Skip to main content
Top

2020 | OriginalPaper | Chapter

Assessing the Impact of Rows of Tidal-Stream Turbines on the Overtides of the M2

Authors : D. Potter, S. Ilić, A. Folkard

Published in: Estuaries and Coastal Zones in Times of Global Change

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Flood-ebb asymmetry of a tidal flow has important implications for net sediment transport and the potential extractable resource. The asymmetry of the tide in U.K. waters may be understood through the interaction of the M2 (principal lunar) and M4 (first even overtide of the M2) tidal constituents. The interaction of the M2 tide with a tidal-stream turbine will alter the M4 tide, both augmenting and reducing the M4 amplitude, leading to an alteration of flood-ebb asymmetry. In this chapter the impact of a row of tidal-stream turbines on the overtides of the M2 has been investigated through a numerical modelling study. Further, the way that additional turbines alter the way the turbines impact the shallow-water tides individually is explored. The results of the modelling show that when deployed in a row, on average, the peak velocity deficit and change to the current magnitude asymmetry (CMA) per turbine was less than were it deployed alone. The difference between the per turbine impact of turbines in a row and that of an individual turbine grew as the number of turbines in the row, and therefore the row blockage, increased. Additionally, the total area of the model domain experiencing a change to the M2 current and CMA > 1% increased with the addition of turbines to the row, for a row blockage >~10%, but remained similar to the single turbine case for lower blockage values. The implication of the change to the CMA by a turbine in a row for the asymmetry in energy conversion for its lateral neighbours was small as the turbines do not lie within the area of effect of their neighbours. However, the per turbine energy conversion increased as the number of turbines and row blockage increased, in line with theory.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
When simulating a real-world site, better representation of the harmonic generation within the model domain will be obtained by supplying the harmonic tides at the boundaries of the model (Le Provost and Fornerino 1985). As only an idealised case is considered in this work any choice of harmonics supplied at the boundaries would be somewhat arbitrary. Therefore, the simplest case was considered. The case of undistorted tides at either boundary, i.e. M2 tide with negligible harmonics.
 
