Skip to main content
Top

2023 | OriginalPaper | Chapter

Artificial Intelligence-Based Predictive Tools for Life-Threatening Diseases

Authors : Vijay Jeyakumar, Prema Sundaram, Nithiya Ramapathiran

Published in: System Design for Epidemics Using Machine Learning and Deep Learning

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The large-scale outbreaks of infectious pandemic diseases emerged regularly throughout history and created notable economic, social, and political disruptions. Major pandemics affect a wide geographic area significantly increasing morbidity and mortality. The world has come across numerous remarkable pandemics such as the Black Death, measles, smallpox, influenza, plague, cholera, Spanish flu, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and Ebola virus and is now combating the new coronavirus disease 2019 (COVID-19) pandemic affecting humanity greatly. Studies suggest that the likelihood of pandemic threats is due to the diversity of pathogens, changes in the dynamics of disease transmission and severity, human-pathogen interaction, increased globalization, urbanization, huge exploitation of land and natural resources, and global warming.
The pandemic risk burden poses serious challenges to humanity and these trends will prolong and intensify over time. For the well-being of humanity, administration of public health measures, techniques to intercept and control infection, pharmaceutical intervention, global surveillance programs, novel technologies to identify disease biomarkers, and vaccine production prove to be effective beneficiary responses to identify and limit emerging outbreaks and to escalate preparedness and health capacity. The extensive amount of data produced during the pandemic has given a lot of chances to the researchers and healthcare providers to evaluate new trends, detect vulnerable groups, and solve long-standing issues in the healthcare industry. The healthcare industry has sought to use the most comprehensive data and predictive analytics software tools employing intelligent data technology, artificial intelligence (AI), machine learning (ML), and deep learning (DL) and has leveraged to gain insight, establish innovative ways to ease sustainable demand and supply, and pitch straight into the prospective benefits to foster the fight against the pandemic.
Hence, these predictive models can support hospitals, healthcare settings, state health organizations, and government establishments to speculate the influence of COVID-19 and prepare for the future. In this chapter, a comprehensive investigation of various data analytic tools that are used in expert systems, proposed for pandemic and epidemic diseases, is discussed. The key issues, challenges, and opportunities of the existing and current methods are also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Porta (ed.), Natural history of disease. A Dictionary of Epidemiology, 5th edn. (Oxford University Press, 2014), pp. 193–194 M. Porta (ed.), Natural history of disease. A Dictionary of Epidemiology, 5th edn. (Oxford University Press, 2014), pp. 193–194
2.
go back to reference L. Shaw-Taylor, An introduction to the history of infectious diseases, epidemics and the early phases of the long-run decline in mortality. Econ. Hist. Rev. 73(3), E1–E19 (2020)CrossRef L. Shaw-Taylor, An introduction to the history of infectious diseases, epidemics and the early phases of the long-run decline in mortality. Econ. Hist. Rev. 73(3), E1–E19 (2020)CrossRef
11.
go back to reference M.A. Kadhim, M.A. Alam, H. Kaur, Design and implementation of fuzzy expert system of back pain diagnosis, international journal of innovative technology & creative. Engineering 1(9), 16–22 (2011) M.A. Kadhim, M.A. Alam, H. Kaur, Design and implementation of fuzzy expert system of back pain diagnosis, international journal of innovative technology & creative. Engineering 1(9), 16–22 (2011)
12.
go back to reference T. Di Noia, V.C. Ostuni, F. Pesce, G. Binetti, D. Naso, F.P. Schena, E. Di Sciascio, An end stage kidney disease predictor based on an artificial neural networks ensemble. Expert Syst. Appl. 40(11), 4438–4445 (2013)CrossRef T. Di Noia, V.C. Ostuni, F. Pesce, G. Binetti, D. Naso, F.P. Schena, E. Di Sciascio, An end stage kidney disease predictor based on an artificial neural networks ensemble. Expert Syst. Appl. 40(11), 4438–4445 (2013)CrossRef
13.
go back to reference J.C. Boyd, Mathematical tools for demonstrating the clinical usefulness of biochemical markers. Scand. J. Clin. Lab. Invest. 57(sup227), 46–63 (1997)CrossRef J.C. Boyd, Mathematical tools for demonstrating the clinical usefulness of biochemical markers. Scand. J. Clin. Lab. Invest. 57(sup227), 46–63 (1997)CrossRef
14.
