanical and dielectric properties. Phys. Status Solidi B 246, 2055–2062 (2009)CrossRef
161.
go back to reference Y. Liu, H. Hu, A review on auxetic structures and polymeric materials. Sci. Res. Essays 5(10), 1052–1063 (2010) Y. Liu, H. Hu, A review on auxetic structures and polymeric materials. Sci. Res. Essays 5(10), 1052–1063 (2010)
162.
go back to reference A.E.H. Love, A Treatise on Mathematical Theory of Elasticity (Dover, New York, 1927) A.E.H. Love, A Treatise on Mathematical Theory of Elasticity (Dover, New York, 1927)
163.
go back to reference P. Martin, A.D. Mehta, A.J. Hudspeth, Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc. Natl. Acad. Sci. U.S.A. 97(22), 12026–12031 (2000)CrossRef P. Martin, A.D. Mehta, A.J. Hudspeth, Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc. Natl. Acad. Sci. U.S.A. 97(22), 12026–12031 (2000)CrossRef
164.
go back to reference E.O. Martz, R.S. Lakes, J.B. Park, Hysteresis behaviour and specific damping capacity of negative Poisson’s ratio foams. Cell. Polym. 15, 349–364 (1996) E.O. Martz, R.S. Lakes, J.B. Park, Hysteresis behaviour and specific damping capacity of negative Poisson’s ratio foams. Cell. Polym. 15, 349–364 (1996)
165.
go back to reference B.T. Maruszewski, A. Drzewiecki, R. Starosta, On effective Young’s modulus and Poisson’s ratio of the auxetic thermoelastic material. Comput. Methods Sci. Technol. 22, 233–237 (2016)CrossRef B.T. Maruszewski, A. Drzewiecki, R. Starosta, On effective Young’s modulus and Poisson’s ratio of the auxetic thermoelastic material. Comput. Methods Sci. Technol. 22, 233–237 (2016)CrossRef
166.
go back to reference T.A. Mary, J.S.O. Evans, T. Vogt, A.W. Sleight, Negative thermal expansion from 0.3 to 1050 K in ZrW2O8. Science 272, 90–92 (1996)CrossRef T.A. Mary, J.S.O. Evans, T. Vogt, A.W. Sleight, Negative thermal expansion from 0.3 to 1050 K in ZrW2O8. Science 272, 90–92 (1996)CrossRef
168.
go back to reference R. McLaughlin, A study of the differential scheme in composite materials. Int. J. Eng. Sci. 15, 237–244 (1977)CrossRef R. McLaughlin, A study of the differential scheme in composite materials. Int. J. Eng. Sci. 15, 237–244 (1977)CrossRef
169.
go back to reference P. Michelis, V. Spitas, Numerical and experimental analysis of a triangular auxetic core made of CFR-PEEK using the directionally reinforced integrated single-yarn (DIRIS) architecture. Compos. Sci. Technol. 70, 1064–1071 (2010)CrossRef P. Michelis, V. Spitas, Numerical and experimental analysis of a triangular auxetic core made of CFR-PEEK using the directionally reinforced integrated single-yarn (DIRIS) architecture. Compos. Sci. Technol. 70, 1064–1071 (2010)CrossRef
170.
go back to reference W. Miller, C.W. Smith, D.S. Mackenzie, K.E. Evans, Negative thermal expansion: a review. J. Mater. Sci. 44(20), 5441–5451 (2009)CrossRef W. Miller, C.W. Smith, D.S. Mackenzie, K.E. Evans, Negative thermal expansion: a review. J. Mater. Sci. 44(20), 5441–5451 (2009)CrossRef
171.
go back to reference W. Miller, P.B. Hook, C.W. Smith, X. Wanga, K.E. Evans, The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos. Sci. Technol. 69, 651–655 (2009)CrossRef W. Miller, P.B. Hook, C.W. Smith, X. Wanga, K.E. Evans, The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos. Sci. Technol. 69, 651–655 (2009)CrossRef
172.
go back to reference W. Miller, C.W. Smith, K.E. Evans, Honeycomb cores with enhanced buckling strength. Compos. Struct. 93, 1072–1077 (2011)CrossRef W. Miller, C.W. Smith, K.E. Evans, Honeycomb cores with enhanced buckling strength. Compos. Struct. 93, 1072–1077 (2011)CrossRef
173.
go back to reference F. Milstein, K. Huang, Existence of a negative Poisson’s ratio in fcc crystals. Phys. Rev. B 19, 2030–2033 (1979)CrossRef F. Milstein, K. Huang, Existence of a negative Poisson’s ratio in fcc crystals. Phys. Rev. B 19, 2030–2033 (1979)CrossRef
174.
go back to reference G.W. Milton, Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J. Mech. Phys. Solids 61(7), 1543–1560 (2013)CrossRef G.W. Milton, Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J. Mech. Phys. Solids 61(7), 1543–1560 (2013)CrossRef
175.
go back to reference H. Mitschke, V. Robins, K. Mecke, G.E. Schröder-Turk, Finite auxetic deformations of plane tessellations. Proc. R. Soc. Lond A: Math. Phys. Eng. Sci. 469(2149), 20120465 H. Mitschke, V. Robins, K. Mecke, G.E. Schröder-Turk, Finite auxetic deformations of plane tessellations. Proc. R. Soc. Lond A: Math. Phys. Eng. Sci. 469(2149), 20120465
176.
go back to reference H. Mitschke, J. Schwerdtfeger, F. Schury, M. Stingl, C. Körner, R.F. Singer et al., Finding auxetic frameworks in periodic tessellations. Adv. Mater. 23(22–23), 2669–2674 (2011)CrossRef H. Mitschke, J. Schwerdtfeger, F. Schury, M. Stingl, C. Körner, R.F. Singer et al., Finding auxetic frameworks in periodic tessellations. Adv. Mater. 23(22–23), 2669–2674 (2011)CrossRef
177.
