Skip to main content
Top
Published in: Machine Vision and Applications 6/2020

01-09-2020 | Original Paper

ARF-Crack: rotation invariant deep fully convolutional network for pixel-level crack detection

Authors: Fu-Chen Chen, Mohammad R. Jahanshahi

Published in: Machine Vision and Applications | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Autonomous detection of structural defect from images is a promising, but also challenging task to replace manual inspection. With the development of deep learning algorithms, several studies have adopted deep convolutional neural networks (CNN) or fully convolutional networks (FCN) to detect cracks in pixel-level. However, a fundamental property of cracks, that they are rotation invariant, has never been exploited. Although the rotation-invariant property can be implicitly learned by data augmentation, the network needs more parameters to learn features of different orientations and thus tend to overfit the training data. In this study, a rotation-invariant FCN called ARF-Crack is proposed that utilizes the rotation-invariant property of cracks explicitly. The architecture of a state-of-the-art FCN called DeepCrack for pixel-level crack detection is adopted and revised where active rotating filters (ARFs) are used to encode the rotation-invariant property into the network. The proposed ARF-Crack is evaluated on several benchmark datasets including concrete cracks, pavement cracks and corrosion images. The experimental results show that the proposed ARF-Crack requires less number of network parameters and achieves the highest average precision values for all the benchmark datasets compared to other approaches. The proposed ARF-Crack has the potential of detecting other rotation-invariant defects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder–decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRef Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder–decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRef
3.
go back to reference Bang, S., Park, S., Kim, H., Kim, H.: Encoder–decoder network for pixel-level road crack detection in black-box images. Comput. Aided Civ. Infrastruct. Eng. 34(8), 713–727 (2019)CrossRef Bang, S., Park, S., Kim, H., Kim, H.: Encoder–decoder network for pixel-level road crack detection in black-box images. Comput. Aided Civ. Infrastruct. Eng. 34(8), 713–727 (2019)CrossRef
6.
go back to reference Chen, F.C., Jahanshahi, M.R.: NB-CNN: deep learning-based crack detection using convolutional neural network and naïve bayes data fusion. IEEE Trans. Ind. Electron. 65(5), 4392–4400 (2018)CrossRef Chen, F.C., Jahanshahi, M.R.: NB-CNN: deep learning-based crack detection using convolutional neural network and naïve bayes data fusion. IEEE Trans. Ind. Electron. 65(5), 4392–4400 (2018)CrossRef
7.
8.
go back to reference Cheng, G., Zhou, P., Han, J.: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 54(12), 7405–7415 (2016)CrossRef Cheng, G., Zhou, P., Han, J.: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 54(12), 7405–7415 (2016)CrossRef
11.
go back to reference Dieleman, S., De Fauw, J., Kavukcuoglu, K.: Exploiting cyclic symmetry in convolutional neural networks. arXiv preprint arXiv:1602.02660 (2016) Dieleman, S., De Fauw, J., Kavukcuoglu, K.: Exploiting cyclic symmetry in convolutional neural networks. arXiv preprint arXiv:​1602.​02660 (2016)
12.
go back to reference Dieleman, S., Willett, K.W., Dambre, J.: Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Notices R. astron. soc. 450(2), 1441–1459 (2015)CrossRef Dieleman, S., Willett, K.W., Dambre, J.: Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Notices R. astron. soc. 450(2), 1441–1459 (2015)CrossRef
13.
go back to reference Eisenbach, M., Stricker, R., Seichter, D., Amende, K., Debes, K., Sesselmann, M., Ebersbach, D., Stoeckert, U., Gross, H.M.: How to get pavement distress detection ready for deep learning? A systematic approach. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2039–2047. IEEE (2017) Eisenbach, M., Stricker, R., Seichter, D., Amende, K., Debes, K., Sesselmann, M., Ebersbach, D., Stoeckert, U., Gross, H.M.: How to get pavement distress detection ready for deep learning? A systematic approach. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2039–2047. IEEE (2017)
14.
go back to reference Fan, Z., Wu, Y., Lu, J., Li, W.: Automatic Pavement Crack Detection Based on Structured Prediction with the Convolutional Neural Network. arXiv preprint arXiv:1802.02208 (2018) Fan, Z., Wu, Y., Lu, J., Li, W.: Automatic Pavement Crack Detection Based on Structured Prediction with the Convolutional Neural Network. arXiv preprint arXiv:​1802.​02208 (2018)
16.
go back to reference Geusebroek, J.M., Smeulders, A.W., Geerts, H.: A minimum cost approach for segmenting networks of lines. Int. J. Comput. Vis. 43(2), 99–111 (2001)CrossRef Geusebroek, J.M., Smeulders, A.W., Geerts, H.: A minimum cost approach for segmenting networks of lines. Int. J. Comput. Vis. 43(2), 99–111 (2001)CrossRef
17.
go back to reference Jahanshahi, M.R., Chen, F.C., Joffe, C., Masri, S.F.: Vision-based quantitative assessment of microcracks on reactor internal components of nuclear power plants. Struct. Infrastruct. Eng. 13(8), 1013–1026 (2017)CrossRef Jahanshahi, M.R., Chen, F.C., Joffe, C., Masri, S.F.: Vision-based quantitative assessment of microcracks on reactor internal components of nuclear power plants. Struct. Infrastruct. Eng. 13(8), 1013–1026 (2017)CrossRef
20.
go back to reference LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
21.
go back to reference Liu, Y., Cheng, M.M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3000–3009 (2017) Liu, Y., Cheng, M.M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3000–3009 (2017)
22.
