Skip to main content
Top

2022 | OriginalPaper | Chapter

6. Artificial Intelligence Deployment in Transportation Systems

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Transportation science is a research field with many categories, including information science, control science, Earth science, management science, etc. How to integrate different areas to make all the components work efficiently acts as a challenging task. Characterized by the strong modeling and computation ability, AI technologies have been applied to many areas in contemporary society. To this end, the deployment of artificial intelligence (AI) technology into transportation systems leads to a typical form of intelligent transportation systems: AI-Deployment transportation systems (AID-TS). The AID-TS effectively apply advanced AI technology into transportation, service control, and vehicle manufacturing, in order to strengthen the connections among vehicles, roads, and users. To this end, real-time autonomous transportation systems with considerable efficiency and reliable safety can be formulated. Through the harmonious and close cooperation among people, vehicles, and roads, the AID-TS are able to improve transportation efficiency, alleviate traffic congestion, improve capacity of road networks, and reduce energy consumption. Nowadays, countries represented by Japan and the United States have widely studied application of the AID-TS. At the same time, China is also actively planning its research on AID-TS. Generally speaking, AID-TS will become a wide and meaningful application in the future smart city around the world. From the perspective of system composition, the AID-TS are a kind of complicated and comprehensive systems that can be mainly divided into several subsystems: transportation information service systems, transportation management systems, public transportation systems, and vehicular control systems. Therefore, this chapter is organized via three aspects of contents: 1) review for AID-TS; 2) architecture for AID-TS; and 3) business scenarios for AID-TS. This chapter is responsible for introducing basic conception of AID-TS and is composed of three parts: overview, prevalence, and development status. In this chapter, architecture for AID-TS as well as key technologies is described. From the bottom to the top, the whole architecture can be categorized into three layers: sensing layer, networking layer, and application layer. This chapter describes four typical business scenarios for AID-TS in four parts, containing autonomous transportation management, vehicular control, public transportation scheduling, and transportation information service.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhu, L., Yu, F. R., Wang, Y., Ning, B., & Tang, T. (2019). Big data analytics in intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 20(1), 383–398.CrossRef Zhu, L., Yu, F. R., Wang, Y., Ning, B., & Tang, T. (2019). Big data analytics in intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 20(1), 383–398.CrossRef
2.
go back to reference Soares, E. F. de S., Quintella, C. A. de M. S., & Campos, C. A. V. (2021). Smartphone-based real-time travel mode detection for intelligent transportation systems. IEEE Transactions on Vehicular Technology, 70(2), 1179–1189. Soares, E. F. de S., Quintella, C. A. de M. S., & Campos, C. A. V. (2021). Smartphone-based real-time travel mode detection for intelligent transportation systems. IEEE Transactions on Vehicular Technology, 70(2), 1179–1189.
3.
go back to reference Veres, M., & Moussa, M. (2020). Deep learning for intelligent transportation systems: A survey of emerging trends. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3152–3168.CrossRef Veres, M., & Moussa, M. (2020). Deep learning for intelligent transportation systems: A survey of emerging trends. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3152–3168.CrossRef
4.
go back to reference Zhou, F., Yang, Q., Zhong, T., Chen, D., & Zhang, N. (2021). Variational graph neural networks for road traffic prediction in intelligent transportation systems. IEEE Transactions on Industrial Informatics, 17(4), 2802–2812.CrossRef Zhou, F., Yang, Q., Zhong, T., Chen, D., & Zhang, N. (2021). Variational graph neural networks for road traffic prediction in intelligent transportation systems. IEEE Transactions on Industrial Informatics, 17(4), 2802–2812.CrossRef
5.
go back to reference Du, B., Peng, H., Wang, S., Bhuiyan, Md. Z. A., Wang, L., Gong, Q., Liu, L., & Li, J. (2020). Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction. IEEE Transactions on Intelligent Transportation Systems, 21(3), 972–985.CrossRef Du, B., Peng, H., Wang, S., Bhuiyan, Md. Z. A., Wang, L., Gong, Q., Liu, L., & Li, J. (2020). Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction. IEEE Transactions on Intelligent Transportation Systems, 21(3), 972–985.CrossRef
6.