go back to reference L. Mizzi, R. Gatt, J.N. Grima, Non-porous grooved single-material auxetics. Phys. Status Solidi B 252, 1559–1564 (2015)CrossRef L. Mizzi, R. Gatt, J.N. Grima, Non-porous grooved single-material auxetics. Phys. Status Solidi B 252, 1559–1564 (2015)CrossRef
178.
go back to reference J.W. Narojczyk, K.W. Wojciechowski, Elastic properties of degenerate f.c.c. crystal of polydisperse soft dimers at zero temperature. J. Non-Cryst. Solids 356, 2026–2032 (2010)CrossRef J.W. Narojczyk, K.W. Wojciechowski, Elastic properties of degenerate f.c.c. crystal of polydisperse soft dimers at zero temperature. J. Non-Cryst. Solids 356, 2026–2032 (2010)CrossRef
179.
go back to reference J.W. Narojczyk, A. Alderson, A.R. Imre, F. Scarpa, K.W. Wojciechowski, Negative Poisson’s ratio behavior in the planar model of asymmetric trimers at zero temperature. J. Non-Cryst. Solids 354, 4242–4248 (2008)CrossRef J.W. Narojczyk, A. Alderson, A.R. Imre, F. Scarpa, K.W. Wojciechowski, Negative Poisson’s ratio behavior in the planar model of asymmetric trimers at zero temperature. J. Non-Cryst. Solids 354, 4242–4248 (2008)CrossRef
180.
go back to reference F. Nazare, A. Alderson, Models for the prediction of Poisson’s ratio in the ‘α-cristobalite’ tetrahedral network. Phys. Status Solidi B 252, 1465–1478 (2015)CrossRef F. Nazare, A. Alderson, Models for the prediction of Poisson’s ratio in the ‘α-cristobalite’ tetrahedral network. Phys. Status Solidi B 252, 1465–1478 (2015)CrossRef
181.
go back to reference N. Novak, M. Vesenjak, Z. Ren, Auxetic cellular materials—a review. Strojniski Vestnik-J. Mech. Eng. 62(9), 485–493 (2016)CrossRef N. Novak, M. Vesenjak, Z. Ren, Auxetic cellular materials—a review. Strojniski Vestnik-J. Mech. Eng. 62(9), 485–493 (2016)CrossRef
182.
go back to reference W. Nowacki, The Linear Theory of Micropolar Elasticity (Springer, Wien, New York), pp. 1–43 W. Nowacki, The Linear Theory of Micropolar Elasticity (Springer, Wien, New York), pp. 1–43
183.
go back to reference R.J. O’Connell, B. Budiansky, Seismic velocities in dry and saturated cracked solids. J. Geophys. Res. 79, 5412–5426 (1974)CrossRef R.J. O’Connell, B. Budiansky, Seismic velocities in dry and saturated cracked solids. J. Geophys. Res. 79, 5412–5426 (1974)CrossRef
184.
go back to reference S.-T. Park, T-T. Luu, Techniques for optimizing parameters of negative stiffness. Proc. IMechE Part C: J. Mech. Eng. Sci. 221, 505–511 (2007) S.-T. Park, T-T. Luu, Techniques for optimizing parameters of negative stiffness. Proc. IMechE Part C: J. Mech. Eng. Sci. 221, 505–511 (2007)
185.
go back to reference E. Pasternak, A.V. Dyskin, Multiscale hybrid materials with negative Poisson’s ratio, in IUTAM Symposium on Scaling in Solid Mechanics, ed. by F. Borodich (Springer, 2008a), pp. 49–58 E. Pasternak, A.V. Dyskin, Multiscale hybrid materials with negative Poisson’s ratio, in IUTAM Symposium on Scaling in Solid Mechanics, ed. by F. Borodich (Springer, 2008a), pp. 49–58
186.
go back to reference E. Pasternak, A.V. Dyskin, Materials with Poisson’s ratio near −1: properties and possible realisations, in ICTAM 2008, XXII International Congress of Theoretical and Applied Mechanics, paper 11982, CD-ROM Proceedings, August 24–29, 2008, ed. by J. Denier, M.D. Finn, T. Mattner (Adelaide, 2008b), 2 p. ISBN 978-0-9805142-1-6 E. Pasternak, A.V. Dyskin, Materials with Poisson’s ratio near −1: properties and possible realisations, in ICTAM 2008, XXII International Congress of Theoretical and Applied Mechanics, paper 11982, CD-ROM Proceedings, August 24–29, 2008, ed. by J. Denier, M.D. Finn, T. Mattner (Adelaide, 2008b), 2 p. ISBN 978-0-9805142-1-6
187.
go back to reference E. Pasternak, A.V. Dyskin, Materials and structures with macroscopic negative Poisson’s ratio. Int. J. Eng. Sci. 52, 103–114 (2012)CrossRef E. Pasternak, A.V. Dyskin, Materials and structures with macroscopic negative Poisson’s ratio. Int. J. Eng. Sci. 52, 103–114 (2012)CrossRef
188.
go back to reference E. Pasternak, E., A.V. Dyskin, Instability and failure of particulate materials caused by rolling of non-spherical particles, in Proceedings of the 13th International Conference on Fracture (Beijing, China, 2013) E. Pasternak, E., A.V. Dyskin, Instability and failure of particulate materials caused by rolling of non-spherical particles, in Proceedings of the 13th International Conference on Fracture (Beijing, China, 2013)
189.