go back to reference B.F. Finkenstädt, B.T. Grenfell, Time series modeling of childhood diseases: A dynamical systems approach. J. R. Stat. Soc.: Ser. C: Appl. Stat. 49(2), 187–205 (2000)CrossRefMATH B.F. Finkenstädt, B.T. Grenfell, Time series modeling of childhood diseases: A dynamical systems approach. J. R. Stat. Soc.: Ser. C: Appl. Stat. 49(2), 187–205 (2000)CrossRefMATH
15.
go back to reference M.I. Jordan, T.M. Mitchell, Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)CrossRefMATH M.I. Jordan, T.M. Mitchell, Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)CrossRefMATH
16.
go back to reference H.A. Karaboga, A. Gunel, S.V. Korkut, I. Demir, R. Celik, Bayesian network as a decision tool for predicting ALS disease. Brain Sci. 11(2), 150 (2021)CrossRef H.A. Karaboga, A. Gunel, S.V. Korkut, I. Demir, R. Celik, Bayesian network as a decision tool for predicting ALS disease. Brain Sci. 11(2), 150 (2021)CrossRef
18.
go back to reference V. Jackins, S. Vimal, M. Kaliappan, M.Y. Lee, AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes. J. Supercomput. 77(5), 5198–5219 (2021)CrossRef V. Jackins, S. Vimal, M. Kaliappan, M.Y. Lee, AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes. J. Supercomput. 77(5), 5198–5219 (2021)CrossRef
19.
go back to reference K. Ganji, S. Parimi, ANN model for users’ perception on IOT based smart healthcare monitoring devices and its impact with the effect of COVID 19. J. Sci. Technol. Policy Manag. 13(1), 6–21 (2021)CrossRef K. Ganji, S. Parimi, ANN model for users’ perception on IOT based smart healthcare monitoring devices and its impact with the effect of COVID 19. J. Sci. Technol. Policy Manag. 13(1), 6–21 (2021)CrossRef
20.
go back to reference W. Yu, T. Liu, R. Valdez, M. Gwinn, M.J. Khoury, Application of support vector machine modeling for prediction of common diseases: The case of diabetes and pre-diabetes. BMC Med. Inform. Decis. Mak. 10(1), 1–7 (2010)CrossRef W. Yu, T. Liu, R. Valdez, M. Gwinn, M.J. Khoury, Application of support vector machine modeling for prediction of common diseases: The case of diabetes and pre-diabetes. BMC Med. Inform. Decis. Mak. 10(1), 1–7 (2010)CrossRef
21.
go back to reference Q. Jiang, G. Wang, S. Jin, Y. Li, Y. Wang, Predicting human microRNA-disease associations based on support vector machines. Int. J. Data Min. Bioinform. 8(3), 282–293 (2013)CrossRef Q. Jiang, G. Wang, S. Jin, Y. Li, Y. Wang, Predicting human microRNA-disease associations based on support vector machines. Int. J. Data Min. Bioinform. 8(3), 282–293 (2013)CrossRef
22.
go back to reference N.Z. Supardi, M.Y. Mashor, N.H. Harun, F.A. Bakri, R. Hassan, Classification of blasts in acute leukemia blood samples using k-nearest neighbor, in 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications (2012), pp. 461–465. N.Z. Supardi, M.Y. Mashor, N.H. Harun, F.A. Bakri, R. Hassan, Classification of blasts in acute leukemia blood samples using k-nearest neighbor, in 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications (2012), pp. 461–465.
23.
go back to reference L. Prompers, N. Schaper, J. Apelqvist, M. Edmonds, E. Jude, D. Mauricio, L. Uccioli, V. Urbancic, K. Bakker, P. Holstein, A. Jirkovska, Prediction of outcome in individuals with diabetic foot ulcers: Focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE study. Diabetologia 51(5), 747–755 (2008)CrossRef L. Prompers, N. Schaper, J. Apelqvist, M. Edmonds, E. Jude, D. Mauricio, L. Uccioli, V. Urbancic, K. Bakker, P. Holstein, A. Jirkovska, Prediction of outcome in individuals with diabetic foot ulcers: Focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE study. Diabetologia 51(5), 747–755 (2008)CrossRef
24.
go back to reference D. Zhang, D. Shen, Alzheimer’s disease neuroimaging initiative. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)CrossRef D. Zhang, D. Shen, Alzheimer’s disease neuroimaging initiative. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)CrossRef
25.
go back to reference X.D. Zhang, Machine learning, in A matrix algebra approach to artificial intelligence, (Springer, Singapore, 2020), pp. 223–440CrossRef X.D. Zhang, Machine learning, in A matrix algebra approach to artificial intelligence, (Springer, Singapore, 2020), pp. 223–440CrossRef
26.
go back to reference P.S. Kohli, S. Arora, Application of machine learning in disease prediction, in 2018 4th International conference on computing communication and automation (ICCCA) (IEEE, 2018), pp. 1–4. P.S. Kohli, S. Arora, Application of machine learning in disease prediction, in 2018 4th International conference on computing communication and automation (ICCCA) (IEEE, 2018), pp. 1–4.
