Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 1-2/2020

26-11-2019 | ORIGINAL ARTICLE

ARIMA-GMDH: a low-order integrated approach for predicting and optimizing the additive manufacturing process parameters

Authors: Osama Aljarrah, Jun Li, Wenzhen Huang, Alfa Heryudono, Jing Bi

Published in: The International Journal of Advanced Manufacturing Technology | Issue 1-2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes a novel data-driven approach for predicting and optimizing the additive manufacturing process parameters. The integrated scheme consists of three popular algorithms: (1) group method for data handling (GMDH) as the engine of neural networks, (2) autoregressive integrated moving average (ARIMA) for characterizing spatial collinearity of the multiple response, and (3) indirect optimization on the basis of self-organization (IOSO) to adopt the emerged correlated multi-response optimization problem. As a numerical case study, a computer-generated fused deposition modeling data tested the introduced algorithms. The finite element (FE) simulation model consists the multi-layer residual stresses as targets, in respect of printing speeds as process parameters. The residual stresses predicted by the low-order integrated ARIMA-GMDH variants correlate well with the FE simulations. This approach provides a viable data-driven alternative for computationally based rapid prototyping and additive manufacturing processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference ISO/ASTM 52900:2015 (ASTM F2792), Additive manufacturing, General principles, Terminology, ISO/ASTM (2015) ISO/ASTM 52900:2015 (ASTM F2792), Additive manufacturing, General principles, Terminology, ISO/ASTM (2015)
2.
go back to reference Chan SL, Lu Y, Wang Y (2017) Data-driven cost estimation for additive manufacturing in cybermanufacturing. J Manuf Syst 46:115–126CrossRef Chan SL, Lu Y, Wang Y (2017) Data-driven cost estimation for additive manufacturing in cybermanufacturing. J Manuf Syst 46:115–126CrossRef
3.
go back to reference Singha S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: a review. J Manuf Process 25:185– 200CrossRef Singha S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: a review. J Manuf Process 25:185– 200CrossRef
4.
go back to reference Masood SH (2014) Advances in fused deposition modeling. Reference Module in Materials Science and Materials Engineering 10:69–91 Masood SH (2014) Advances in fused deposition modeling. Reference Module in Materials Science and Materials Engineering 10:69–91
5.
go back to reference Bártolo, Jorge P (2011) Stereolithography, materials, processes and applications. Springer Bártolo, Jorge P (2011) Stereolithography, materials, processes and applications. Springer
6.
go back to reference Deckard CR (1986) Method and apparatus for producing parts by selective sintering. USA Patent US4863538A, 17 10 Deckard CR (1986) Method and apparatus for producing parts by selective sintering. USA Patent US4863538A, 17 10
7.
go back to reference Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164CrossRef Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164CrossRef
8.
go back to reference Marwah O, Sharif S, Ibrahim M, Mohamad E, Idris MH (2016) Direct rapid prototyping evaluation on multijet and fused deposition modeling patterns for investment casting. J Mater Des Appl 230:5 Marwah O, Sharif S, Ibrahim M, Mohamad E, Idris MH (2016) Direct rapid prototyping evaluation on multijet and fused deposition modeling patterns for investment casting. J Mater Des Appl 230:5
10.
go back to reference Heyes AL, Smith DA (2004) Rapid technique for wind-tunnel model manufacture. J Aircr 41(2):413–415CrossRef Heyes AL, Smith DA (2004) Rapid technique for wind-tunnel model manufacture. J Aircr 41(2):413–415CrossRef
11.
go back to reference Giunta AA, Eldred MS, Wojtkiewicz SF (2003) Overview of modern design of experiments methods for computational. In: AIAA aerospace sciences meeting and exhibit Giunta AA, Eldred MS, Wojtkiewicz SF (2003) Overview of modern design of experiments methods for computational. In: AIAA aerospace sciences meeting and exhibit
12.
go back to reference Wiedemann HJB (1999) Strategies and applications for rapid product and process development in Daimler-Benz AG computers in industries. Comput Ind 39(1):11–25CrossRef Wiedemann HJB (1999) Strategies and applications for rapid product and process development in Daimler-Benz AG computers in industries. Comput Ind 39(1):11–25CrossRef
13.
go back to reference Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Therapeut 39 (11):704–711 Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Therapeut 39 (11):704–711
14.