Literature
go back to reference Ahmadian, R., Falconer, R., & Bockelmann-Evans, B. (2012). Far-field modelling of the hydro-environmental impact of tidal stream turbines. Renewable Energy, 38, 107–116.CrossRef Ahmadian, R., Falconer, R., & Bockelmann-Evans, B. (2012). Far-field modelling of the hydro-environmental impact of tidal stream turbines. Renewable Energy, 38, 107–116.CrossRef
go back to reference Baston, S., Waldman, S., & Side, J. (2014). Modelling energy extraction in tidal flows. In TerraWatt Position Papers (p. 102). MASTS. Baston, S., Waldman, S., & Side, J. (2014). Modelling energy extraction in tidal flows. In TerraWatt Position Papers (p. 102). MASTS.
go back to reference Bruder, B., & Haas, K. (2014). Tidal distortion as pertains to hydrokinetic turbine selection and resource assessment. In Proceedings of the 2nd Marine Energy Technology Symposium, METS2014, 15–18 April, 2014, Seattle, WA. Bruder, B., & Haas, K. (2014). Tidal distortion as pertains to hydrokinetic turbine selection and resource assessment. In Proceedings of the 2nd Marine Energy Technology Symposium, METS2014, 15–18 April, 2014, Seattle, WA.
go back to reference Chen, L., & Lam, W. (2014). Slipstream between marine current turbine and seabed. Energy, 68, 801–810.CrossRef Chen, L., & Lam, W. (2014). Slipstream between marine current turbine and seabed. Energy, 68, 801–810.CrossRef
go back to reference Churchfield, M., Li, Y., & Moriarty, P. (2011). A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines. In Proceedings of EWTEC 2011, Southampton. Churchfield, M., Li, Y., & Moriarty, P. (2011). A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines. In Proceedings of EWTEC 2011, Southampton.
go back to reference De Dominicis, M., O’Hara-Murray, R., & Wolf, J. (2017). Multi-scale ocean response to a large tidal-stream turbine array. Renewable Energy, 114, 1160–1179.CrossRef De Dominicis, M., O’Hara-Murray, R., & Wolf, J. (2017). Multi-scale ocean response to a large tidal-stream turbine array. Renewable Energy, 114, 1160–1179.CrossRef
go back to reference DHI. (2016). MIKE 21 & MIKE 3 flow model FM, hydrodynamic and transport module, scientific documentation. DHI. (2016). MIKE 21 & MIKE 3 flow model FM, hydrodynamic and transport module, scientific documentation.
go back to reference Dronkers, J. (1986). Tidal asymmetry and estuarine morphology. Netherlands Journal of Sea Research, 20, 119–131. Dronkers, J. (1986). Tidal asymmetry and estuarine morphology. Netherlands Journal of Sea Research, 20, 119–131.
go back to reference Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.CrossRef Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.CrossRef
go back to reference Kramer, S., Piggott, M., Hill, J., Kregting, L., Pritchard, D., & Elsaesser, B. (2014). The modelling of tidal turbine farms using multi-scale, unstructured mesh models. In Proceedings of the 2nd International Conference on Environmental Interactions of Marine Renewable Energy Technologies (EMIR 2014). Stornoway, Scotland. Kramer, S., Piggott, M., Hill, J., Kregting, L., Pritchard, D., & Elsaesser, B. (2014). The modelling of tidal turbine farms using multi-scale, unstructured mesh models. In Proceedings of the 2nd International Conference on Environmental Interactions of Marine Renewable Energy Technologies (EMIR 2014). Stornoway, Scotland.
go back to reference Le Provost, C. (1991). Generation of overtides and compound tides (review). In B. Parker (Ed.), Tidal hydrodynamics. New York: Wiley. Le Provost, C. (1991). Generation of overtides and compound tides (review). In B. Parker (Ed.), Tidal hydrodynamics. New York: Wiley.
go back to reference Le Provost, C., & Fornerino, M. (1985). Tidal spectroscopy of the English Channel with a numerical model. Journal of Physical Oceanography, 15, 1009–1031.CrossRef Le Provost, C., & Fornerino, M. (1985). Tidal spectroscopy of the English Channel with a numerical model. Journal of Physical Oceanography, 15, 1009–1031.CrossRef
go back to reference Masters, I., Malki, R., Williams, A., & Croft, T. (2013). The influence of flow acceleration on tidal stream turbine wake dynamics: A numerical study using a coupled BEM-CFD model. Applied Mathematical Modelling, 37, 7905–7918.CrossRef Masters, I., Malki, R., Williams, A., & Croft, T. (2013). The influence of flow acceleration on tidal stream turbine wake dynamics: A numerical study using a coupled BEM-CFD model. Applied Mathematical Modelling, 37, 7905–7918.CrossRef
go back to reference Nash, S., O’Brien, N., Olbert, A., & Hartnett, M. (2014). Modelling the far field hydro-environmental impacts of tidal farms—A focus on tidal regime, inter-tidal zones and flushing. Computers & Geoscience, 71, 20–27.CrossRef Nash, S., O’Brien, N., Olbert, A., & Hartnett, M. (2014). Modelling the far field hydro-environmental impacts of tidal farms—A focus on tidal regime, inter-tidal zones and flushing. Computers & Geoscience, 71, 20–27.CrossRef
go back to reference Neill, S., Litt, E., Couch, S., & Davies, A. (2009). The impact of tidal stream turbines on large scale sediment dynamics. Renewable Energy, 34, 2803–2812.CrossRef Neill, S., Litt, E., Couch, S., & Davies, A. (2009). The impact of tidal stream turbines on large scale sediment dynamics. Renewable Energy, 34, 2803–2812.CrossRef
go back to reference Neill, S., Jordan, J., & Couch, S. (2012). Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks. Renewable Energy, 37, 387–397.CrossRef Neill, S., Jordan, J., & Couch, S. (2012). Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks. Renewable Energy, 37, 387–397.CrossRef