27.
go back to reference K. Indhumathi, K.S. Kumar, A review on prediction of seasonal diseases based on climate change using big data. Mater. Today Proc. 37, 2648–2652 (2021)CrossRef K. Indhumathi, K.S. Kumar, A review on prediction of seasonal diseases based on climate change using big data. Mater. Today Proc. 37, 2648–2652 (2021)CrossRef
28.
go back to reference A. Kumar, T.V. Kumar, Multi-objective big data view materialization using MOGA. Int. J. Appl. Metaheuristic Comput. 13(1), 1–28 (2022)CrossRef A. Kumar, T.V. Kumar, Multi-objective big data view materialization using MOGA. Int. J. Appl. Metaheuristic Comput. 13(1), 1–28 (2022)CrossRef
29.
go back to reference R. Chauhan, H. Kaur, V. Chang, An optimized integrated framework of big data analytics managing security and privacy in healthcare data. Wirel. Pers. Commun. 117(1), 87–108 (2021)CrossRef R. Chauhan, H. Kaur, V. Chang, An optimized integrated framework of big data analytics managing security and privacy in healthcare data. Wirel. Pers. Commun. 117(1), 87–108 (2021)CrossRef
30.
go back to reference O.A. Sarumi, C.K. Leung, Adaptive machine learning algorithm and analytics of big genomic data for gene prediction, in Tracking and Preventing Diseases with Artificial Intelligence, (Springer, Cham, 2022), pp. 103–123CrossRef O.A. Sarumi, C.K. Leung, Adaptive machine learning algorithm and analytics of big genomic data for gene prediction, in Tracking and Preventing Diseases with Artificial Intelligence, (Springer, Cham, 2022), pp. 103–123CrossRef
31.
go back to reference N. Johanna, H. Citrawijaya, G. Wangge, Mass screening vs lockdown vs combination of both to control COVID-19: A systematic review. J. Public Health Res. 9(4), 523–531 (2020)CrossRef N. Johanna, H. Citrawijaya, G. Wangge, Mass screening vs lockdown vs combination of both to control COVID-19: A systematic review. J. Public Health Res. 9(4), 523–531 (2020)CrossRef
32.
go back to reference P. Schwab, A.D. Schütte, B. Dietz, S. Bauer, Predcovid-19: A systematic study of clinical predictive models for coronavirus disease 2019. arXiv preprint arXiv:2005.08302 (2020) P. Schwab, A.D. Schütte, B. Dietz, S. Bauer, Predcovid-19: A systematic study of clinical predictive models for coronavirus disease 2019. arXiv preprint arXiv:2005.08302 (2020)
33.
go back to reference J. Vijay, K. Nirmala, S.G. Sarate, Chapter 5: Non-contact measurement system for COVID-19 vital signs to aid mass screening – An alternate approach, in Cyber-Physical Systems, ed. by R. C. Poonia, B. Agarwal, S. Kumar, M. S. Khan, G. Marques, J. Nayak, (Academic Press, 2022), pp. 75–92 J. Vijay, K. Nirmala, S.G. Sarate, Chapter 5: Non-contact measurement system for COVID-19 vital signs to aid mass screening – An alternate approach, in Cyber-Physical Systems, ed. by R. C. Poonia, B. Agarwal, S. Kumar, M. S. Khan, G. Marques, J. Nayak, (Academic Press, 2022), pp. 75–92
34.
go back to reference R.M. Karthik, M. Hariharan, D. Won, Contour-enhanced attention CNN for CT-based COVID-19 segmentation. Pattern Recogn. 125, 108538 (2022)CrossRef R.M. Karthik, M. Hariharan, D. Won, Contour-enhanced attention CNN for CT-based COVID-19 segmentation. Pattern Recogn. 125, 108538 (2022)CrossRef
35.
