Skip to main content
Top
Published in: Flow, Turbulence and Combustion 3/2018

28-03-2018

Assessment of FSD and SDR Closures for Turbulent Flames of Alternative Fuels

Published in: Flow, Turbulence and Combustion | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Detailed-chemistry DNS studies are becoming more common due to the advent of more powerful modern computer architectures, and as a result more realistic flames can be simulated. Such flames involve many alternative fuels such as syngas and blast furnace gas, which are usually composed of many species and of varying proportions. In this study, we evaluate whether some of the commonly used models for the scalar dissipation rate and flame surface density can be used to model such flames in the LES context. A priori assessments are conducted using DNS data of multi-component fuel turbulent premixed flames. These flames offer unique challenges because of their complex structure having many distinct consumption layers for the different fuel components unlike in a single-component fuel. Some of the models tested showed good agreement with the DNS data and thus they can be used for the multi-component fuel combustion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. En. Combust. Sc. 38, 782–817 (2012)CrossRef Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. En. Combust. Sc. 38, 782–817 (2012)CrossRef
2.
go back to reference Veynante, D., Vervisch, L.: Turbulent combustion modelling. Prog. En. Combust. Sc. 28, 193–266 (2002)CrossRef Veynante, D., Vervisch, L.: Turbulent combustion modelling. Prog. En. Combust. Sc. 28, 193–266 (2002)CrossRef
3.
go back to reference Mantel, T., Borghi, R.: A new model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame 96, 443–457 (1994)CrossRef Mantel, T., Borghi, R.: A new model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame 96, 443–457 (1994)CrossRef
4.
go back to reference Borghi, R., Dutoya, D.: On the scales of the fluctuations in turbulent combustion. Proc. Combust. Inst. 17, 235–244 (1979)CrossRef Borghi, R., Dutoya, D.: On the scales of the fluctuations in turbulent combustion. Proc. Combust. Inst. 17, 235–244 (1979)CrossRef
5.
go back to reference Marble, F.E., Broadwell, J.E.: The coherent flame model for turbulent chemical reactions. Tech. Rep. TRW-9-PU Project Squid (1977) Marble, F.E., Broadwell, J.E.: The coherent flame model for turbulent chemical reactions. Tech. Rep. TRW-9-PU Project Squid (1977)
6.
go back to reference Candel, S.M., Maistret, E., Darabiha, N., Poinsot, T., Veynante, D., Lacas, F.: Experimental and numerical studies of turbulent ducted flames. Marb. Symp., 209–236 (1988) Candel, S.M., Maistret, E., Darabiha, N., Poinsot, T., Veynante, D., Lacas, F.: Experimental and numerical studies of turbulent ducted flames. Marb. Symp., 209–236 (1988)
8.
go back to reference Bray, K.N.C., Champion, M., Libby, P.A.: The interaction between turbulence and chemistry in premixed turbulent flames. Turbulent Reactive Flows, Lecture notes in engineering, pp. 541-563. Springer Verlag Bray, K.N.C., Champion, M., Libby, P.A.: The interaction between turbulence and chemistry in premixed turbulent flames. Turbulent Reactive Flows, Lecture notes in engineering, pp. 541-563. Springer Verlag
9.
go back to reference Bray, K.N.C., Moss, J.B.: A unified statistical model of the premixed turbulent flame. Acta Astron. 4, 291–319 (1977)CrossRef Bray, K.N.C., Moss, J.B.: A unified statistical model of the premixed turbulent flame. Acta Astron. 4, 291–319 (1977)CrossRef
10.
go back to reference Borghi, R.: Turbulent premixed combustion: further discussions on scales of fluctuations. Combust. Flame 80, 304–312 (1990)CrossRef Borghi, R.: Turbulent premixed combustion: further discussions on scales of fluctuations. Combust. Flame 80, 304–312 (1990)CrossRef
11.
go back to reference Mura, A., Borghi, R.: Towards an extended scalar dissipation equation for turbulent premixed combustion. Combust. Flame 133, 193–196 (2003)CrossRef Mura, A., Borghi, R.: Towards an extended scalar dissipation equation for turbulent premixed combustion. Combust. Flame 133, 193–196 (2003)CrossRef
12.
