Skip to main content
Top
Published in: Wireless Personal Communications 3/2020

05-08-2020

Assessment of Denim and Photo Paper Substrate-Based Microstrip Antennas for Wearable Biomedical Sensing

Authors: Nikita Jattalwar, Suresh S. Balpande, J. A. Shrawankar

Published in: Wireless Personal Communications | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The medical field has witnessed an exponential growth of wearable devices mainly due to the advancement in wireless communication and antenna technology. There is a demand for wearable antennas, which are lightweight, flexible, and ease of integration into the fabric which suits on-body applications. Therefore, this work presents the design, fabrication, and analysis of two microstrip antennas using denim cloth and stacked photo paper as substrate material. The novelty of these antennas is the use of silver fabric as ground and radiating patch-conducting layer, which has resulted in significant improvement in overall antenna performance. It is observed that our fabricated antennas have exhibited a gain of 8.71 dB with VSWR of 1.32 for denim and gain of 2.45 dB with VSWR of 1.03 for photo paper substrates respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Laura, C., et al. (2017). Wearable antennas for remote health care monitoring systems. International Journal of Antennas and Propagation, 2017. Article ID 3012341. Laura, C., et al. (2017). Wearable antennas for remote health care monitoring systems. International Journal of Antennas and Propagation, 2017. Article ID 3012341.
2.
go back to reference Cote, G. L., Lec, R. M., & Pishko, M. V. (2003). Emerging biomedical sensing technologies and their applications. IEEE Sensors Journal, 3(3), 251–266.CrossRef Cote, G. L., Lec, R. M., & Pishko, M. V. (2003). Emerging biomedical sensing technologies and their applications. IEEE Sensors Journal, 3(3), 251–266.CrossRef
3.
go back to reference Balpande, S. S., Kalambe, J. P., & Pande, R. S. (2019). Development of strain energy harvester as an alternative power source for the wearable biomedical diagnostic system. Micro & Nano Letters, 14(7), 777–781.CrossRef Balpande, S. S., Kalambe, J. P., & Pande, R. S. (2019). Development of strain energy harvester as an alternative power source for the wearable biomedical diagnostic system. Micro & Nano Letters, 14(7), 777–781.CrossRef
4.
go back to reference Lande, S. B., & Balpande, S. S. (2018). FPAA based design of assistive listening device for hearing disorders people. Helix, 8(6), 4446–4452.CrossRef Lande, S. B., & Balpande, S. S. (2018). FPAA based design of assistive listening device for hearing disorders people. Helix, 8(6), 4446–4452.CrossRef
5.
go back to reference Balpande, S. S., Kalambe, J., & Pande, R. S. (2018). Vibration energy harvester driven wearable biomedical diagnostic system. In 2018 IEEE 13th annual international conference on nano/micro engineered and molecular systems (NEMS), Singapore (pp. 448–451). Balpande, S. S., Kalambe, J., & Pande, R. S. (2018). Vibration energy harvester driven wearable biomedical diagnostic system. In 2018 IEEE 13th annual international conference on nano/micro engineered and molecular systems (NEMS), Singapore (pp. 448–451).
6.
go back to reference El Hajj, W., Person, C., & Wiart, J. (2014). Novel investigation of a broadband integrated inverted-F antenna design; Application for wearable antenna. IEEE Transactions on Antennas and Propagation, 62(7), 3843–3846.CrossRef El Hajj, W., Person, C., & Wiart, J. (2014). Novel investigation of a broadband integrated inverted-F antenna design; Application for wearable antenna. IEEE Transactions on Antennas and Propagation, 62(7), 3843–3846.CrossRef
7.
go back to reference Kaur, G., et al. (2015). Antennas for biomedical applications. Biomedical Engineering Letters, 5(3), 203–212.CrossRef Kaur, G., et al. (2015). Antennas for biomedical applications. Biomedical Engineering Letters, 5(3), 203–212.CrossRef