go back to reference L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song, K. Cao, D. Liu, G. Wang, Q. Xu, X. Fang, S. Zhang, J. Xia, J. Xia, Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy. Radiology 296(2), E65–E71 (2020). https://doi.org/10.1148/radiol.2020200905CrossRef L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song, K. Cao, D. Liu, G. Wang, Q. Xu, X. Fang, S. Zhang, J. Xia, J. Xia, Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy. Radiology 296(2), E65–E71 (2020). https://​doi.​org/​10.​1148/​radiol.​2020200905CrossRef
36.
go back to reference M. Kukar, G. Guncar, T. Vovko, S. Podnar, P. Cernelc, M. Brvar, M. Zalaznik, M. Notar, S. Moskon, M. Notar, COVID-19 diagnosis by routine blood tests using machine learning. Sci. Rep. 11, 10738 (2020)CrossRef M. Kukar, G. Guncar, T. Vovko, S. Podnar, P. Cernelc, M. Brvar, M. Zalaznik, M. Notar, S. Moskon, M. Notar, COVID-19 diagnosis by routine blood tests using machine learning. Sci. Rep. 11, 10738 (2020)CrossRef
37.
go back to reference I. Shiri, M. Sorouri, P. Geramifar, M. Nazari, M. Abdollahi, Y. Salimi, B. Khosravi, D. Askari, L. Aghaghazvini, G. Hajianfar, A. Kasaeian, H. Abdollahi, H. Arabi, A. Rahmim, A.R. Radmard, H. Zaidi, Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients. Comput. Biol. Med. 132, 104304 (2021)CrossRef I. Shiri, M. Sorouri, P. Geramifar, M. Nazari, M. Abdollahi, Y. Salimi, B. Khosravi, D. Askari, L. Aghaghazvini, G. Hajianfar, A. Kasaeian, H. Abdollahi, H. Arabi, A. Rahmim, A.R. Radmard, H. Zaidi, Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients. Comput. Biol. Med. 132, 104304 (2021)CrossRef
38.
go back to reference S. Li, Y. Lin, T. Zhu, M. Fan, S. Xu, W. Qiu, C. Chen, L. Li, Y. Wang, J. Yan, et al., Development and external evaluation of prediction models for mortality of covid-19 patients using the machine learning method. Neural Comput. Applic., 1–10 (2020) S. Li, Y. Lin, T. Zhu, M. Fan, S. Xu, W. Qiu, C. Chen, L. Li, Y. Wang, J. Yan, et al., Development and external evaluation of prediction models for mortality of covid-19 patients using the machine learning method. Neural Comput. Applic., 1–10 (2020)
41.
go back to reference P. Kedia, R.K. Anjum, CoVNet-19: A deep learning model for the detection and analysis of COVID-19 patients. Appl. Soft Comput. 104, 107184 (2021)CrossRef P. Kedia, R.K. Anjum, CoVNet-19: A deep learning model for the detection and analysis of COVID-19 patients. Appl. Soft Comput. 104, 107184 (2021)CrossRef
42.
go back to reference F. Ucar, D. Korkmaz, COVIDiagnosis-net: Deep bayes-squeezenet based diagnosis of the coronavirus disease (COVID-19) from X-ray images. Med. Hypotheses 140(2020), 109761 (2019) F. Ucar, D. Korkmaz, COVIDiagnosis-net: Deep bayes-squeezenet based diagnosis of the coronavirus disease (COVID-19) from X-ray images. Med. Hypotheses 140(2020), 109761 (2019)
44.
go back to reference C. Hu, Z. Liu, Y. Jiang, O. Shi, X. Zhang, K. Xu, et al., Early prediction of mortality risk among patients with severe COVID-19, using machine learning. Int. J. Epidemiol. 49(6), 1918–1929 (2020)CrossRef C. Hu, Z. Liu, Y. Jiang, O. Shi, X. Zhang, K. Xu, et al., Early prediction of mortality risk among patients with severe COVID-19, using machine learning. Int. J. Epidemiol. 49(6), 1918–1929 (2020)CrossRef
46.