go back to reference Swaminathan, N., Grout, R.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102 (2006)MathSciNetCrossRef Swaminathan, N., Grout, R.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102 (2006)MathSciNetCrossRef
13.
go back to reference Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling and its validation. Combust. Sci. Tech. 181, 518–535 (2009)CrossRef Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling and its validation. Combust. Sci. Tech. 181, 518–535 (2009)CrossRef
14.
go back to reference Chakraborty, N., Swaminathan, N.: Influence of the Damköhler number on turbulence-scalar interaction in premixed flames I: Physical insight. Phys. Fluids 19, 045103 (2007)CrossRef Chakraborty, N., Swaminathan, N.: Influence of the Damköhler number on turbulence-scalar interaction in premixed flames I: Physical insight. Phys. Fluids 19, 045103 (2007)CrossRef
15.
go back to reference Chakraborty, N., Swaminathan, N.: Influence of the Damköhler number on turbulence-scalar interaction in premixed flames II: Model development. Phys. Fluids 19, 045104 (2007)CrossRef Chakraborty, N., Swaminathan, N.: Influence of the Damköhler number on turbulence-scalar interaction in premixed flames II: Model development. Phys. Fluids 19, 045104 (2007)CrossRef
16.
go back to reference Mura, A., Tsuboi, K., Hasegawa, T.: Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data. Combust. Th. Model. 12, 671–698 (2008)CrossRef Mura, A., Tsuboi, K., Hasegawa, T.: Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data. Combust. Th. Model. 12, 671–698 (2008)CrossRef
17.
go back to reference Angelberger, C., Veynante, D., Egolfopoulos, F.: LES of chemical and acoustic forcing of a premixed dump combustor. Flow Turb. Combust. 65, 205–222 (2000)CrossRef Angelberger, C., Veynante, D., Egolfopoulos, F.: LES of chemical and acoustic forcing of a premixed dump combustor. Flow Turb. Combust. 65, 205–222 (2000)CrossRef
18.
go back to reference Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: Non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)CrossRef Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: Non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)CrossRef
19.
go back to reference Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: Dynamic formulation. Combust. Flame 131, 181–197 (2002)CrossRef Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: Dynamic formulation. Combust. Flame 131, 181–197 (2002)CrossRef
20.
go back to reference Fureby, C.: A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30, 593–601 (2005)CrossRef Fureby, C.: A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30, 593–601 (2005)CrossRef
21.
go back to reference Grinstein, F.F., Fureby, C.: LES studies of the flow in a swirl gas combustor. Proc. Combust. Inst. 2, 1791–1798 (2005)CrossRef Grinstein, F.F., Fureby, C.: LES studies of the flow in a swirl gas combustor. Proc. Combust. Inst. 2, 1791–1798 (2005)CrossRef
22.
go back to reference Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 11, 2199–2213 (2011)CrossRef Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 11, 2199–2213 (2011)CrossRef
23.
go back to reference Wang, G., Boileau, M., Veynante, D., Truffin, K.: Large eddy simulation of a growing turbulent premixed flame kernel using a dynamic flame surface density model. Combust. Flame 159, 2742–2754 (2012)CrossRef Wang, G., Boileau, M., Veynante, D., Truffin, K.: Large eddy simulation of a growing turbulent premixed flame kernel using a dynamic flame surface density model. Combust. Flame 159, 2742–2754 (2012)CrossRef
24.
go back to reference Volpiani, P.S., Schmitt, T., Veynante, D.: A posteriori tests of a dynamic thickened flame model for large Eddy simulations of turbulent premixed combustion. Combust. Flame 174, 166–178 (2016)CrossRef Volpiani, P.S., Schmitt, T., Veynante, D.: A posteriori tests of a dynamic thickened flame model for large Eddy simulations of turbulent premixed combustion. Combust. Flame 174, 166–178 (2016)CrossRef
25.
go back to reference Mouriaux, S., Colin, O., Veynatne, D.: Adaptation of a dynamic wrinkling model to an engine configuration. Proc. Combust. Inst. 36, 3415–3422 (2017)CrossRef Mouriaux, S., Colin, O., Veynatne, D.: Adaptation of a dynamic wrinkling model to an engine configuration. Proc. Combust. Inst. 36, 3415–3422 (2017)CrossRef
26.