go back to reference E. Pasternak, H.-B. Mühlhaus, Cosserat continuum modelling of granulate materials, in Computational Mechanics—New Frontiers for New Millennium, ed. by S. Valliappan, N. Khalili (Elsevier, 2001), pp. 1189–1194 E. Pasternak, H.-B. Mühlhaus, Cosserat continuum modelling of granulate materials, in Computational Mechanics—New Frontiers for New Millennium, ed. by S. Valliappan, N. Khalili (Elsevier, 2001), pp. 1189–1194
190.
go back to reference E. Pasternak, H.-B. Mühlhaus, Generalised homogenisation procedures for granular materials. Eng. Math. 52, 199–229 (2005)CrossRef E. Pasternak, H.-B. Mühlhaus, Generalised homogenisation procedures for granular materials. Eng. Math. 52, 199–229 (2005)CrossRef
191.
go back to reference E. Pasternak, A.V. Dyskin, Dynamic instability in geomaterials associated with the presence of negative stiffness elements, in Bifurcation and Degradation of Geomaterials in the New Millennium, ed. by K.-T. Chau, J. Zhao (Springer, 2015), pp. 155–160 E. Pasternak, A.V. Dyskin, Dynamic instability in geomaterials associated with the presence of negative stiffness elements, in Bifurcation and Degradation of Geomaterials in the New Millennium, ed. by K.-T. Chau, J. Zhao (Springer, 2015), pp. 155–160
192.
go back to reference E. Pasternak, A.V. Dyskin, I. Shufrin, Negative Poisson’s ratio materials’ design principles and possible applications, in Proceedings of the 6th Australasian Congress on Applied Mechanics, ACAM 6, 12–15 December 2010, Perth, Paper 1266, ed. by K. Teh, I. Davies, I. Howard (2010), 10 pp E. Pasternak, A.V. Dyskin, I. Shufrin, Negative Poisson’s ratio materials’ design principles and possible applications, in Proceedings of the 6th Australasian Congress on Applied Mechanics, ACAM 6, 12–15 December 2010, Perth, Paper 1266, ed. by K. Teh, I. Davies, I. Howard (2010), 10 pp
193.
go back to reference E. Pasternak, A.V. Dyskin, G. Sevel, Chains of oscillators with negative stiffness elements. J. Sound Vib. 333(24), 6676–6687 (2014)CrossRef E. Pasternak, A.V. Dyskin, G. Sevel, Chains of oscillators with negative stiffness elements. J. Sound Vib. 333(24), 6676–6687 (2014)CrossRef
194.
go back to reference E. Pasternak, I. Shufrin, A.V. Dyskin, Thermal stresses in hybrid materials with auxetic inclusions. Composite Structures 138, 313–321 (2016)CrossRef E. Pasternak, I. Shufrin, A.V. Dyskin, Thermal stresses in hybrid materials with auxetic inclusions. Composite Structures 138, 313–321 (2016)CrossRef
195.
go back to reference E. Pasternak, A.V. Dyskin, M. Esin, Wave propagation in materials with negative Cosserat shear modulus. Int. J. Eng. Sci. 100, 152–161 (2016)CrossRef E. Pasternak, A.V. Dyskin, M. Esin, Wave propagation in materials with negative Cosserat shear modulus. Int. J. Eng. Sci. 100, 152–161 (2016)CrossRef
196.
go back to reference S. Pellegrino, Deployable structures in engineering, in Deployable structures, ed. by S. Pellegrino (Springer, Wien GmbH, 2014) S. Pellegrino, Deployable structures in engineering, in Deployable structures, ed. by S. Pellegrino (Springer, Wien GmbH, 2014)
197.
go back to reference N. Phan-Thien, B.L. Karihaloo, Materials with negative Poisson’s ratio: a qualitative microstructural model. J. Appl. Mech. Trans. ASME 61, 1001–1004 (1994)CrossRef N. Phan-Thien, B.L. Karihaloo, Materials with negative Poisson’s ratio: a qualitative microstructural model. J. Appl. Mech. Trans. ASME 61, 1001–1004 (1994)CrossRef
198.
go back to reference P.V. Pikhitsa, M. Choi, H.-J. Kim, S.-H. Ahn, Auxetic lattice of multipods. Phys. Status Solidi B 246, 2098–2101 (2009)CrossRef P.V. Pikhitsa, M. Choi, H.-J. Kim, S.-H. Ahn, Auxetic lattice of multipods. Phys. Status Solidi B 246, 2098–2101 (2009)CrossRef
199.
go back to reference D.L. Platus, Negative-stiffness-mechanism vibration isolation systems, in SPIE Conference on Current Developments in Vibration Control 98 for Optomechanical Systems, Denver, Colorado, July 1999, SPIE, vol. 3786 (1999), pp. 98–105 D.L. Platus, Negative-stiffness-mechanism vibration isolation systems, in SPIE Conference on Current Developments in Vibration Control 98 for Optomechanical Systems, Denver, Colorado, July 1999, SPIE, vol. 3786 (1999), pp. 98–105
200.
go back to reference M.E. Pontecorvo, S. Barbarino, G.J. Murray, F.S. Gandhi, Bistable arches for morphing applications. J. Intell. Mater. Syst. Struct. 24(3), 274–286 (2013)CrossRef M.E. Pontecorvo, S. Barbarino, G.J. Murray, F.S. Gandhi, Bistable arches for morphing applications. J. Intell. Mater. Syst. Struct. 24(3), 274–286 (2013)CrossRef
201.
go back to reference A.A. Pozniak, J. Smardzewski, K.W. Wojciechowski, Computer simulations of auxetic foams in two dimensions. Smart Mater. Struct. 22, 084009 (2013)CrossRef A.A. Pozniak, J. Smardzewski, K.W. Wojciechowski, Computer simulations of auxetic foams in two dimensions. Smart Mater. Struct. 22, 084009 (2013)CrossRef
202.
go back to reference Y. Prawoto, Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 58, 140–153 (2012)CrossRef Y. Prawoto, Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 58, 140–153 (2012)CrossRef
203.
