Skip to main content
Top
Published in: Designs, Codes and Cryptography 5/2021

15-02-2021

Asymmetric entanglement-assisted quantum codes: bound and constructions

Authors: Hualu Liu, Peng Hu, Xiusheng Liu

Published in: Designs, Codes and Cryptography | Issue 5/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The theory of quantum error-correcting codes has been extended to asymmetric quantum channels-qubit-flip and phase-shift errors may have equal or different probabilities. Previous work in constructing quantum error-correcting codes has focused on code constructions for symmetric quantum channels. Recently, Galindo et al. introduced the concept of asymmetric entanglement-assisted quantum error-correcting (AEAQEC) code, and gave a Gilbert–Varshamov bound for AEAQEC codes. Then they present the explicit computation of the parameters of AEAQEC codes coming from BCH codes. In this paper, we first establish a bound for pure AEAQEC codes similar to the quantum Singleton bound, and introduce the definition of pure AEAQEC MDS codes. Then we construct three new families of AQEAEC codes by means of Vandermonde matrices, extended GRS codes and cyclic codes. The AEQAEC codes here have better parameters than the ones available in the literature.
Literature
1.
go back to reference Aly S.A.: Asymmetric quantum BCH codes. Proc. IEEE Int. Conf. Comput. Eng. Syst. 157–162 (2008). Aly S.A.: Asymmetric quantum BCH codes. Proc. IEEE Int. Conf. Comput. Eng. Syst. 157–162 (2008).
2.
go back to reference Aly S.A., Klappenecker A., Sarvepalli P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007).MathSciNetCrossRef Aly S.A., Klappenecker A., Sarvepalli P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007).MathSciNetCrossRef
3.
go back to reference Bowen G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66, 052313 (2002).CrossRef Bowen G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66, 052313 (2002).CrossRef
4.
5.
go back to reference Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).MathSciNetCrossRef Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).MathSciNetCrossRef
6.
go back to reference Fan J., Chen H., Xu J.: Construction of \(q\)-ary entanglement-assisted quantum MDS codes with minmum distanc greater than \(q+1\). Quantum Inf. Comput. 16, 423–434 (2016).MathSciNet Fan J., Chen H., Xu J.: Construction of \(q\)-ary entanglement-assisted quantum MDS codes with minmum distanc greater than \(q+1\). Quantum Inf. Comput. 16, 423–434 (2016).MathSciNet
7.
go back to reference Galindo C., Hernando F., Matsumoto R., Ruano D.: Asymmetric entanglement-assisted quantum error-correcting codes and BCH codes. IEEE Access 8, 18571–18579 (2019).CrossRef Galindo C., Hernando F., Matsumoto R., Ruano D.: Asymmetric entanglement-assisted quantum error-correcting codes and BCH codes. IEEE Access 8, 18571–18579 (2019).CrossRef
8.
9.
go back to reference Guenda K., Jitman S., Gulliver T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018).MathSciNetCrossRef Guenda K., Jitman S., Gulliver T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018).MathSciNetCrossRef
11.
go back to reference Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRef Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRef
14.
go back to reference Jin L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63, 2843–2847 (2017).MathSciNetMATH Jin L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63, 2843–2847 (2017).MathSciNetMATH
15.
go back to reference Koroglu M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18, 44 (2019).MathSciNetCrossRef Koroglu M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18, 44 (2019).MathSciNetCrossRef
16.
go back to reference Lai C.Y., Brun T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013).CrossRef Lai C.Y., Brun T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013).CrossRef
17.
go back to reference Leng R., Ma Z.: Constructions of new families of nonbinary asymmetric quantum BCH codes and subsystem BCH codes. Sci. China 55(3), 465–469 (2012).MathSciNetCrossRef Leng R., Ma Z.: Constructions of new families of nonbinary asymmetric quantum BCH codes and subsystem BCH codes. Sci. China 55(3), 465–469 (2012).MathSciNetCrossRef
18.
go back to reference Li L., Zhu S., Liu L., Kai X.: Entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 18, 153 (2019).MathSciNetCrossRef Li L., Zhu S., Liu L., Kai X.: Entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 18, 153 (2019).MathSciNetCrossRef
19.
go back to reference Liu X., Yu L., Hu P.: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019).MathSciNetCrossRef Liu X., Yu L., Hu P.: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019).MathSciNetCrossRef
20.
21.
go back to reference Lu L., Li R., Guo L., Ma Y., Liu Y.: Entanglement-assisted quantum MDS codes from negacyclic codes. Quantum Inf. Process. 17, 69 (2018).MathSciNetCrossRef Lu L., Li R., Guo L., Ma Y., Liu Y.: Entanglement-assisted quantum MDS codes from negacyclic codes. Quantum Inf. Process. 17, 69 (2018).MathSciNetCrossRef
22.
go back to reference Luo G., Cao X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process 18, 89 (2019).MathSciNetCrossRef Luo G., Cao X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process 18, 89 (2019).MathSciNetCrossRef
23.
go back to reference Luo G., Cao X., Chen X.: MDS codes with arbitrary dimensional hull and their applications. IEEE Trans. Inf. Theory 68(8), 2944–2952 (2019).CrossRef Luo G., Cao X., Chen X.: MDS codes with arbitrary dimensional hull and their applications. IEEE Trans. Inf. Theory 68(8), 2944–2952 (2019).CrossRef
24.
go back to reference Matsumoto R.: Improved Gilbert-Varshamov bound for entanglemen-assisted asymmetric quantum error correction by symplectic orthogonality. IEEE Trans. Quantum Eng. 1, 4100604 (2020).CrossRef Matsumoto R.: Improved Gilbert-Varshamov bound for entanglemen-assisted asymmetric quantum error correction by symplectic orthogonality. IEEE Trans. Quantum Eng. 1, 4100604 (2020).CrossRef
26.
go back to reference Sarvepalli P.K., Klappenecker A., Rotteler M.: Asymmetric quantum codes: constructions, bounds and performance. Proc. R. Soc. A 465, 1645–1672 (2009).MathSciNetCrossRef Sarvepalli P.K., Klappenecker A., Rotteler M.: Asymmetric quantum codes: constructions, bounds and performance. Proc. R. Soc. A 465, 1645–1672 (2009).MathSciNetCrossRef
27.
go back to reference Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995).CrossRef Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995).CrossRef
28.
go back to reference Steane A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2557 (1996).MathSciNetCrossRef Steane A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2557 (1996).MathSciNetCrossRef
30.
go back to reference Wang L., Feng K.Q., Ling S., et al.: Asymmetric quantum codes: characterization and constructions. IEEE Trans. Inform. Theory 56(6), 2938–2945 (2010).MathSciNetCrossRef Wang L., Feng K.Q., Ling S., et al.: Asymmetric quantum codes: characterization and constructions. IEEE Trans. Inform. Theory 56(6), 2938–2945 (2010).MathSciNetCrossRef
Metadata
Title
Asymmetric entanglement-assisted quantum codes: bound and constructions
Authors
Hualu Liu
Peng Hu
Xiusheng Liu
Publication date
15-02-2021
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 5/2021
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-021-00845-z

Other articles of this Issue 5/2021

Designs, Codes and Cryptography 5/2021 Go to the issue

Premium Partner