go back to reference Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)CrossRef Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)CrossRef
27.
go back to reference Gulder, O., Smallwood, G.J.: Inner cut-off scale of flame surface wrinkling in turbulent premixed flames. Combust. Flame 103, 107–114 (1995)CrossRef Gulder, O., Smallwood, G.J.: Inner cut-off scale of flame surface wrinkling in turbulent premixed flames. Combust. Flame 103, 107–114 (1995)CrossRef
28.
go back to reference Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large Eddy simulation of turbulent premixed combustion. Phys. Fluids 16, 91–94 (2005)CrossRef Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large Eddy simulation of turbulent premixed combustion. Phys. Fluids 16, 91–94 (2005)CrossRef
29.
go back to reference Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large Eddy simulation. Phys. Fluids 20, 085108 (2008)CrossRef Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large Eddy simulation. Phys. Fluids 20, 085108 (2008)CrossRef
30.
go back to reference Roberts, W.L., Driscoll, J.F., Drake, M.C., Goss, L.P.: Images of the quenching of a flame by a vortex-to quantify regimes of turbulent combustion. Combust. Flame 94, 58–69 (1993)CrossRef Roberts, W.L., Driscoll, J.F., Drake, M.C., Goss, L.P.: Images of the quenching of a flame by a vortex-to quantify regimes of turbulent combustion. Combust. Flame 94, 58–69 (1993)CrossRef
31.
go back to reference North, G.L., Santavicca, D.A.: The fractal nature of turbulent premixed flames. Combust. Sc. Techn. 72, 215–232 (1990)CrossRef North, G.L., Santavicca, D.A.: The fractal nature of turbulent premixed flames. Combust. Sc. Techn. 72, 215–232 (1990)CrossRef
32.
go back to reference Kerstein, A.: Fractal dimension of turbulent premixed flames. Comb. Sc. Techn. 60, 441–445 (1988)CrossRef Kerstein, A.: Fractal dimension of turbulent premixed flames. Comb. Sc. Techn. 60, 441–445 (1988)CrossRef
33.
go back to reference Katragadda, M., Chakraborty, N., Cant, R.S.: Effects of turbulent Reynolds number on the performance of algebraic flame surface density models for large Eddy simulation in the thin reaction zones regime: A direct numerical simulation analysis. J. Comb., 794671 (2012) Katragadda, M., Chakraborty, N., Cant, R.S.: Effects of turbulent Reynolds number on the performance of algebraic flame surface density models for large Eddy simulation in the thin reaction zones regime: A direct numerical simulation analysis. J. Comb., 794671 (2012)
34.
go back to reference Dunstan, T., Minamoto, Y., Swaminathan, N., Chakraborty, N.: Scalar dissipation rate modelling for large Eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 34, 1193–1201 (2013)CrossRef Dunstan, T., Minamoto, Y., Swaminathan, N., Chakraborty, N.: Scalar dissipation rate modelling for large Eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 34, 1193–1201 (2013)CrossRef
35.
go back to reference Gao, Y., Chakraborty, N., Swaminathan, N.: Algebraic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion. Comb. Sc. Tech. 186, 1309–1337 (2014)CrossRef Gao, Y., Chakraborty, N., Swaminathan, N.: Algebraic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion. Comb. Sc. Tech. 186, 1309–1337 (2014)CrossRef
36.
go back to reference Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling and its validation. Combust. Sci. Technol. 181, 518–535 (2009)CrossRef Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling and its validation. Combust. Sci. Technol. 181, 518–535 (2009)CrossRef
37.
go back to reference Girimaji, S., Zhou, Y.: Analysis and modelling of sub-grid scalar mixing using numerical data. Phys. Fluids 8, 1224 (1996)CrossRef Girimaji, S., Zhou, Y.: Analysis and modelling of sub-grid scalar mixing using numerical data. Phys. Fluids 8, 1224 (1996)CrossRef
38.