go back to reference G. Puglisi, L. Truskinovsky, Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids 48, 1–27 (2000)CrossRef G. Puglisi, L. Truskinovsky, Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids 48, 1–27 (2000)CrossRef
204.
go back to reference N. Ravirala, A. Alderson, K.L. Alderson, Interlocking hexagons model for auxetic behaviour. J. Mater. Sci. 42, 7433–7445 (2007)CrossRef N. Ravirala, A. Alderson, K.L. Alderson, Interlocking hexagons model for auxetic behaviour. J. Mater. Sci. 42, 7433–7445 (2007)CrossRef
205.
go back to reference N. Ravirala, K.L. Alderson, P.J. Davies, V.R. Simkins, A. Alderson, Negative Poisson’s ratio polyester fibers. Text. Res. J. 76, 540–546 (2006)CrossRef N. Ravirala, K.L. Alderson, P.J. Davies, V.R. Simkins, A. Alderson, Negative Poisson’s ratio polyester fibers. Text. Res. J. 76, 540–546 (2006)CrossRef
206.
go back to reference B.W. Rosen, Z. Hashin, Effective thermal expansion coefficients and specific heats of composite materials. Int. J. Eng. Sci. 8, 157–173 (1970)CrossRef B.W. Rosen, Z. Hashin, Effective thermal expansion coefficients and specific heats of composite materials. Int. J. Eng. Sci. 8, 157–173 (1970)CrossRef
207.
go back to reference L. Rothenburg, A.L. Berlin, R. Bathurst, Microstructure of isotropic materials with negative Poisson’s ratio. Nature 325, 470–472 (1991) L. Rothenburg, A.L. Berlin, R. Bathurst, Microstructure of isotropic materials with negative Poisson’s ratio. Nature 325, 470–472 (1991)
209.
go back to reference M.D.G. Salamon, Stability, instability and design of pillar workings. Int. J. Rock Mech. Min. Sci. 7, 613–631 (1970)CrossRef M.D.G. Salamon, Stability, instability and design of pillar workings. Int. J. Rock Mech. Min. Sci. 7, 613–631 (1970)CrossRef
210.
go back to reference R.L. Salganik, Mechanics of bodies with many cracks. Mech. Solids 8, 135–143 (1973) R.L. Salganik, Mechanics of bodies with many cracks. Mech. Solids 8, 135–143 (1973)
211.
go back to reference A.A. Sarlis, D.T.R. Pasala, M.C. Constantinou, A.M. Reinhorn, S. Nagarajaiah, D.P. Taylor, Negative stiffness device for seismic protection of structures. J. Struct. Eng. 139(7), 1124–1133 (2013)CrossRef A.A. Sarlis, D.T.R. Pasala, M.C. Constantinou, A.M. Reinhorn, S. Nagarajaiah, D.P. Taylor, Negative stiffness device for seismic protection of structures. J. Struct. Eng. 139(7), 1124–1133 (2013)CrossRef
212.
go back to reference F. Scarpa, G. Tomlinson, Sandwich structures with negative Poisson’s ratio for deployable structures, in IUTAM-IASS Symposium on Deployable Structures: Theory and Applications (2000), pp. 335–343 F. Scarpa, G. Tomlinson, Sandwich structures with negative Poisson’s ratio for deployable structures, in IUTAM-IASS Symposium on Deployable Structures: Theory and Applications (2000), pp. 335–343
213.
go back to reference F. Scarpa, P.J. Tomlin, On the transverse shear modulus of negative Poisson’s ratio honeycomb structures. Fatigue Fract. Eng. Mater. Struct. 23(8), 717–720 (2000)CrossRef F. Scarpa, P.J. Tomlin, On the transverse shear modulus of negative Poisson’s ratio honeycomb structures. Fatigue Fract. Eng. Mater. Struct. 23(8), 717–720 (2000)CrossRef
214.
go back to reference F. Scarpa, S. Adhikari, C.Y. Wang, Nanocomposites with auxetic nanotubes. Int J. Smart Nano Mater. 1(2), 83–94 (2010)CrossRef F. Scarpa, S. Adhikari, C.Y. Wang, Nanocomposites with auxetic nanotubes. Int J. Smart Nano Mater. 1(2), 83–94 (2010)CrossRef
215.
go back to reference F. Scarpa, P. Pastorino, A. Garelli, S. Patsias, M. Ruzzene, Auxetic compliant flexible PU foams: static and dynamic properties. Phys. Status Solidi B 242(3), 681–694 (2005)CrossRef F. Scarpa, P. Pastorino, A. Garelli, S. Patsias, M. Ruzzene, Auxetic compliant flexible PU foams: static and dynamic properties. Phys. Status Solidi B 242(3), 681–694 (2005)CrossRef
216.
go back to reference F. Scarpa, J.W. Narojczyk, K.W. Wojciechowski, Unusual deformation mechanisms in carbon nanotube heterojunctions (5,5)–(10,10) under tensile loading. Phys. Status Solidi B 248(1), 82–87 (2011)CrossRef F. Scarpa, J.W. Narojczyk, K.W. Wojciechowski, Unusual deformation mechanisms in carbon nanotube heterojunctions (5,5)–(10,10) under tensile loading. Phys. Status Solidi B 248(1), 82–87 (2011)CrossRef
218.
go back to reference M.M. Shokrieh, A. Assadi, Determination of maximum negative Poisson’s ratio for laminated fiber composites. Phys. Status Solidi B 248(5), 1237–1241 (2011)CrossRef M.M. Shokrieh, A. Assadi, Determination of maximum negative Poisson’s ratio for laminated fiber composites. Phys. Status Solidi B 248(5), 1237–1241 (2011)CrossRef
219.
