Skip to main content
Top

2022 | OriginalPaper | Chapter

Artificial Neural Networks Generated by Low Discrepancy Sequences

Authors : Alexander Keller, Matthijs Van keirsbilck

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Artificial neural networks can be represented by paths. Generated as random walks on a dense network graph, we find that the resulting sparse networks allow for deterministic initialization and even weights with fixed sign. Such networks can be trained sparse from scratch, avoiding the expensive procedure of training a dense network and compressing it afterwards. Although sparse, weights are accessed as contiguous blocks of memory. In addition, enumerating the paths using deterministic low discrepancy sequences, for example variants of the Sobol’ sequence, amounts to connecting the layers of neural units by progressive permutations, which naturally avoids bank conflicts in parallel computer hardware. We demonstrate that the artificial neural networks generated by low discrepancy sequences can achieve an accuracy within reach of their dense counterparts at a much lower computational complexity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Dey, S., Beerei, P., Chugg, K.: Interleaver design for deep neural networks. In: 51st Asilomar Conference on Signals, Systems, and Computers, pp. 1979–1983. IEEE (2017) Dey, S., Beerei, P., Chugg, K.: Interleaver design for deep neural networks. In: 51st Asilomar Conference on Signals, Systems, and Computers, pp. 1979–1983. IEEE (2017)
5.
go back to reference Dey, S., Huang, K.-W., Beerel, P., Chugg, K.: Characterizing sparse connectivity patterns in neural networks. In: 2018 Information Theory and Applications Workshop (ITA), pp. 1–9. IEEE (2018) Dey, S., Huang, K.-W., Beerel, P., Chugg, K.: Characterizing sparse connectivity patterns in neural networks. In: 2018 Information Theory and Applications Workshop (ITA), pp. 1–9. IEEE (2018)
7.
go back to reference Dey, S., Shao, Y., Chugg, K., Beerel, P.: Accelerating training of deep neural networks via sparse edge processing. In: Lintas, A., Rovetta, S., Verschure, P.F., Villa, A.E. (eds.) Artificial Neural Networks and Machine Learning—ICANN 2017, pp. 273–280. Springer International Publishing, Cham (2017) Dey, S., Shao, Y., Chugg, K., Beerel, P.: Accelerating training of deep neural networks via sparse edge processing. In: Lintas, A., Rovetta, S., Verschure, P.F., Villa, A.E. (eds.) Artificial Neural Networks and Machine Learning—ICANN 2017, pp. 273–280. Springer International Publishing, Cham (2017)
8.
go back to reference Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Cambridge University Press, Discrepancy Theory and Quasi-Monte Carlo Integration (2010) Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Cambridge University Press, Discrepancy Theory and Quasi-Monte Carlo Integration (2010)
9.
go back to reference Farhat, N.H., Psaltis, D., Prata, A., Paek, E.: Optical implementation of the Hopfield model. Appl. Opt. 24(10), 1469–1475 (1985) Farhat, N.H., Psaltis, D., Prata, A., Paek, E.: Optical implementation of the Hopfield model. Appl. Opt. 24(10), 1469–1475 (1985)
10.
go back to reference Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: International Conference on Learning Representations (ICLR) (2019) Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: International Conference on Learning Representations (ICLR) (2019)
11.
go back to reference Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011) Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011)
13.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015) He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
15.
go back to reference Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017) Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
16.
go back to reference Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)
17.
go back to reference Jayakumar, S., Pascanu, R., Rae, J., Osindero, S., Elsen, E.: Top-KAST: Top-k always sparse training. Adv. Neural Inf. Process. Syst. 33 (2020) Jayakumar, S., Pascanu, R., Rae, J., Osindero, S., Elsen, E.: Top-KAST: Top-k always sparse training. Adv. Neural Inf. Process. Syst. 33 (2020)
18.
go back to reference Joe, S., Kuo, F.: Remark on algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 29(1), 49–57 (2003) Joe, S., Kuo, F.: Remark on algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 29(1), 49–57 (2003)
20.
go back to reference Keller, A.: Myths of computer graphics. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 217–243. Springer, Berlin (2006) Keller, A.: Myths of computer graphics. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 217–243. Springer, Berlin (2006)
21.
go back to reference Keller, A.: Quasi-Monte Carlo image synthesis in a nutshell. In: Dick, J., Kuo, F., Peters, G., Sloan, I. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 203–238. Springer, Berlin (2013) Keller, A.: Quasi-Monte Carlo image synthesis in a nutshell. In: Dick, J., Kuo, F., Peters, G., Sloan, I. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 203–238. Springer, Berlin (2013)
22.
go back to reference Keller, A., Grünschloß, L.: Parallel quasi-Monte Carlo integration by partitioning low discrepancy sequences. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 487–498. Springer, Berlin (2012). http://gruenschloss.org/parqmc/parqmc.pdf Keller, A., Grünschloß, L.: Parallel quasi-Monte Carlo integration by partitioning low discrepancy sequences. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 487–498. Springer, Berlin (2012). http://​gruenschloss.​org/​parqmc/​parqmc.​pdf