go back to reference Zeroual, A., Harrou, F., Sun, Y., & Messai, N. (2018). Integrating model-based observer and Kullback–Leibler metric for estimating and detecting road traffic congestion. IEEE Sensors Journal, 18(20), 8605–8616.CrossRef Zeroual, A., Harrou, F., Sun, Y., & Messai, N. (2018). Integrating model-based observer and Kullback–Leibler metric for estimating and detecting road traffic congestion. IEEE Sensors Journal, 18(20), 8605–8616.CrossRef
7.
go back to reference Shengdong, M., Zhengxian, X., & Yixiang, T. (2019). Intelligent traffic control system based on cloud computing and big data mining. IEEE Transactions on Industrial Informatics, 15(12), 6583–6592.CrossRef Shengdong, M., Zhengxian, X., & Yixiang, T. (2019). Intelligent traffic control system based on cloud computing and big data mining. IEEE Transactions on Industrial Informatics, 15(12), 6583–6592.CrossRef
8.
go back to reference Liang, X., Zhang, Y., Wang, G., & Xu, S. (2020). A deep learning model for transportation mode detection based on smartphone sensing data. IEEE Transactions on Intelligent Transportation Systems, 21(12), 5223–5235.CrossRef Liang, X., Zhang, Y., Wang, G., & Xu, S. (2020). A deep learning model for transportation mode detection based on smartphone sensing data. IEEE Transactions on Intelligent Transportation Systems, 21(12), 5223–5235.CrossRef
9.
go back to reference Wang, Q., Zheng, J., Xu, H., Xu, B., & Chen, R. (2018). Roadside magnetic sensor system for vehicle detection in urban environments. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1365–1374.CrossRef Wang, Q., Zheng, J., Xu, H., Xu, B., & Chen, R. (2018). Roadside magnetic sensor system for vehicle detection in urban environments. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1365–1374.CrossRef
10.
go back to reference Lin, J., Yu, W., Zhang, N., Yang, X., & Ge, L. (2018). Data integrity attacks against dynamic route guidance in transportation-based cyber-physical systems: Modeling, analysis, and defense. IEEE Transactions on Vehicular Technology, 67(9), 8738–8753.CrossRef Lin, J., Yu, W., Zhang, N., Yang, X., & Ge, L. (2018). Data integrity attacks against dynamic route guidance in transportation-based cyber-physical systems: Modeling, analysis, and defense. IEEE Transactions on Vehicular Technology, 67(9), 8738–8753.CrossRef
11.
go back to reference Zhou, Y., Liu, L., Shao, L., & Mellor, M. (2018). Fast automatic vehicle annotation for urban traffic surveillance. IEEE Transactions on Intelligent Transportation Systems, 19(6), 1973–1984.CrossRef Zhou, Y., Liu, L., Shao, L., & Mellor, M. (2018). Fast automatic vehicle annotation for urban traffic surveillance. IEEE Transactions on Intelligent Transportation Systems, 19(6), 1973–1984.CrossRef
12.
go back to reference Zhang, R., Ishikawa, A., Wang, W., Striner, B., & Tonguz, O. K. (2021). Using reinforcement learning with partial vehicle detection for intelligent traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 22(1), 404–415.CrossRef Zhang, R., Ishikawa, A., Wang, W., Striner, B., & Tonguz, O. K. (2021). Using reinforcement learning with partial vehicle detection for intelligent traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 22(1), 404–415.CrossRef
13.
go back to reference Flores, C., Merdrignac, P., de Charette, R., Navas, F., Milanés, V., & Nashashibi, F. (2019). A cooperative car-following/emergency braking system with prediction-based pedestrian avoidance capabilities. IEEE Transactions on Intelligent Transportation Systems, 20(5), 1837–1846.CrossRef Flores, C., Merdrignac, P., de Charette, R., Navas, F., Milanés, V., & Nashashibi, F. (2019). A cooperative car-following/emergency braking system with prediction-based pedestrian avoidance capabilities. IEEE Transactions on Intelligent Transportation Systems, 20(5), 1837–1846.CrossRef
14.
go back to reference Barmpounakis, E. N., Vlahogianni, E. I., & Golias, J. C. (2018). Identifying predictable patterns in the unconventional overtaking decisions of PTW for cooperative ITS. IEEE Transactions on Intelligent Vehicles, 3(1), 102–111.CrossRef Barmpounakis, E. N., Vlahogianni, E. I., & Golias, J. C. (2018). Identifying predictable patterns in the unconventional overtaking decisions of PTW for cooperative ITS. IEEE Transactions on Intelligent Vehicles, 3(1), 102–111.CrossRef
15.