go back to reference I. Shufrin, E. Pasternak, A.V. Dyskin, Symmetric structures with negative Poisson’s ratio, in Australian and New Zealand Industrial and Applied Mathematics Conference, ANZIAM—2010, Queenstown, New Zealand (2010) I. Shufrin, E. Pasternak, A.V. Dyskin, Symmetric structures with negative Poisson’s ratio, in Australian and New Zealand Industrial and Applied Mathematics Conference, ANZIAM—2010, Queenstown, New Zealand (2010)
220.
go back to reference I. Shufrin, E. Pasternak, A.V. Dyskin, Planar isotropic structures with negative Poisson’s ratio. Int. J. Solids Struct. 49(17), 2239–2253 (2012)CrossRef I. Shufrin, E. Pasternak, A.V. Dyskin, Planar isotropic structures with negative Poisson’s ratio. Int. J. Solids Struct. 49(17), 2239–2253 (2012)CrossRef
221.
go back to reference I. Shufrin, E. Pasternak, A.V. Dyskin, Negative Poisson’s ratio in hollow sphere materials. Int. J. Solids Struct. 54, 192–214 (2015)CrossRef I. Shufrin, E. Pasternak, A.V. Dyskin, Negative Poisson’s ratio in hollow sphere materials. Int. J. Solids Struct. 54, 192–214 (2015)CrossRef
222.
go back to reference I. Shufrin, E. Pasternak, A.V. Dyskin, Hybrid materials with negative Poisson’s ratio inclusions. Int. J. Eng. Sci. 89, 100–120 (2015)CrossRef I. Shufrin, E. Pasternak, A.V. Dyskin, Hybrid materials with negative Poisson’s ratio inclusions. Int. J. Eng. Sci. 89, 100–120 (2015)CrossRef
223.
go back to reference I. Shufrin, E. Pasternak, A.V. Dyskin, Deformation analysis of reinforced-core auxetic assemblies by close-range photogrammetry. Phys. Status Solidi (B) Basic Res. 253(7), 1342–1358 (2016) I. Shufrin, E. Pasternak, A.V. Dyskin, Deformation analysis of reinforced-core auxetic assemblies by close-range photogrammetry. Phys. Status Solidi (B) Basic Res. 253(7), 1342–1358 (2016)
224.
go back to reference O. Sigmund, Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351–368 (1995)CrossRef O. Sigmund, Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351–368 (1995)CrossRef
225.
go back to reference V.R. Simkins, A. Alderson, P.J. Davies, K.L. Alderson, Single fibre pullout tests on auxetic polymeric fibres. J. Mater. Sci. 40, 4355–4364 (2005)CrossRef V.R. Simkins, A. Alderson, P.J. Davies, K.L. Alderson, Single fibre pullout tests on auxetic polymeric fibres. J. Mater. Sci. 40, 4355–4364 (2005)CrossRef
226.
go back to reference A. Slan, W. White, F. Scarpa, K. Boba, I. Farrow, Cellular plates with auxetic rectangular perforations. Phys. Status Solidi B 252, 1533–1539 (2015)CrossRef A. Slan, W. White, F. Scarpa, K. Boba, I. Farrow, Cellular plates with auxetic rectangular perforations. Phys. Status Solidi B 252, 1533–1539 (2015)CrossRef
227.
go back to reference C.W. Smith, J.N. Grima, K.E. Evans, A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater. 48, 4349–4356 (2000)CrossRef C.W. Smith, J.N. Grima, K.E. Evans, A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater. 48, 4349–4356 (2000)CrossRef
228.
go back to reference A. Sogame, H. Furuya, Conceptual study on cylindrical deployable space structures, in IUTAM-IASS Symposium on Deployable Structures: Theory and Applications (2000), pp 383–392 A. Sogame, H. Furuya, Conceptual study on cylindrical deployable space structures, in IUTAM-IASS Symposium on Deployable Structures: Theory and Applications (2000), pp 383–392
229.
go back to reference A. Spadoni, M. Ruzzene, Elasto-static micropolar behaviour of a chiral auxetic lattice. J. Mech. Phys. Solids. 60, 156–171 (2012) A. Spadoni, M. Ruzzene, Elasto-static micropolar behaviour of a chiral auxetic lattice. J. Mech. Phys. Solids. 60, 156–171 (2012)
230.
go back to reference P.J. Stott, R. Mitchell, K. Alderson, A. Alderson, A growing industry. Mater. World 8, 12–14 (2000) P.J. Stott, R. Mitchell, K. Alderson, A. Alderson, A growing industry. Mater. World 8, 12–14 (2000)
231.
go back to reference T. Strek, H. Jopek, Effective mechanical properties of concentric cylindrical composites with auxetic phase. Phys. Status Solidi B 249(7), 1359–1365 (2012)CrossRef T. Strek, H. Jopek, Effective mechanical properties of concentric cylindrical composites with auxetic phase. Phys. Status Solidi B 249(7), 1359–1365 (2012)CrossRef
232.
go back to reference K. Takenaka, Negative thermal expansion materials: technological key for control of thermal expansion’. Sci. Technol. Adv. Mater. 13, 013001–013012 (2012)CrossRef K. Takenaka, Negative thermal expansion materials: technological key for control of thermal expansion’. Sci. Technol. Adv. Mater. 13, 013001–013012 (2012)CrossRef
233.
go back to reference C.Y. Tang, M.J. O’Brien, G.F. Hawkins, Embedding simple machines to add novel dynamic functions to composites. JOM 57, 32 (2005)CrossRef C.Y. Tang, M.J. O’Brien, G.F. Hawkins, Embedding simple machines to add novel dynamic functions to composites. JOM 57, 32 (2005)CrossRef
234.