23.
go back to reference Kriman, S., Beliaev, S., Ginsburg, B., Huang, J., Kuchaiev, O., Lavrukhin, V., Leary, R., Li, J., Zhang, Y.: Quartznet: Deep automatic speech recognition with 1d time-channel separable convolutions. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6124–6128 (2020). https://arxiv.org/abs/1910.10261 Kriman, S., Beliaev, S., Ginsburg, B., Huang, J., Kuchaiev, O., Lavrukhin, V., Leary, R., Li, J., Zhang, Y.: Quartznet: Deep automatic speech recognition with 1d time-channel separable convolutions. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6124–6128 (2020). https://​arxiv.​org/​abs/​1910.​10261
24.
go back to reference Kundu, S., Nazemi, M., Pedram, M., Chugg, K., Beerel, P.: Pre-defined sparsity for low-complexity convolutional neural networks (2020) Kundu, S., Nazemi, M., Pedram, M., Chugg, K., Beerel, P.: Pre-defined sparsity for low-complexity convolutional neural networks (2020)
26.
go back to reference Kung, H., Leiserson, C.: Systolic arrays (for VLSI). SIAM Sparse Matrix Proc. 1978, 256–282 (1979) Kung, H., Leiserson, C.: Systolic arrays (for VLSI). SIAM Sparse Matrix Proc. 1978, 256–282 (1979)
28.
go back to reference Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation for neural network pruning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11264–11272 (2019) Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation for neural network pruning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11264–11272 (2019)
29.
go back to reference Mordido, G., Van keirsbilck, M., Keller, A.: Instant quantization of neural networks using Monte Carlo methods. In: NeurIPS 2019 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing (NeurIPS 2019 EMC\(^2\)) (2019) Mordido, G., Van keirsbilck, M., Keller, A.: Instant quantization of neural networks using Monte Carlo methods. In: NeurIPS 2019 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing (NeurIPS 2019 EMC\(^2\)) (2019)
30.
go back to reference Mordido, G., Van keirsbilck, M., Keller, A.: Monte Carlo gradient quantization. In: CVPR 2020 Joint Workshop on Efficient Deep Learning in Computer Vision (CVPR 2020 EDLCV) (2020) Mordido, G., Van keirsbilck, M., Keller, A.: Monte Carlo gradient quantization. In: CVPR 2020 Joint Workshop on Efficient Deep Learning in Computer Vision (CVPR 2020 EDLCV) (2020)
31.
go back to reference Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992) Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)
32.
go back to reference Owen, A.: Randomly permuted \((t,m,s)\)-nets and \((t,s)\)-sequences. In: Niederreiter, H., Shiue, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Lecture Notes in Statistics, vol. 106, pp. 299–315. Springer, Berlin (1995) Owen, A.: Randomly permuted \((t,m,s)\)-nets and \((t,s)\)-sequences. In: Niederreiter, H., Shiue, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Lecture Notes in Statistics, vol. 106, pp. 299–315. Springer, Berlin (1995)
34.
go back to reference Rui, X., Daquan, H., Zhineng, L.: A perfect shuffle type of interpattern association optical neural network model. Guangzi Xuebao/Acta Photonica Sinica 29(1) (2000) Rui, X., Daquan, H., Zhineng, L.: A perfect shuffle type of interpattern association optical neural network model. Guangzi Xuebao/Acta Photonica Sinica 29(1) (2000)
35.
go back to reference Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. In: Anderson, J., Rosenfeld, E. (eds.) Neurocomputing: Foundations of Research, pp. 696–699. MIT Press, Cambridge, MA, USA (1988) Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. In: Anderson, J., Rosenfeld, E. (eds.) Neurocomputing: Foundations of Research, pp. 696–699. MIT Press, Cambridge, MA, USA (1988)
36.
go back to reference Sobol’, I.: On the Distribution of points in a cube and the approximate evaluation of integrals. Zh. vychisl. Mat. mat. Fiz. 7(4), 784–802 (1967). USSR Comput. Math. Math. Phys. 86–112 Sobol’, I.: On the Distribution of points in a cube and the approximate evaluation of integrals. Zh. vychisl. Mat. mat. Fiz. 7(4), 784–802 (1967). USSR Comput. Math. Math. Phys. 86–112
37.
go back to reference de Sousa, C.: An overview on weight initialization methods for feedforward neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 52–59. IEEE (2016) de Sousa, C.: An overview on weight initialization methods for feedforward neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 52–59. IEEE (2016)
38.
go back to reference Stone, H.: Parallel processing with the perfect shuffle. IEEE Trans. Comput. 20(2), 153–161 (1971) Stone, H.: Parallel processing with the perfect shuffle. IEEE Trans. Comput. 20(2), 153–161 (1971)
39.
go back to reference Wächter, C.: Quasi-Monte Carlo Light Transport Simulation by Efficient Ray Tracing. Ph.D. thesis, Universität Ulm (2008) Wächter, C.: Quasi-Monte Carlo Light Transport Simulation by Efficient Ray Tracing. Ph.D. thesis, Universität Ulm (2008)
40.
go back to reference Zhou, H., Lan, J., Liu, R., Yosinski, J.: Deconstructing lottery tickets: Zeros, signs, and the supermask. In: NeurIPS 2019 (2019). Arxiv:1905.01067 Zhou, H., Lan, J., Liu, R., Yosinski, J.: Deconstructing lottery tickets: Zeros, signs, and the supermask. In: NeurIPS 2019 (2019). Arxiv:​1905.​01067
Metadata
Title
Artificial Neural Networks Generated by Low Discrepancy Sequences
Authors
Alexander Keller
Matthijs Van keirsbilck
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-98319-2_15

Premium Partner