8.
go back to reference Balpande, S. S., et al. (2009). Modeling of cantilever based power harvester as an innovative power source for RFID tag. In IEEE International conference on emerging trends in engineering & technology (pp. 13–18). Balpande, S. S., et al. (2009). Modeling of cantilever based power harvester as an innovative power source for RFID tag. In IEEE International conference on emerging trends in engineering & technology (pp. 13–18).
9.
go back to reference Kim, S., et al. (2012). Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications. IEEE Antennas and Wireless Propagation Letters, 11, 663–666.CrossRef Kim, S., et al. (2012). Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications. IEEE Antennas and Wireless Propagation Letters, 11, 663–666.CrossRef
10.
go back to reference Carvalho, H., Catarino, A. P., Rocha, A., & Postolache, O. (2014). Health monitoring using textile sensors and electrodes: An overview and integration of technologies. In 2014 IEEE international symposium on medical measurements and applications (pp. 1–6). Carvalho, H., Catarino, A. P., Rocha, A., & Postolache, O. (2014). Health monitoring using textile sensors and electrodes: An overview and integration of technologies. In 2014 IEEE international symposium on medical measurements and applications (pp. 1–6).
11.
go back to reference Balpande, S., & Yenorkar, S. (2019). Optimization of energy harvester for trapping maximum body motions to power wearables. Sensor Letters, 17(1), 46–54(9).CrossRef Balpande, S., & Yenorkar, S. (2019). Optimization of energy harvester for trapping maximum body motions to power wearables. Sensor Letters, 17(1), 46–54(9).CrossRef
12.
go back to reference Dhone, M. D., Balpande, S., & Kalambe, J. (2019). Energy harvester: A green power source for wearable biosensors. Sensor Letters, 17(1), 55–63(9).CrossRef Dhone, M. D., Balpande, S., & Kalambe, J. (2019). Energy harvester: A green power source for wearable biosensors. Sensor Letters, 17(1), 55–63(9).CrossRef
13.
go back to reference Balpande, S. S., Pande, R. S., & Patrikar, R. M. (2016). Design and low cost fabrication of green vibration energy harvester. Sensors and Actuators A: Physical, 251, 134–141.CrossRef Balpande, S. S., Pande, R. S., & Patrikar, R. M. (2016). Design and low cost fabrication of green vibration energy harvester. Sensors and Actuators A: Physical, 251, 134–141.CrossRef
14.
go back to reference Balpande, S. S., Bhaiyya, M. L., & Pande, R. S. (2017). Low-cost fabrication of polymer substrate-based piezoelectric microgenerator with PPE, IDE and ME. Electronics Letters, 53(5), 341–343.CrossRef Balpande, S. S., Bhaiyya, M. L., & Pande, R. S. (2017). Low-cost fabrication of polymer substrate-based piezoelectric microgenerator with PPE, IDE and ME. Electronics Letters, 53(5), 341–343.CrossRef
15.
go back to reference Simorangkir, R. B. V. B., Yang, Y., Matekovits, L., & Essell, K. P. (2017). Dual-band dual-mode textile antenna on PDMS substrate for body-centric communications. IEEE Antennas and Wireless Propagation Letters, 16, 677–680.CrossRef Simorangkir, R. B. V. B., Yang, Y., Matekovits, L., & Essell, K. P. (2017). Dual-band dual-mode textile antenna on PDMS substrate for body-centric communications. IEEE Antennas and Wireless Propagation Letters, 16, 677–680.CrossRef
16.
go back to reference Elobaid, H. A. E., Rahim, S. K. A., Himdi, M., Castel, X., & Kasgari, M. A. (2017). A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks. IEEE Antennas and Wireless Propagation Letters, 16, 1333–1336.CrossRef Elobaid, H. A. E., Rahim, S. K. A., Himdi, M., Castel, X., & Kasgari, M. A. (2017). A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks. IEEE Antennas and Wireless Propagation Letters, 16, 1333–1336.CrossRef