go back to reference Daniel YW, Panda B, Paul SC, Mohamed NAN, Tan M, Leong KF (2017) 3D printing trends in building and construction industry: a review. Virt Phys Prototyp 12(3):261–276CrossRef Daniel YW, Panda B, Paul SC, Mohamed NAN, Tan M, Leong KF (2017) 3D printing trends in building and construction industry: a review. Virt Phys Prototyp 12(3):261–276CrossRef
15.
go back to reference Jian-Yuan L, An J, Chua KC (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133CrossRef Jian-Yuan L, An J, Chua KC (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133CrossRef
16.
go back to reference Thomas D (2016) Costs, benefits, and adoption of additive manufacturing: a supply chain perspective. Int J Adv Manuf Technol 85(5-8):1857–1876CrossRef Thomas D (2016) Costs, benefits, and adoption of additive manufacturing: a supply chain perspective. Int J Adv Manuf Technol 85(5-8):1857–1876CrossRef
17.
go back to reference Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372CrossRef Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372CrossRef
18.
go back to reference Wu H, Chen TT (2018) Quality control issues in 3D-printing manufacturing: a review. Rapid Prototyp J 24:3 Wu H, Chen TT (2018) Quality control issues in 3D-printing manufacturing: a review. Rapid Prototyp J 24:3
19.
go back to reference Bellini A, Geri S (2003) Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp J 9(4):252–264CrossRef Bellini A, Geri S (2003) Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp J 9(4):252–264CrossRef
20.
go back to reference Mohamed OA, Masood SH, Bhowmik J, Nikzad M, Azadmanjiri J (2016) Effect of process parameters on dynamic mechanical performance of FDM PC/ABS printed parts through design of experiment. J Mater Eng Perform 25(7):2922–2935CrossRef Mohamed OA, Masood SH, Bhowmik J, Nikzad M, Azadmanjiri J (2016) Effect of process parameters on dynamic mechanical performance of FDM PC/ABS printed parts through design of experiment. J Mater Eng Perform 25(7):2922–2935CrossRef
21.
go back to reference Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110(1):442–458CrossRef Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110(1):442–458CrossRef
22.
go back to reference Thomas-Seale L, Kirkman-Brown J, Attallah M, Espino MD, Shepherd DE (2017) The barriers to the progression of additive manufacture: perspectives from UK industry. Int J Prod Econ 198:104–118CrossRef Thomas-Seale L, Kirkman-Brown J, Attallah M, Espino MD, Shepherd DE (2017) The barriers to the progression of additive manufacture: perspectives from UK industry. Int J Prod Econ 198:104–118CrossRef
23.
go back to reference Guessasma S, Zhang W, Zhu J, Belhabib S, Nouri H (2015) Challenges of additive manufacturing technologies from an optimisation perspective. Int J Simul Multidiscip Des Optim 6:A9CrossRef Guessasma S, Zhang W, Zhu J, Belhabib S, Nouri H (2015) Challenges of additive manufacturing technologies from an optimisation perspective. Int J Simul Multidiscip Des Optim 6:A9CrossRef
24.
go back to reference Bayraktar O, Uzun G, akrolu R, Guldas A (2016) Experimental study on the 3D-printed plastic parts and predicting the mechanical properties using artificial neural networks: mechanical properties of 3D-printed plastic parts. Polym Adv Technol 28(8):1044– 1051CrossRef Bayraktar O, Uzun G, akrolu R, Guldas A (2016) Experimental study on the 3D-printed plastic parts and predicting the mechanical properties using artificial neural networks: mechanical properties of 3D-printed plastic parts. Polym Adv Technol 28(8):1044– 1051CrossRef
25.
go back to reference Rayegani F, Onwubolu G (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73(1–4):509–519CrossRef Rayegani F, Onwubolu G (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73(1–4):509–519CrossRef
26.
go back to reference Sood AK, Ohdar RK, Mahapatra SS (2010) A hybrid ANN-BFOA approach for optimization of FDM process parameters. In: A hybrid ANN-BFOA approach for optimization of FDM process parameters, SEMCCO Chennai, IndiaCrossRef Sood AK, Ohdar RK, Mahapatra SS (2010) A hybrid ANN-BFOA approach for optimization of FDM process parameters. In: A hybrid ANN-BFOA approach for optimization of FDM process parameters, SEMCCO Chennai, IndiaCrossRef
27.