go back to reference Neill, S., Hashemi, M., & Lewis, M. (2014). The role of asymmetry in characterizing the tidal resource of Orkney. Renewable Energy, 68, 337–350.CrossRef Neill, S., Hashemi, M., & Lewis, M. (2014). The role of asymmetry in characterizing the tidal resource of Orkney. Renewable Energy, 68, 337–350.CrossRef
go back to reference O’Hara-Murray, R., & Gallego, A. (2017). A modelling study of the tidal stream resource of the Pentland Firth, Scotland. Renewable Energy, 102, 326–340.CrossRef O’Hara-Murray, R., & Gallego, A. (2017). A modelling study of the tidal stream resource of the Pentland Firth, Scotland. Renewable Energy, 102, 326–340.CrossRef
go back to reference Parker, B. (1991). The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions (review). In B. Parker (Ed.), Tidal hydrodynamics. New York: Wiley. Parker, B. (1991). The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions (review). In B. Parker (Ed.), Tidal hydrodynamics. New York: Wiley.
go back to reference Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using t_tide. Computers & Geoscience, 28, 929–937.CrossRef Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using t_tide. Computers & Geoscience, 28, 929–937.CrossRef
go back to reference Potter, D. (2019). Alteration to the shallow-water tides and tidal asymmetry by tidal-stream turbines. Ph.D. thesis, Lancaster University. Potter, D. (2019). Alteration to the shallow-water tides and tidal asymmetry by tidal-stream turbines. Ph.D. thesis, Lancaster University.
go back to reference Pingree, R., & Griffiths, D. (1979). Sand transport pathways around the British Isles resulting from the M2 and M4 tidal interactions. Journal of the Marine Biological Association of the United Kingdom, 59, 497–513. Pingree, R., & Griffiths, D. (1979). Sand transport pathways around the British Isles resulting from the M2 and M4 tidal interactions. Journal of the Marine Biological Association of the United Kingdom, 59, 497–513.
go back to reference Robins, P., Neill, S., & Lewis, M. (2014). Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes. Renewable Energy, 72, 311–321.CrossRef Robins, P., Neill, S., & Lewis, M. (2014). Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes. Renewable Energy, 72, 311–321.CrossRef
go back to reference Robins, P., Neill, S., Lewis, M., & Ward, S. (2015). Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Applied Energy, 147, 510–522.CrossRef Robins, P., Neill, S., Lewis, M., & Ward, S. (2015). Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Applied Energy, 147, 510–522.CrossRef
go back to reference Roc, T., Conley, D., & Greaves, D. (2013). Methodology for tidal turbine representation in ocean circulation model. Renewable Energy, 51, 448–464.CrossRef Roc, T., Conley, D., & Greaves, D. (2013). Methodology for tidal turbine representation in ocean circulation model. Renewable Energy, 51, 448–464.CrossRef
go back to reference Roc, T., Greaves, D., Thyng, K., & Conley, D. (2014). Tidal turbine representation in an ocean circulation model: Towards realistic applications. Ocean Engineering, 78, 95–111.CrossRef Roc, T., Greaves, D., Thyng, K., & Conley, D. (2014). Tidal turbine representation in an ocean circulation model: Towards realistic applications. Ocean Engineering, 78, 95–111.CrossRef
go back to reference Shields, M., Woolf, D., Grist, E., Kerr, S., Jackson, A., Harris, R., et al. (2011). Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment. Ocean and Coastal Management, 54, 2–9.CrossRef Shields, M., Woolf, D., Grist, E., Kerr, S., Jackson, A., Harris, R., et al. (2011). Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment. Ocean and Coastal Management, 54, 2–9.CrossRef
go back to reference Stallard, T., Collings, R., Feng, T., & Whelan, J. (2013). Interactions between tidal turbine wakes: Experimental study of a group of three-bladed rotors. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, 20120159.CrossRef Stallard, T., Collings, R., Feng, T., & Whelan, J. (2013). Interactions between tidal turbine wakes: Experimental study of a group of three-bladed rotors. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, 20120159.CrossRef
go back to reference Tritton, D. (1988). Physical fluid dynamics (2nd ed.). London: Clarendon Press. Tritton, D. (1988). Physical fluid dynamics (2nd ed.). London: Clarendon Press.
go back to reference Vennell, R. (2010). Tuning tidal turbines in a channel. Journal of Fluid Mechanics, 663, 253–267.CrossRef Vennell, R. (2010). Tuning tidal turbines in a channel. Journal of Fluid Mechanics, 663, 253–267.CrossRef
go back to reference Vennell, R. (2012). Realizing the potential of tidal currents and the efficiency of turbine farms in a channel. Renewable Energy, 47, 95–102.CrossRef Vennell, R. (2012). Realizing the potential of tidal currents and the efficiency of turbine farms in a channel. Renewable Energy, 47, 95–102.CrossRef
go back to reference Vennell, R. (2013). Exceeding the Betz limit with tidal turbines. Renewable Energy, 55, 277–285.CrossRef Vennell, R. (2013). Exceeding the Betz limit with tidal turbines. Renewable Energy, 55, 277–285.CrossRef
go back to reference Wang, Z., Jeuken, C., & de Vriend, H. (1999). Tidal asymmetry and residual sediment transport in estuaries. Technical Report Z2749, WL Delft Hydraulics, Delft, Netherlands. Wang, Z., Jeuken, C., & de Vriend, H. (1999). Tidal asymmetry and residual sediment transport in estuaries. Technical Report Z2749, WL Delft Hydraulics, Delft, Netherlands.
Metadata
Title
Assessing the Impact of Rows of Tidal-Stream Turbines on the Overtides of the M2
Authors
D. Potter
S. Ilić
A. Folkard
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2081-5_13