go back to reference Chakeri, A., Wang, X., Goss, Q., Ilhan Akbas, M., & Jaimes, L. G. (2021). A platform-based incentive mechanism for autonomous vehicle crowdsensing. IEEE Open Journal of Intelligent Transportation Systems, 2, 13–23.CrossRef Chakeri, A., Wang, X., Goss, Q., Ilhan Akbas, M., & Jaimes, L. G. (2021). A platform-based incentive mechanism for autonomous vehicle crowdsensing. IEEE Open Journal of Intelligent Transportation Systems, 2, 13–23.CrossRef
16.
go back to reference Rosenstatter, T., & Englund, C. (2018). Modelling the level of trust in a cooperative automated vehicle control system. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1237–1247.CrossRef Rosenstatter, T., & Englund, C. (2018). Modelling the level of trust in a cooperative automated vehicle control system. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1237–1247.CrossRef
17.
go back to reference Song, X., Guo, Y., Li, N., & Zhang, L. (2021). Online traffic flow prediction for edge computing-enhanced autonomous and connected vehicles. IEEE Transactions on Vehicular Technology, 70(3), 2101–2111.CrossRef Song, X., Guo, Y., Li, N., & Zhang, L. (2021). Online traffic flow prediction for edge computing-enhanced autonomous and connected vehicles. IEEE Transactions on Vehicular Technology, 70(3), 2101–2111.CrossRef
18.
go back to reference Aujla, G. S., Singh, A., Singh, M., Sharma, S., Kumar, N., & Choo, K.-K. R. (2020). BloCkEd: Blockchain-based secure data processing framework in edge envisioned V2X environment. IEEE Transactions on Vehicular Technology, 69(6), 5850–5863.CrossRef Aujla, G. S., Singh, A., Singh, M., Sharma, S., Kumar, N., & Choo, K.-K. R. (2020). BloCkEd: Blockchain-based secure data processing framework in edge envisioned V2X environment. IEEE Transactions on Vehicular Technology, 69(6), 5850–5863.CrossRef
19.
go back to reference Singh, A., Aujla, G. S., & Bali, R. S. (2021). Intent-Based Network for Data Dissemination in Software-Defined Vehicular Edge Computing. IEEE Transactions on Intelligent Transportation Systems, 22(8), 5310–5318.CrossRef Singh, A., Aujla, G. S., & Bali, R. S. (2021). Intent-Based Network for Data Dissemination in Software-Defined Vehicular Edge Computing. IEEE Transactions on Intelligent Transportation Systems, 22(8), 5310–5318.CrossRef
20.
go back to reference Yang, P., Duan, D., Chen, C., Cheng, X., & Yang, L. (2020). Multi-sensor multi-vehicle (MSMV) localization and mobility tracking for autonomous driving. IEEE Transactions on Vehicular Technology, 69(12), 14355–14364.CrossRef Yang, P., Duan, D., Chen, C., Cheng, X., & Yang, L. (2020). Multi-sensor multi-vehicle (MSMV) localization and mobility tracking for autonomous driving. IEEE Transactions on Vehicular Technology, 69(12), 14355–14364.CrossRef
21.
go back to reference Zhu, B., Tao, X., Zhao, J., Ke, M., Wang, H., & Deng, W. (2020). An integrated GNSS/UWB/DR/VMM positioning strategy for intelligent vehicles. IEEE Transactions on Vehicular Technology, 69(10), 10842–10853.CrossRef Zhu, B., Tao, X., Zhao, J., Ke, M., Wang, H., & Deng, W. (2020). An integrated GNSS/UWB/DR/VMM positioning strategy for intelligent vehicles. IEEE Transactions on Vehicular Technology, 69(10), 10842–10853.CrossRef
22.
go back to reference Erkent, Ö., & Laugier, C. (2020). Semantic segmentation with unsupervised domain adaptation under varying weather conditions for autonomous vehicles. IEEE Robotics and Automation Letters, 5(2), 3580–3587.CrossRef Erkent, Ö., & Laugier, C. (2020). Semantic segmentation with unsupervised domain adaptation under varying weather conditions for autonomous vehicles. IEEE Robotics and Automation Letters, 5(2), 3580–3587.CrossRef
Metadata
Title
Artificial Intelligence Deployment in Transportation Systems
Authors
Zhiwei Guo
Keping Yu
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-92054-8_6

Premium Partner