go back to reference W.T. Li, J. Ma, N. Shende, G. Castaneda, J. Chakladar, J.C. Tsai, L. Apostol, C.O. Honda, J. Xu, L.M. Wong, T. Zhang, A. Lee, A. Gnanasekar, T.K. Honda, S.Z. Kuo, M.A. Yu, E.Y. Chang, M.R. Rajasekaran, W.M. Ongkeko, Using machine learning of clinical data to diagnose covid-19: A systematic review and meta-analysis. BMC Med. Inform. Decis. Mak. 20, 247 (2020). https://doi.org/10.1186/s12911-020-01266-zCrossRef W.T. Li, J. Ma, N. Shende, G. Castaneda, J. Chakladar, J.C. Tsai, L. Apostol, C.O. Honda, J. Xu, L.M. Wong, T. Zhang, A. Lee, A. Gnanasekar, T.K. Honda, S.Z. Kuo, M.A. Yu, E.Y. Chang, M.R. Rajasekaran, W.M. Ongkeko, Using machine learning of clinical data to diagnose covid-19: A systematic review and meta-analysis. BMC Med. Inform. Decis. Mak. 20, 247 (2020). https://​doi.​org/​10.​1186/​s12911-020-01266-zCrossRef
47.
go back to reference A.K. Das, S. Mishra, S.S. Gopalan, Predicting covid-19 community mortality risk using machine learning and development of an online prognostic tool. PeerJ 8, e10083 (2020)CrossRef A.K. Das, S. Mishra, S.S. Gopalan, Predicting covid-19 community mortality risk using machine learning and development of an online prognostic tool. PeerJ 8, e10083 (2020)CrossRef
48.
go back to reference R.P. Joshi, V. Pejaver, N.E. Hammarlund, H. Sung, S.K. Lee, A. Furmanchuk, H.-Y. Lee, G. Scott, S. Gombar, N. Shah, S. Shen, A. Nassiri, D. Schneider, F.S. Ahmad, D. Liebovitz, A. Kho, S. Mooney, B.A. Pinsky, N. Banaei, A predictive tool for identification of sars-cov-2 PCR-negative emergency department patients using routine test results. J. Clin. Virol. 129, 104502 (2020). https://doi.org/10.1016/j.jcv.2020.104502CrossRef R.P. Joshi, V. Pejaver, N.E. Hammarlund, H. Sung, S.K. Lee, A. Furmanchuk, H.-Y. Lee, G. Scott, S. Gombar, N. Shah, S. Shen, A. Nassiri, D. Schneider, F.S. Ahmad, D. Liebovitz, A. Kho, S. Mooney, B.A. Pinsky, N. Banaei, A predictive tool for identification of sars-cov-2 PCR-negative emergency department patients using routine test results. J. Clin. Virol. 129, 104502 (2020). https://​doi.​org/​10.​1016/​j.​jcv.​2020.​104502CrossRef
50.
go back to reference Z. Zhao, A. Chen, W. Hou, J.M. Graham, H. Li, P.S. Richman, H.C. Thode, A.J. Singer, T.Q. Duong, Prediction model and risk scores of ICU admission and mortality in covid-19. PLoS One 15, e0236618 (2020)CrossRef Z. Zhao, A. Chen, W. Hou, J.M. Graham, H. Li, P.S. Richman, H.C. Thode, A.J. Singer, T.Q. Duong, Prediction model and risk scores of ICU admission and mortality in covid-19. PLoS One 15, e0236618 (2020)CrossRef
52.
go back to reference M. Nemati, J. Ansary, N. Nemati, Machine-learning approaches in COVID-19 survival analysis and discharge-time likelihood prediction using clinical data. Patterns 1, 100074 (2020)CrossRef M. Nemati, J. Ansary, N. Nemati, Machine-learning approaches in COVID-19 survival analysis and discharge-time likelihood prediction using clinical data. Patterns 1, 100074 (2020)CrossRef
54.
go back to reference M.A. Maram, J.P. Monshi, V. Chung, F.M. Monshi, CovidXrayNet: Optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR. Comput. Biol. Med. 133, 104375 (2021)CrossRef M.A. Maram, J.P. Monshi, V. Chung, F.M. Monshi, CovidXrayNet: Optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR. Comput. Biol. Med. 133, 104375 (2021)CrossRef
55.
go back to reference G. Jia, H.-K. Lam, X. Yujia, Classification of COVID-19 chest X-Ray and CT images using a type of dynamic CNN modification method. Comput. Biol. Med. 134, 104425 (2021)CrossRef G. Jia, H.-K. Lam, X. Yujia, Classification of COVID-19 chest X-Ray and CT images using a type of dynamic CNN modification method. Comput. Biol. Med. 134, 104425 (2021)CrossRef
56.
Metadata
Title
Artificial Intelligence-Based Predictive Tools for Life-Threatening Diseases
Authors
Vijay Jeyakumar
Prema Sundaram
Nithiya Ramapathiran
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-19752-9_8