17.
18.
go back to reference Saghlatoon, H., Björninen, T., Sydänheimo, L., Tentzeris, M. M., & Ukkonen, L. (2015). Inkjet-printed wideband planar monopole antenna on cardboard for RF energy-harvesting applications. IEEE Antennas and Wireless Propagation Letters, 14, 325–328.CrossRef Saghlatoon, H., Björninen, T., Sydänheimo, L., Tentzeris, M. M., & Ukkonen, L. (2015). Inkjet-printed wideband planar monopole antenna on cardboard for RF energy-harvesting applications. IEEE Antennas and Wireless Propagation Letters, 14, 325–328.CrossRef
19.
go back to reference Dhone, M. D., Gawatre, P. G., & Balpande, S. S. (2018). Frequency band widening technique for cantilever-based vibration energy harvesters through dynamics of fluid motion. Materials Science for Energy Technologies, 1(1), 84–90.CrossRef Dhone, M. D., Gawatre, P. G., & Balpande, S. S. (2018). Frequency band widening technique for cantilever-based vibration energy harvesters through dynamics of fluid motion. Materials Science for Energy Technologies, 1(1), 84–90.CrossRef
21.
go back to reference Chen, Z., et al. (2017). Stretchable conductive elastomer for wireless wearable communication applications. Scientific Reports, 7, 10958.CrossRef Chen, Z., et al. (2017). Stretchable conductive elastomer for wireless wearable communication applications. Scientific Reports, 7, 10958.CrossRef
22.
go back to reference Moro, R., Agneessens, S., Rogier, H., & Bozzi, M. (2012). Wearable textile antenna in substrate integrated waveguide technology. Electronics Letters, 48(16), 985–987.CrossRef Moro, R., Agneessens, S., Rogier, H., & Bozzi, M. (2012). Wearable textile antenna in substrate integrated waveguide technology. Electronics Letters, 48(16), 985–987.CrossRef
23.
go back to reference Ferreira, D., et al. (2017). Wearable textile antennas: Examining the effect of bending on their performance. IEEE Antennas and Propagation Magazine, 59(3), 54–59.CrossRef Ferreira, D., et al. (2017). Wearable textile antennas: Examining the effect of bending on their performance. IEEE Antennas and Propagation Magazine, 59(3), 54–59.CrossRef
24.
go back to reference Jattalwar, N., Shrawankar, J., & Balpande, S. Assessment of different substrates for the design of microstrip antenna. In 2nd international conference on materials, applied physics & engineering (ICMAE), Indore, India. Jattalwar, N., Shrawankar, J., & Balpande, S. Assessment of different substrates for the design of microstrip antenna. In 2nd international conference on materials, applied physics & engineering (ICMAE), Indore, India.
25.
go back to reference Siriya, P., Shrawankar, J. A., & Balpande, S. S. (2019). Design and development of inset feed microstrip patch antennas using various substrates. International Journal of Engineering and Advanced Technology (IJEAT), 8(5). ISSN: 2249-8958. Siriya, P., Shrawankar, J. A., & Balpande, S. S. (2019). Design and development of inset feed microstrip patch antennas using various substrates. International Journal of Engineering and Advanced Technology (IJEAT), 8(5). ISSN: 2249-8958.
26.
go back to reference Balanis, C. A. Antenna theory: Analysis and design (3rd edn, pp. 817–820). Wiley India edition. Balanis, C. A. Antenna theory: Analysis and design (3rd edn, pp. 817–820). Wiley India edition.
27.
go back to reference Pozar, D. M. (2012). Microwave engineering (pp. 148–149). Wiley. Pozar, D. M. (2012). Microwave engineering (pp. 148–149). Wiley.
Metadata
Title
Assessment of Denim and Photo Paper Substrate-Based Microstrip Antennas for Wearable Biomedical Sensing
Authors
Nikita Jattalwar
Suresh S. Balpande
J. A. Shrawankar
Publication date
05-08-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07665-9

Other articles of this Issue 3/2020

Wireless Personal Communications 3/2020 Go to the issue