go back to reference M. Tatlier, L. Berhan, Modelling the negative Poisson’s ratio of compressed fused fibre networks. Phys. Status Solidi B 246, 2018–2024 (2009)CrossRef M. Tatlier, L. Berhan, Modelling the negative Poisson’s ratio of compressed fused fibre networks. Phys. Status Solidi B 246, 2018–2024 (2009)CrossRef
235.
go back to reference P.S. Theocaris, G.E. Stavroulakis, P.D. Panagiotopoulos, Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach. Arch. Appl. Mech. 67, 274–286 (1997)CrossRef P.S. Theocaris, G.E. Stavroulakis, P.D. Panagiotopoulos, Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach. Arch. Appl. Mech. 67, 274–286 (1997)CrossRef
236.
go back to reference J.M.T. Thompson, G.W. Hunt, A General Theory of Elastic Stability (Wiley, London, 1973) J.M.T. Thompson, G.W. Hunt, A General Theory of Elastic Stability (Wiley, London, 1973)
237.
go back to reference K. Toru, M. Yoshitaka, Nanoscale mechanics of carbon nanotube evaluated by nanoprobe manipulation in transmission electron microscope. Japanese Journal of Applied (2006) K. Toru, M. Yoshitaka, Nanoscale mechanics of carbon nanotube evaluated by nanoprobe manipulation in transmission electron microscope. Japanese Journal of Applied (2006)
238.
go back to reference K.V. Tretiakov, Negative Poisson’s ratio of two-dimensional hard cyclic tetramers. J. Non-Cryst. Solids 355, 1435–1438 (2009)CrossRef K.V. Tretiakov, Negative Poisson’s ratio of two-dimensional hard cyclic tetramers. J. Non-Cryst. Solids 355, 1435–1438 (2009)CrossRef
239.
go back to reference K.V. Tretiakov, K.W. Wojciechowski, Poisson’s ratio of simple planar ‘isotropic’ solids in two dimensions. Phys. Status Solidi B 244(3), 1038–1046 (2007)CrossRef K.V. Tretiakov, K.W. Wojciechowski, Poisson’s ratio of simple planar ‘isotropic’ solids in two dimensions. Phys. Status Solidi B 244(3), 1038–1046 (2007)CrossRef
240.
go back to reference K.V. Tretiakov, K.W. Wojciechowski, Elastic properties of soft sphere crystal from Monte Carlo simulations. J. Phys. Chem. B 112, 1699–1705 (2009)CrossRef K.V. Tretiakov, K.W. Wojciechowski, Elastic properties of soft sphere crystal from Monte Carlo simulations. J. Phys. Chem. B 112, 1699–1705 (2009)CrossRef
241.
go back to reference K.V. Tretiakov, K.W. Wojciechowski, Elastic properties of fcc crystals of polydisperse soft spheres. Phys. Status Solidi B, 1–10 (2013) K.V. Tretiakov, K.W. Wojciechowski, Elastic properties of fcc crystals of polydisperse soft spheres. Phys. Status Solidi B, 1–10 (2013)
242.
go back to reference A.S. Vavakin, R.L. Salganik, Effective characteristics of nonhomogeneous media with isolated nonhomogeneities. Mech. Solids 10(3), 58–66 (1975) A.S. Vavakin, R.L. Salganik, Effective characteristics of nonhomogeneous media with isolated nonhomogeneities. Mech. Solids 10(3), 58–66 (1975)
243.
go back to reference A.S. Vavakin, R.L. Salganik, Effective elastic characteristics of bodies with isolated cracks, cavities, and rigid nonhomogeneities. Mech. Solids 13, 87–97 (1978) A.S. Vavakin, R.L. Salganik, Effective elastic characteristics of bodies with isolated cracks, cavities, and rigid nonhomogeneities. Mech. Solids 13, 87–97 (1978)
244.
go back to reference P. Verma, M.L. Shofner, A. Lin, K.B. Wagner, A.C. Griffin, Inducing out-of-plane auxetic behaviour in needle-punched nonwovens. Phys. Status Solidi B 252, 1455–1464 (2015)CrossRef P. Verma, M.L. Shofner, A. Lin, K.B. Wagner, A.C. Griffin, Inducing out-of-plane auxetic behaviour in needle-punched nonwovens. Phys. Status Solidi B 252, 1455–1464 (2015)CrossRef
245.
go back to reference Y.-C. Wang, Influences of negative stiffness on a two-dimensional hexagonal lattice cell. Philos. Mag. 87(24), 3671–3688 (2007)CrossRef Y.-C. Wang, Influences of negative stiffness on a two-dimensional hexagonal lattice cell. Philos. Mag. 87(24), 3671–3688 (2007)CrossRef
246.
go back to reference M. Wang, N. Pan, Predictions of effective physical properties of complex multiphase materials. Mat. Sci. Eng. R 63, 1–30 (2008)CrossRef M. Wang, N. Pan, Predictions of effective physical properties of complex multiphase materials. Mat. Sci. Eng. R 63, 1–30 (2008)CrossRef
247.
go back to reference Y.C. Wang, R.S. Lakes, Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase. J. Appl. Phys. 90, 6458–6465 (2001)CrossRef Y.C. Wang, R.S. Lakes, Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase. J. Appl. Phys. 90, 6458–6465 (2001)CrossRef
248.
go back to reference Y.C. Wang, R.S. Lakes, Extreme stiffness systems due to negative stiffness elements. Am. J. Phys. 72, 40–50 (2004)CrossRef Y.C. Wang, R.S. Lakes, Extreme stiffness systems due to negative stiffness elements. Am. J. Phys. 72, 40–50 (2004)CrossRef
249.
go back to reference Y.-C. Wang, R.S. Lakes, Stable extremely-high-damping discrete viscoelastic systems due to negative stiffness elements. Appl. Phys. Lett. 84(22), 4451–4453 (2004)CrossRef Y.-C. Wang, R.S. Lakes, Stable extremely-high-damping discrete viscoelastic systems due to negative stiffness elements. Appl. Phys. Lett. 84(22), 4451–4453 (2004)CrossRef
250.
