Skip to main content
Top
Published in: Designs, Codes and Cryptography 1/2017

14-05-2016

Asynchronous channel hopping systems from difference sets

Authors: Xiaotian Chen, Yue Zhou

Published in: Designs, Codes and Cryptography | Issue 1/2017

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In cognitive radio networks, the process for any two unlicensed (secondary) users (SU) to establish links through a common channel is called a rendezvous. It is hard to employ a common control channel to solve the rendezvous problem, because of the bottleneck of the single control channel. Asynchronous channels hopping (ACH) systems have been proposed and investigated to guarantee rendezvous without requirement of global synchronization and common control channels. An ACH system with N channels can be mathematically interpreted as a set of sequences of the same period T on the alphabet \(\{0,1,\ldots , N-1\}\) satisfying certain rotation closure properties. For each \(l\in \{0,1,\ldots , T-1 \}\), each \(j\in \{0,1,\ldots , N-1 \}\) and any two distinct sequences \(\mathbf u\), \(\mathbf v\) in an ACH system H, if there always exists i such that the i-th entries of \(\mathbf u\) and \(L^{l}(\mathbf v)\) are both identical to j where \(L^{l}(\mathbf v)\) denotes the cyclic shift of \(\mathbf v\) by l, then H is called a complete ACH system, which guarantees rendezvous between any two SUs who share at least one common channel. In this paper, we prove some properties of such systems. Moreover, we investigate the complete ACH systems, in each of which all SUs repeat the same (global) sequence associated with the system. One challenging research problem is to construct such ACH systems of period \(T=\beta N^2 + o(N^2)\) such that \(\beta \) is as small as possible. By applying mathematical tools such as group rings and (relative, relaxed) difference sets from combinatorial design theory, we obtain two constructions of them in which \(\beta =1,2\) respectively. Finally, we also present a simple and powerful approach to combining known ACH systems to produce new ones.
Literature
1.
go back to reference Baumert L.D.: Cyclic Difference Sets. Springer, Berlin (1971). Baumert L.D.: Cyclic Difference Sets. Springer, Berlin (1971).
2.
go back to reference Beth T., Jungnickel D., Lenz H.: Design Theory. Vol. I. f Encyclopedia of Mathematics and Its Applications, vol. 69, 2nd edn. Cambridge University Press, Cambridge (1999). Beth T., Jungnickel D., Lenz H.: Design Theory. Vol. I. f Encyclopedia of Mathematics and Its Applications, vol. 69, 2nd edn. Cambridge University Press, Cambridge (1999).
3.
go back to reference Bian K., Park J.-M.: Asynchronous channel hopping for establishing rendezvous in cognitive radio networks. In: 2011 Proceedings IEEE INFOCOM, pp. 236–240 (2011). Bian K., Park J.-M.: Asynchronous channel hopping for establishing rendezvous in cognitive radio networks. In: 2011 Proceedings IEEE INFOCOM, pp. 236–240 (2011).
4.
go back to reference Bian K., Park J.-M.: Maximizing rendezvous diversity in rendezvous protocols for decentralized cognitive radio networks. IEEE Trans. Mob. Comput. 12(7), 1294–1307 (2013). Bian K., Park J.-M.: Maximizing rendezvous diversity in rendezvous protocols for decentralized cognitive radio networks. IEEE Trans. Mob. Comput. 12(7), 1294–1307 (2013).
5.
go back to reference Bose R.C.: An affine analogue of Singer’s theorem. J. Indian Math. Soc. (N.S.) 6, 1–15 (1942). Bose R.C.: An affine analogue of Singer’s theorem. J. Indian Math. Soc. (N.S.) 6, 1–15 (1942).
6.
go back to reference Bosma W., Cannon J., Playoust C.: The MAGMA algebra system I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997). Bosma W., Cannon J., Playoust C.: The MAGMA algebra system I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997).
7.