go back to reference Panda KS, Padhee S, Sood KA, Mahapatra SS (2009) Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique. Intell Inf Manag 2(1):89–97 Panda KS, Padhee S, Sood KA, Mahapatra SS (2009) Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique. Intell Inf Manag 2(1):89–97
28.
go back to reference Zhang W, Wu AS, Sun J, Quan J, Gu B, Sun B, Cotton C, Heider D, Chou TW (2017) Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens. Compos Sci Technol 150:102–110CrossRef Zhang W, Wu AS, Sun J, Quan J, Gu B, Sun B, Cotton C, Heider D, Chou TW (2017) Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens. Compos Sci Technol 150:102–110CrossRef
29.
go back to reference Egorov I (1998) Indirect optimization on the basis of self-organization. Air Force Eng Acad 2:683–691 Egorov I (1998) Indirect optimization on the basis of self-organization. Air Force Eng Acad 2:683–691
30.
go back to reference (2017). Abaqus analysis user’s guide, Abaqus 2017 Dassault Systèmes Simulia Corp. (2017). Abaqus analysis user’s guide, Abaqus 2017 Dassault Systèmes Simulia Corp.
31.
go back to reference Courter B, Savane V, Bi J, Dev S, Hansen CJ (2017) Finite element simulation of the fused deposition modelling process. Nafems World Congress. Stockholm Courter B, Savane V, Bi J, Dev S, Hansen CJ (2017) Finite element simulation of the fused deposition modelling process. Nafems World Congress. Stockholm
32.
go back to reference Onwubolu G (2016) GMDH-methodology and implementation in MatLab. Imperial College Press, LondonCrossRef Onwubolu G (2016) GMDH-methodology and implementation in MatLab. Imperial College Press, LondonCrossRef
33.
go back to reference Mohammed MAA (2016) Chapter 3: GMDH multilayered algorithm in MATLAB. In: GMDH-methodology and implementation in MATLAB. Imperial College Press, London, pp 75–124CrossRef Mohammed MAA (2016) Chapter 3: GMDH multilayered algorithm in MATLAB. In: GMDH-methodology and implementation in MATLAB. Imperial College Press, London, pp 75–124CrossRef
34.
go back to reference Kondo T, Pandya A (2000) GMDH-type neural networks: with radial basis functions and their application to medical image recognition of the brain. In: SICE annual conference. International Session Papers (IEEE Cat. No.00TH8545). Iizuka Kondo T, Pandya A (2000) GMDH-type neural networks: with radial basis functions and their application to medical image recognition of the brain. In: SICE annual conference. International Session Papers (IEEE Cat. No.00TH8545). Iizuka
35.
go back to reference Srivastava M, Badal D, Jain RK (2010) Regression and ARIMA hybrid model for new bug prediction. Int J Comput Sci Eng 2(8):2622–2628 Srivastava M, Badal D, Jain RK (2010) Regression and ARIMA hybrid model for new bug prediction. Int J Comput Sci Eng 2(8):2622–2628
36.
go back to reference Shabri A, Samsudin R (2014) A hybrid GMDH and box-Jenkins models in time series forecasting. Appl Math Sci, 3051–3062CrossRef Shabri A, Samsudin R (2014) A hybrid GMDH and box-Jenkins models in time series forecasting. Appl Math Sci, 3051–3062CrossRef
37.
go back to reference Shabri A, Samsudin R (2014) Fishery landing forecasting using wavelet-based autoregressive integrated moving average models. Math Probl Eng, 2015 Shabri A, Samsudin R (2014) Fishery landing forecasting using wavelet-based autoregressive integrated moving average models. Math Probl Eng, 2015
38.
go back to reference Mosavi A (2010) Multiobjective optimization using indirect optimization on the basis of self-organization. In: Wseas conferences Mosavi A (2010) Multiobjective optimization using indirect optimization on the basis of self-organization. In: Wseas conferences
39.
go back to reference Asadollahi-Yazdi E, Lafon P, Gardan J (2018) Multi-objective optimization of additive manufacturing process. IFAC-PapersOnLine 51(11):152–157CrossRef Asadollahi-Yazdi E, Lafon P, Gardan J (2018) Multi-objective optimization of additive manufacturing process. IFAC-PapersOnLine 51(11):152–157CrossRef
40.