go back to reference Y.-C. Wang, R.S. Lakes, Composites with inclusions of negative bulk modulus: extreme damping and negative Poisson’s ratio. J. Compos. Mater. 39(18), 1645–1657 (2005)CrossRef Y.-C. Wang, R.S. Lakes, Composites with inclusions of negative bulk modulus: extreme damping and negative Poisson’s ratio. J. Compos. Mater. 39(18), 1645–1657 (2005)CrossRef
251.
go back to reference Y.-C. Wang, C.-C. Ko, K.-W. Chang, Anomalous effective viscoelastic, thermoelastic, dielectric and piezoelectric properties of negative-stiffness composites and their stability. Phys. Status Solidi B 252, 1640–1655 (2015)CrossRef Y.-C. Wang, C.-C. Ko, K.-W. Chang, Anomalous effective viscoelastic, thermoelastic, dielectric and piezoelectric properties of negative-stiffness composites and their stability. Phys. Status Solidi B 252, 1640–1655 (2015)CrossRef
252.
go back to reference Y.-C. Wang, M. Ludwigson, R.S. Lakes, Deformation of extreme viscoelastic metals and composites. Mater. Sci. Eng. A 370, 41–49 (2004)CrossRef Y.-C. Wang, M. Ludwigson, R.S. Lakes, Deformation of extreme viscoelastic metals and composites. Mater. Sci. Eng. A 370, 41–49 (2004)CrossRef
253.
go back to reference Y.C. Wang, J.G. Swadener, R.S. Lakes, Two-dimensional viscoelastic discrete triangular system with negative-stiffness components. Philos. Mag. Lett. 86(2), 99–112 (2006)CrossRef Y.C. Wang, J.G. Swadener, R.S. Lakes, Two-dimensional viscoelastic discrete triangular system with negative-stiffness components. Philos. Mag. Lett. 86(2), 99–112 (2006)CrossRef
254.
go back to reference Y.-C. Wang, J.G. Swadener, R.S. Lakes, Anomalies in stiffness and damping of a 2D discrete viscoelastic system due to negative stiffness components. Thin Solid Films 515(6), 3171–3178 (2007)CrossRef Y.-C. Wang, J.G. Swadener, R.S. Lakes, Anomalies in stiffness and damping of a 2D discrete viscoelastic system due to negative stiffness components. Thin Solid Films 515(6), 3171–3178 (2007)CrossRef
255.
go back to reference Z.G. Wang, C.K. Kim, P. Martin, A.D. Mehta, A.J. Hudspeth, Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc. Natl. Acad. Sci. U.S.A 97, 12026–12031 (2000)CrossRef Z.G. Wang, C.K. Kim, P. Martin, A.D. Mehta, A.J. Hudspeth, Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc. Natl. Acad. Sci. U.S.A 97, 12026–12031 (2000)CrossRef
257.
go back to reference G. Wei, S.F. Edwards, Poisson ratio in composites of auxetics. Phys. Rev. E 58(5), 6173–6181 (1998)CrossRef G. Wei, S.F. Edwards, Poisson ratio in composites of auxetics. Phys. Rev. E 58(5), 6173–6181 (1998)CrossRef
258.
go back to reference G. Wei, S.F. Edwards, Effective elastic properties of composites of ellipsoids (I). Nearly spherical inclusions. Phys. A 264, 388–403 (1999)CrossRef G. Wei, S.F. Edwards, Effective elastic properties of composites of ellipsoids (I). Nearly spherical inclusions. Phys. A 264, 388–403 (1999)CrossRef
259.
go back to reference G. Wei, S.F. Edwards, Effective elastic properties of composites of ellipsoids (II). Nearly disk and needle-like inclusions. Phys. A 264, 404–423 (1999)CrossRef G. Wei, S.F. Edwards, Effective elastic properties of composites of ellipsoids (II). Nearly disk and needle-like inclusions. Phys. A 264, 404–423 (1999)CrossRef
260.
go back to reference J.J. Williams, C.W. Smith, K.E. Evans, Z.A.D. Lethbridge, R.I. Walton, An analytical model for producing negative Poisson’s ratios and its application in explaining off-axis elastic properties of the NAT-type zeolites. Acta Mater. 55, 5697–5707 (2007)CrossRef J.J. Williams, C.W. Smith, K.E. Evans, Z.A.D. Lethbridge, R.I. Walton, An analytical model for producing negative Poisson’s ratios and its application in explaining off-axis elastic properties of the NAT-type zeolites. Acta Mater. 55, 5697–5707 (2007)CrossRef
261.
go back to reference K. Wohlhart, Double-chain mechanisms, in IUTAM-IASS Symposium on Deployable Structures: Theory and Applications (2000), pp. 457–466 K. Wohlhart, Double-chain mechanisms, in IUTAM-IASS Symposium on Deployable Structures: Theory and Applications (2000), pp. 457–466
262.
go back to reference K.W. Wojciechowski, Two-dimensional isotropic system with a negative Poisson’s ratio. Phys. Lett. A 137, 60–64 (1989)CrossRef K.W. Wojciechowski, Two-dimensional isotropic system with a negative Poisson’s ratio. Phys. Lett. A 137, 60–64 (1989)CrossRef
263.
go back to reference K.W. Wojciechowski, Non-chiral, molecular model of negative Poisson ratio in two dimensions. J. Phys. A: Math. Gen. 36, 11765–11778 (2003)CrossRef K.W. Wojciechowski, Non-chiral, molecular model of negative Poisson ratio in two dimensions. J. Phys. A: Math. Gen. 36, 11765–11778 (2003)CrossRef
264.