go back to reference Chuang I.-H., Wu H.-Y., Kuo Y.-H.: A fast blind rendezvous method by alternate hop-and-wait channel hopping in cognitive radio networks. IEEE Trans. Mob. Comput. 13(10), 2171–2184 (2014). Chuang I.-H., Wu H.-Y., Kuo Y.-H.: A fast blind rendezvous method by alternate hop-and-wait channel hopping in cognitive radio networks. IEEE Trans. Mob. Comput. 13(10), 2171–2184 (2014).
8.
go back to reference Ćustić A., Krčadinac V., Zhou Y.: Tiling groups with difference sets. Electron. J. Comb. 22(2), P2.56 (2015). Ćustić A., Krčadinac V., Zhou Y.: Tiling groups with difference sets. Electron. J. Comb. 22(2), P2.56 (2015).
9.
go back to reference Davis J.A., Jedwab J.: A unifying construction for difference sets. J. Comb. Theory, Series A 80(1), 13–78 (1997). Davis J.A., Jedwab J.: A unifying construction for difference sets. J. Comb. Theory, Series A 80(1), 13–78 (1997).
10.
go back to reference Elliott J.E.H., Butson A.T.: Relative difference sets. Ill. J. Math. 10, 517–531 (1966). Elliott J.E.H., Butson A.T.: Relative difference sets. Ill. J. Math. 10, 517–531 (1966).
11.
go back to reference Gu Z., Hua Q.S., Wang Y., Lau F: Nearly optimal asynchronous blind rendezvous algorithm for cognitive radio networks. In: 2013 10th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 371–379 (2013). Gu Z., Hua Q.S., Wang Y., Lau F: Nearly optimal asynchronous blind rendezvous algorithm for cognitive radio networks. In: 2013 10th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 371–379 (2013).
12.
go back to reference Hiramine Y.: On (2n,2,2n,n) relative difference sets. J. Comb. Theory Ser. A 101(2), 281–284 (2003). Hiramine Y.: On (2n,2,2n,n) relative difference sets. J. Comb. Theory Ser. A 101(2), 281–284 (2003).
13.
go back to reference Hungerford T.W.: Algebra. Springer, New York (2012). Hungerford T.W.: Algebra. Springer, New York (2012).
14.
go back to reference Jia J., Zhang Q., Shen X.: HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management. IEEE J. Select. Areas Commun. 26(1), 106–117 (2008). Jia J., Zhang Q., Shen X.: HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management. IEEE J. Select. Areas Commun. 26(1), 106–117 (2008).
15.
go back to reference Jiang J.R., Tseng Y.C., Hsu C.S., Lai T.H: Quorum-based asynchronous power-saving protocols for IEEE 802.11 ad hoc networks. In: Proceedings of the 2003 International Conference on Parallel Processing, pp. 257–264 (2003). Jiang J.R., Tseng Y.C., Hsu C.S., Lai T.H: Quorum-based asynchronous power-saving protocols for IEEE 802.11 ad hoc networks. In: Proceedings of the 2003 International Conference on Parallel Processing, pp. 257–264 (2003).
16.
go back to reference Jungnickel D.: Finite Fields: Structure and Arithmetics. B.T. Wissenschaftsverlag, Mannheim (1993). Jungnickel D.: Finite Fields: Structure and Arithmetics. B.T. Wissenschaftsverlag, Mannheim (1993).
17.
go back to reference Jungnickel D., Pott A: Perfect and almost perfect sequences. Discret. Appl. Math. 95, 331–359 (1999). Jungnickel D., Pott A: Perfect and almost perfect sequences. Discret. Appl. Math. 95, 331–359 (1999).
18.
go back to reference Jungnickel D., Schmidt B: Difference sets: an update. In: Geometry, Combinatorial Designs and Related Structures (Spetses, 1996), London Mathematical Society. Lecture Note Series, vol. 245, pp. 89–112. Cambridge University Press, Cambridge (1997). Jungnickel D., Schmidt B: Difference sets: an update. In: Geometry, Combinatorial Designs and Related Structures (Spetses, 1996), London Mathematical Society. Lecture Note Series, vol. 245, pp. 89–112. Cambridge University Press, Cambridge (1997).
19.
go back to reference Jungnickel D., Schmidt B: Difference sets: a second update. Rendiconti del Circolo Matematico di Palermo. Serie II. Supplemento. 53, 89-118 (1998). Jungnickel D., Schmidt B: Difference sets: a second update. Rendiconti del Circolo Matematico di Palermo. Serie II. Supplemento. 53, 89-118 (1998).
20.