go back to reference Gao, Y., Chakraborty, N., Swaminathan, N.: Dynamic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion: A direct numerical simulation analysis. Flow Turb. Combust. 95, 775–802 (2015)CrossRef Gao, Y., Chakraborty, N., Swaminathan, N.: Dynamic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion: A direct numerical simulation analysis. Flow Turb. Combust. 95, 775–802 (2015)CrossRef
39.
go back to reference Langella, I., Swaminathan, N., Gao, Y., Chakraborty, N.: Assessment of dynamic closure for premixed combustion large Eddy simulation. Combust. Th. Model. 19, 628–656 (2015)MathSciNetCrossRef Langella, I., Swaminathan, N., Gao, Y., Chakraborty, N.: Assessment of dynamic closure for premixed combustion large Eddy simulation. Combust. Th. Model. 19, 628–656 (2015)MathSciNetCrossRef
40.
go back to reference Langella, I., Swaminathan, N.: Unstrained and strained flamelets for LES of premixed combustion. Combust. Th. Model. 20, 410–440 (2016)MathSciNetCrossRef Langella, I., Swaminathan, N.: Unstrained and strained flamelets for LES of premixed combustion. Combust. Th. Model. 20, 410–440 (2016)MathSciNetCrossRef
41.
go back to reference Langella, I., Swaminathan, N., Pitz, R.W.: Application of unstrained flamelet SGS closure for multi-regime premixed combustion. Combust. Flame. 173, 161–178 (2016)CrossRef Langella, I., Swaminathan, N., Pitz, R.W.: Application of unstrained flamelet SGS closure for multi-regime premixed combustion. Combust. Flame. 173, 161–178 (2016)CrossRef
42.
go back to reference Gao, Y., Minamoto, Y., Tanahashi, M., Chakraborty, N.: A priori assessment of scalar dissipation rate closure for large Eddy simulations of turbulent premixed combustion using a detailed chemistry direct numerical simulation database. Combust. Sc. Tech. 188, 1398–1423 (2016)CrossRef Gao, Y., Minamoto, Y., Tanahashi, M., Chakraborty, N.: A priori assessment of scalar dissipation rate closure for large Eddy simulations of turbulent premixed combustion using a detailed chemistry direct numerical simulation database. Combust. Sc. Tech. 188, 1398–1423 (2016)CrossRef
43.
go back to reference Minamoto, Y., Fukushima, N., Tanahashi, M., Miyauchi, T., Dunstan, T., Swaminathan, N.: Effect of flow-geometry on turbulence scalar interaction in premixed flames. Phys. Fluids 23, 125107 (2011)CrossRef Minamoto, Y., Fukushima, N., Tanahashi, M., Miyauchi, T., Dunstan, T., Swaminathan, N.: Effect of flow-geometry on turbulence scalar interaction in premixed flames. Phys. Fluids 23, 125107 (2011)CrossRef
44.
go back to reference Das, A.K., Kumar, K., Sung, C.: Laminar flame speeds of moist syngas mixtures. Combust. Flame 158, 345–353 (2011)CrossRef Das, A.K., Kumar, K., Sung, C.: Laminar flame speeds of moist syngas mixtures. Combust. Flame 158, 345–353 (2011)CrossRef
45.
go back to reference Nikolaou, Z.M., Chen, J.Y., Swaminathan, N.: A 5-step reduced mechanism for combus- tion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H2O content. Combust. Flame 160, 56–75 (2013)CrossRef Nikolaou, Z.M., Chen, J.Y., Swaminathan, N.: A 5-step reduced mechanism for combus- tion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H2O content. Combust. Flame 160, 56–75 (2013)CrossRef
46.
go back to reference Singh, D., Takayuki, N., Saad, T., Qiao, L.: An experimental and kinetic study of syngas/air combustion at elevated temperatures and the effect of water addition. Fuel 94, 448–456 (2012)CrossRef Singh, D., Takayuki, N., Saad, T., Qiao, L.: An experimental and kinetic study of syngas/air combustion at elevated temperatures and the effect of water addition. Fuel 94, 448–456 (2012)CrossRef
47.