go back to reference Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, ChichesterMATH Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, ChichesterMATH
41.
go back to reference Yan Z (2010) Traj-ARIMA: a spatial-time series model for network-constrained trajectory. In: Third international workshop on computational transportation science, San Jose Yan Z (2010) Traj-ARIMA: a spatial-time series model for network-constrained trajectory. In: Third international workshop on computational transportation science, San Jose
42.
go back to reference Matsumoto M, Abe J, Yoshimura M (1993) A multiobjective optimization strategy with priority ranking of the design objectives. J Mech Des 115(4):784–792CrossRef Matsumoto M, Abe J, Yoshimura M (1993) A multiobjective optimization strategy with priority ranking of the design objectives. J Mech Des 115(4):784–792CrossRef
43.
go back to reference Farlow JS (1981) The GMDH algorithm of Ivakhnenko. Am Stat 35(4):210–215 Farlow JS (1981) The GMDH algorithm of Ivakhnenko. Am Stat 35(4):210–215
44.
go back to reference Pisuchpen R (2012) Integration of JIT flexible manufacturing, assembly and disassembly using a simulation approach. Assem Autom 32(1):51–61CrossRef Pisuchpen R (2012) Integration of JIT flexible manufacturing, assembly and disassembly using a simulation approach. Assem Autom 32(1):51–61CrossRef
45.
go back to reference Steeda CA, Halsey W, Dehof R, Yoder SL, Paquit V, Powers S (2017) Falcon: visual analysis of large, irregularly sampled, and multivariate. Comput Graph 63:50–64CrossRef Steeda CA, Halsey W, Dehof R, Yoder SL, Paquit V, Powers S (2017) Falcon: visual analysis of large, irregularly sampled, and multivariate. Comput Graph 63:50–64CrossRef
46.
go back to reference Wold S, Sjstrm M, Carlson R, Lundstedt T, Hellberg S, Skagerberg B, Wikstrm C, hman J (1986) Mltivariate design. Analytica Chimica Acta 191:17–32CrossRef Wold S, Sjstrm M, Carlson R, Lundstedt T, Hellberg S, Skagerberg B, Wikstrm C, hman J (1986) Mltivariate design. Analytica Chimica Acta 191:17–32CrossRef
47.
go back to reference Beleites C, Neugebauer U, Bocklitz T, Popp J (2013) Sample size planning for classification models. Anal Chim Acta 720:25–33CrossRef Beleites C, Neugebauer U, Bocklitz T, Popp J (2013) Sample size planning for classification models. Anal Chim Acta 720:25–33CrossRef
48.
go back to reference Courter B, Savane V, Bi J, Dev S, Hansen CJ (2017) Finite element simulation of the fused deposition modelling process, conference: NAFEMS World Congress. Stockholm Courter B, Savane V, Bi J, Dev S, Hansen CJ (2017) Finite element simulation of the fused deposition modelling process, conference: NAFEMS World Congress. Stockholm
49.
go back to reference Cattenone A, Morganti S, Alaimo G, Auricchio F (2018) Finite element analysis of additive manufacturing based on fused deposition modeling: distortions prediction and comparison with experimental data. J Manuf Sci Eng 141:1 Cattenone A, Morganti S, Alaimo G, Auricchio F (2018) Finite element analysis of additive manufacturing based on fused deposition modeling: distortions prediction and comparison with experimental data. J Manuf Sci Eng 141:1
50.
go back to reference Favaloro A, Brenken B, Barocio E, Pipes B (2017) Simulation of polymeric composites additive manufacturing using Abaqus, conference: dassault systemes’ science in the age of experience. Chicago Favaloro A, Brenken B, Barocio E, Pipes B (2017) Simulation of polymeric composites additive manufacturing using Abaqus, conference: dassault systemes’ science in the age of experience. Chicago
Metadata
Title
ARIMA-GMDH: a low-order integrated approach for predicting and optimizing the additive manufacturing process parameters
Authors
Osama Aljarrah
Jun Li
Wenzhen Huang
Alfa Heryudono
Jing Bi
Publication date
26-11-2019
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 1-2/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04315-8

Other articles of this Issue 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Go to the issue

Premium Partners