go back to reference Liu, Y., Yao, J., Lu, X., Xie, R., Li, L.: DeepCrack: a deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 338, 139–153 (2019)CrossRef Liu, Y., Yao, J., Lu, X., Xie, R., Li, L.: DeepCrack: a deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 338, 139–153 (2019)CrossRef
23.
go back to reference Liu, Z., Cao, Y., Wang, Y., Wang, W.: Computer vision-based concrete crack detection using U-net fully convolutional networks. Autom. Constr. 104, 129–139 (2019)CrossRef Liu, Z., Cao, Y., Wang, Y., Wang, W.: Computer vision-based concrete crack detection using U-net fully convolutional networks. Autom. Constr. 104, 129–139 (2019)CrossRef
24.
go back to reference Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
25.
go back to reference Marcos, D., Volpi, M., Tuia, D.: Learning rotation invariant convolutional filters for texture classification. In: International Conference on Pattern Recognition (ICPR), pp. 2012–2017 (2016) Marcos, D., Volpi, M., Tuia, D.: Learning rotation invariant convolutional filters for texture classification. In: International Conference on Pattern Recognition (ICPR), pp. 2012–2017 (2016)
26.
go back to reference Nair, V., Hinton, G.E.: Rectified Linear Units Improve Restricted Boltzmann Machines. In: Proceedings 27th International Conference on Machine Learning (ICML’10) pp. 807–814 (2010) Nair, V., Hinton, G.E.: Rectified Linear Units Improve Restricted Boltzmann Machines. In: Proceedings 27th International Conference on Machine Learning (ICML’10) pp. 807–814 (2010)
27.
go back to reference Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528 (2015) Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528 (2015)
28.
go back to reference Qu, Z., Bai, L., An, S.Q., Ju, F.R., Liu, L.: Lining seam elimination algorithm and surface crack detection in concrete tunnel lining. J. Electron. Imaging 25(6), 063004 (2016)CrossRef Qu, Z., Bai, L., An, S.Q., Ju, F.R., Liu, L.: Lining seam elimination algorithm and surface crack detection in concrete tunnel lining. J. Electron. Imaging 25(6), 063004 (2016)CrossRef
29.
go back to reference Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z.: Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 17(12), 3434–3445 (2016)CrossRef Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z.: Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 17(12), 3434–3445 (2016)CrossRef
30.
go back to reference Wang, K.C., Zhang, A., Li, J.Q., Fei, Y., Chen, C., Li, B.: Deep learning for asphalt pavement cracking recognition using convolutional neural network. Airfield Highw. Pavements 2017, 166–177 (2017) Wang, K.C., Zhang, A., Li, J.Q., Fei, Y., Chen, C., Li, B.: Deep learning for asphalt pavement cracking recognition using convolutional neural network. Airfield Highw. Pavements 2017, 166–177 (2017)
31.
go back to reference Wang, X., Hu, Z.: Grid-based pavement crack analysis using deep learning. In: International Conference on Transportation Information and Safety (ICTIS), pp. 917–924 (2017) Wang, X., Hu, Z.: Grid-based pavement crack analysis using deep learning. In: International Conference on Transportation Information and Safety (ICTIS), pp. 917–924 (2017)
32.
go back to reference Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)
34.
go back to reference Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21(4), 1525–1535 (2019) CrossRef Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21(4), 1525–1535 (2019) CrossRef
36.
go back to reference Zhang, A., Wang, K.C., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q., Chen, C.: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Comp. Aided Civ. Infrastruct. Eng. 32(10), 805–819 (2017)CrossRef Zhang, A., Wang, K.C., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q., Chen, C.: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Comp. Aided Civ. Infrastruct. Eng. 32(10), 805–819 (2017)CrossRef
37.
go back to reference Zhang, K., Cheng, H., Zhang, B.: Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning. J. Comput. Civ. Eng. 32(2), 04018001 (2018)MathSciNetCrossRef Zhang, K., Cheng, H., Zhang, B.: Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning. J. Comput. Civ. Eng. 32(2), 04018001 (2018)MathSciNetCrossRef
38.
go back to reference Zhang, L., Yang, F., Zhang, Y.D., Zhu, Y.J.: Road crack detection using deep convolutional neural network. In: Proceedings 2016 IEEE International Conference on Image Processing (ICIP’16), pp. 3708–3712 (2016). 10.1109/ICIP.2016.7533052 Zhang, L., Yang, F., Zhang, Y.D., Zhu, Y.J.: Road crack detection using deep convolutional neural network. In: Proceedings 2016 IEEE International Conference on Image Processing (ICIP’16), pp. 3708–3712 (2016). 10.1109/ICIP.2016.7533052
39.
go back to reference Zhou, Y., Ye, Q., Qiu, Q., Jiao, J.: Oriented response networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 519–528 (2017) Zhou, Y., Ye, Q., Qiu, Q., Jiao, J.: Oriented response networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 519–528 (2017)
40.
go back to reference Zou, Q., Zhang, Z., Li, Q., Qi, X., Wang, Q., Wang, S.: DeepCrack: Learning hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 28(3), 1498–1512 (2019)MathSciNetCrossRef Zou, Q., Zhang, Z., Li, Q., Qi, X., Wang, Q., Wang, S.: DeepCrack: Learning hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 28(3), 1498–1512 (2019)MathSciNetCrossRef
Metadata
Title
ARF-Crack: rotation invariant deep fully convolutional network for pixel-level crack detection
Authors
Fu-Chen Chen
Mohammad R. Jahanshahi
Publication date
01-09-2020
Publisher
Springer Berlin Heidelberg
Published in
Machine Vision and Applications / Issue 6/2020
Print ISSN: 0932-8092
Electronic ISSN: 1432-1769
DOI
https://doi.org/10.1007/s00138-020-01098-x

Other articles of this Issue 6/2020

Machine Vision and Applications 6/2020 Go to the issue

Premium Partner