go back to reference Nikolaou, Z.M., Swaminathan, N.: Direct numerical simulation of complex fuel combustion with detailed chemistry: Physical insight and mean reaction rate modelling. Comb. Sc. Tech. 187, 1759–1789 (2015)CrossRef Nikolaou, Z.M., Swaminathan, N.: Direct numerical simulation of complex fuel combustion with detailed chemistry: Physical insight and mean reaction rate modelling. Comb. Sc. Tech. 187, 1759–1789 (2015)CrossRef
48.
go back to reference Cant, R.S.: SENGA2 User Guide, CUED/A–THERMO/TR67 September (2012) Cant, R.S.: SENGA2 User Guide, CUED/A–THERMO/TR67 September (2012)
49.
go back to reference Nikolaou, Z.M., Swaminathan, N.: Evaluation of a reduced mechanism for turbulent premixed combustion. Combust. Flame 161, 3085–3099 (2014)CrossRef Nikolaou, Z.M., Swaminathan, N.: Evaluation of a reduced mechanism for turbulent premixed combustion. Combust. Flame 161, 3085–3099 (2014)CrossRef
50.
go back to reference Nikolaou, Z., Swaminathan, N.: A 5-step reduced mechanism for combustion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H 2O content. Comb. Flame 160, 56–75 (2013)CrossRef Nikolaou, Z., Swaminathan, N.: A 5-step reduced mechanism for combustion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H 2O content. Comb. Flame 160, 56–75 (2013)CrossRef
51.
go back to reference Peters, N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (1999)CrossRef Peters, N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (1999)CrossRef
52.
go back to reference Nikolaou, Z., Swaminathan, N.: Heat release rate markers for premixed combustion. Comb. Flame 161, 3073–3084 (2014)CrossRef Nikolaou, Z., Swaminathan, N.: Heat release rate markers for premixed combustion. Comb. Flame 161, 3073–3084 (2014)CrossRef
53.
go back to reference Chatakonda, O., Hawkes, E.R., Aspden, A.J., Kerstein, A.R., Kolla, H., Chen, J.H.: On the fractal characteristics of low Damkohler number flames. Combust. Flame 120, 2422–2443 (2013)CrossRef Chatakonda, O., Hawkes, E.R., Aspden, A.J., Kerstein, A.R., Kolla, H., Chen, J.H.: On the fractal characteristics of low Damkohler number flames. Combust. Flame 120, 2422–2443 (2013)CrossRef
54.
go back to reference Butz, D., Gao, Y., Kempf, A.M., Chakraborty, N.: Large Eddy simulations of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure. Combust. Flame 162, 3180–3196 (2015)CrossRef Butz, D., Gao, Y., Kempf, A.M., Chakraborty, N.: Large Eddy simulations of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure. Combust. Flame 162, 3180–3196 (2015)CrossRef
55.
go back to reference Cant, R.S., Pope, S.B., Bray, K.N.C.: Modelling of flamelet surface to volume ratio in turbulent premixed combustion. Proc. Combust. Inst. 23, 809–815 (1990)CrossRef Cant, R.S., Pope, S.B., Bray, K.N.C.: Modelling of flamelet surface to volume ratio in turbulent premixed combustion. Proc. Combust. Inst. 23, 809–815 (1990)CrossRef
56.
go back to reference Hawkes, E.R., Cant, R.S.: A flame surface density approach to large eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 28, 51–58 (2000)CrossRef Hawkes, E.R., Cant, R.S.: A flame surface density approach to large eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 28, 51–58 (2000)CrossRef
57.
go back to reference Hawkes, E.R., Cant, R.S.: Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame 126, 1617–1629 (2001)CrossRef Hawkes, E.R., Cant, R.S.: Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame 126, 1617–1629 (2001)CrossRef
58.
go back to reference Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of large Eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)CrossRef Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of large Eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)CrossRef
Metadata
Title
Assessment of FSD and SDR Closures for Turbulent Flames of Alternative Fuels
Publication date
28-03-2018
Published in
Flow, Turbulence and Combustion / Issue 3/2018
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9903-9

Other articles of this Issue 3/2018

Flow, Turbulence and Combustion 3/2018 Go to the issue

Premium Partners