go back to reference K.W. Wojciechowski, A.C. Brańka, Elastic moduli of a perfect hard disc crystal in two dimensions. Phys. Lett. A 134, 314–318 (1988)CrossRef K.W. Wojciechowski, A.C. Brańka, Elastic moduli of a perfect hard disc crystal in two dimensions. Phys. Lett. A 134, 314–318 (1988)CrossRef
265.
go back to reference K.W. Wojciechowski, A.C. Brańka, Negative Poisson’s ratio in a two-dimensional “isotropic” solid. Phys. Rev. A 40, 7222–7225 (1989)CrossRef K.W. Wojciechowski, A.C. Brańka, Negative Poisson’s ratio in a two-dimensional “isotropic” solid. Phys. Rev. A 40, 7222–7225 (1989)CrossRef
266.
go back to reference K.W. Wojciechowski, K.V. Tretiakov, M. Kowalik, Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions. Phys. Rev. E 67, 036121 (2003)CrossRef K.W. Wojciechowski, K.V. Tretiakov, M. Kowalik, Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions. Phys. Rev. E 67, 036121 (2003)CrossRef
267.
go back to reference J.R. Wright, M.R. Sloan, K.E. Evans, Tensile properties of helical auxetic structures: a numerical study. J. Appl. Phys. 108, 044905 (2010)CrossRef J.R. Wright, M.R. Sloan, K.E. Evans, Tensile properties of helical auxetic structures: a numerical study. J. Appl. Phys. 108, 044905 (2010)CrossRef
268.
go back to reference W. Yang, Z.-M. Li, W. Shi, B.-H. Xie, M.-B. Yang, Review on auxetic materials. J. Mater. Sci. 39(10), 3269–3279 (2004)CrossRef W. Yang, Z.-M. Li, W. Shi, B.-H. Xie, M.-B. Yang, Review on auxetic materials. J. Mater. Sci. 39(10), 3269–3279 (2004)CrossRef
269.
go back to reference Z. Yang, H.M. Dai, N.H. Chan, G.C. Ma, P. Sheng, Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 041906 (2010)CrossRef Z. Yang, H.M. Dai, N.H. Chan, G.C. Ma, P. Sheng, Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 041906 (2010)CrossRef
270.
go back to reference Y.T. Yao, A. Alderson, K.L. Alderson, Can nanotubes display auxetic behaviour? Phys. Status Solidi B 245, 2373–2382 (2008)CrossRef Y.T. Yao, A. Alderson, K.L. Alderson, Can nanotubes display auxetic behaviour? Phys. Status Solidi B 245, 2373–2382 (2008)CrossRef
271.
go back to reference H.W. Yap, R.S. Lakes, R.W. Carpick, Mechanical instabilities of individual multiwalled carbon nanotubes under cyclic axial compression. Nano Lett. 7(5), 1149–1154 (2007)CrossRef H.W. Yap, R.S. Lakes, R.W. Carpick, Mechanical instabilities of individual multiwalled carbon nanotubes under cyclic axial compression. Nano Lett. 7(5), 1149–1154 (2007)CrossRef
272.
go back to reference H.W. Yap, R.S. Lakes, R.W. Carpick, Negative stiffness and enhanced damping of individual multiwalled carbon nanotubes. Phys. Rev. B 77, 045423 (2008)CrossRef H.W. Yap, R.S. Lakes, R.W. Carpick, Negative stiffness and enhanced damping of individual multiwalled carbon nanotubes. Phys. Rev. B 77, 045423 (2008)CrossRef
273.
go back to reference A. Yeganeh-Haeri, D.J. Weidner, J.B. Parise, Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson’s ratio. Science 257, 650–652 (1992)CrossRef A. Yeganeh-Haeri, D.J. Weidner, J.B. Parise, Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson’s ratio. Science 257, 650–652 (1992)CrossRef
274.
go back to reference V.Y. Zaitsev, A.V. Radostin, E. Pasternak, A.V. Dyskin, Extracting real-crack properties from nonlinear elastic behavior of rocks: abundance of cracks with dominating normal compliance and rocks with negative Poisson’s ratio. Nonlinear Process. Geophys. (NPG) 24, 543–551 (2017)CrossRef V.Y. Zaitsev, A.V. Radostin, E. Pasternak, A.V. Dyskin, Extracting real-crack properties from nonlinear elastic behavior of rocks: abundance of cracks with dominating normal compliance and rocks with negative Poisson’s ratio. Nonlinear Process. Geophys. (NPG) 24, 543–551 (2017)CrossRef
275.
go back to reference V.Y. Zaitsev, A.V. Radostin, E. Pasternak, A.V. Dyskin, Extracting properties of crack-like defects from pressure dependences of elastic-wave velocities using an effective-medium model with decoupled shear and normal compliances of cracks. Int. J. Rock Mech. Min. Sci. 97, 122–133 (2017)CrossRef V.Y. Zaitsev, A.V. Radostin, E. Pasternak, A.V. Dyskin, Extracting properties of crack-like defects from pressure dependences of elastic-wave velocities using an effective-medium model with decoupled shear and normal compliances of cracks. Int. J. Rock Mech. Min. Sci. 97, 122–133 (2017)CrossRef
276.
go back to reference R. Zhang, H.-L. Yeh, H.-Y. Yeh, A discussion of negative Poisson’s ratio design for composites. J. Reinf. Plast. Compos. 18, 1546–1556 (1999) R. Zhang, H.-L. Yeh, H.-Y. Yeh, A discussion of negative Poisson’s ratio design for composites. J. Reinf. Plast. Compos. 18, 1546–1556 (1999)
Metadata
Title
Architectured Materials with Inclusions Having Negative Poisson’s Ratio or Negative Stiffness
Authors
E. Pasternak
A. V. Dyskin
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-11942-3_3

Premium Partners