go back to reference Kondareddy Y., Agrawal P., Sivalingam K: Cognitive radio network setup without a common control channel. In: IEEE Military Communications Conference, 2008 (MILCOM 2008), pp. 1–6 (2008). Kondareddy Y., Agrawal P., Sivalingam K: Cognitive radio network setup without a common control channel. In: IEEE Military Communications Conference, 2008 (MILCOM 2008), pp. 1–6 (2008).
21.
go back to reference Lander E.S.: Symmetric Designs: An Algebraic Approach. Cambridge University Press, Cambridge (1983). Lander E.S.: Symmetric Designs: An Algebraic Approach. Cambridge University Press, Cambridge (1983).
22.
go back to reference Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997). Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997).
23.
go back to reference Liu H., Lin Z., Chu X., Leung Y.W.: Jump-stay rendezvous algorithm for cognitive radio networks. IEEE Trans. Parallel Distrib. Syst. 23(10), 1867–1881 (2012). Liu H., Lin Z., Chu X., Leung Y.W.: Jump-stay rendezvous algorithm for cognitive radio networks. IEEE Trans. Parallel Distrib. Syst. 23(10), 1867–1881 (2012).
24.
go back to reference Luk W.S., Wong T.T: Two new quorum based algorithms for distributed mutual exclusion. In: Proceedings of the 17th International Conference on Distributed Computing Systems, pp. 100–106 (1997). Luk W.S., Wong T.T: Two new quorum based algorithms for distributed mutual exclusion. In: Proceedings of the 17th International Conference on Distributed Computing Systems, pp. 100–106 (1997).
25.
go back to reference Ma L., Han X., Shen C.C: Dynamic open spectrum sharing MAC protocol for wireless ad hoc networks. In: 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2005), pp. 203–213 (2005). Ma L., Han X., Shen C.C: Dynamic open spectrum sharing MAC protocol for wireless ad hoc networks. In: 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2005), pp. 203–213 (2005).
26.
go back to reference Ma S.L., Schmidt B.: On \((p^a, p, p^a, p^{a-1})\)-relative difference sets. Des. Codes Cryptogr. 6(1), 57–71 (1995). Ma S.L., Schmidt B.: On \((p^a, p, p^a, p^{a-1})\)-relative difference sets. Des. Codes Cryptogr. 6(1), 57–71 (1995).
27.
go back to reference Mullen G.L., Panario D.: Handbook of Finite Fields. Chapman and Hall/CRC, Boca Raton (2013). Mullen G.L., Panario D.: Handbook of Finite Fields. Chapman and Hall/CRC, Boca Raton (2013).
28.
go back to reference Perez-Romero J., Sallent O., Agusti R., Giupponi L: A novel on-demand cognitive pilot channel enabling dynamic spectrum allocation. In: 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2007), pp. 46–54 (2007). Perez-Romero J., Sallent O., Agusti R., Giupponi L: A novel on-demand cognitive pilot channel enabling dynamic spectrum allocation. In: 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2007), pp. 46–54 (2007).
29.
go back to reference Pott A.: Finite geometry and character theory. Lecture Notes in Mathematics, vol. 1601. Springer, Berlin (1995). Pott A.: Finite geometry and character theory. Lecture Notes in Mathematics, vol. 1601. Springer, Berlin (1995).
30.
go back to reference Pott A., Wang Q., Zhou Y.: Sequences and functions derived from projective planes and their difference sets. In: Özbudak F., Rodríguez-Henríque, F. (eds.) Arithmetic of Finite Fields. Lecture Notes in Computer Science, vol. 7369, pp. 64–80. Springer, Berlin (2012). Pott A., Wang Q., Zhou Y.: Sequences and functions derived from projective planes and their difference sets. In: Özbudak F., Rodríguez-Henríque, F. (eds.) Arithmetic of Finite Fields. Lecture Notes in Computer Science, vol. 7369, pp. 64–80. Springer, Berlin (2012).
31.
go back to reference Schmidt B.: Cyclotomic integers and finite geometry. J. Am. Math. Soc. 12(4), 929–952 (1999). Schmidt B.: Cyclotomic integers and finite geometry. J. Am. Math. Soc. 12(4), 929–952 (1999).
32.
go back to reference Schmidt K.U., Zhou Y.: Planar functions over fields of characteristic two. J. Algebraic Comb. 40(2), 503–526 (2014). Schmidt K.U., Zhou Y.: Planar functions over fields of characteristic two. J. Algebraic Comb. 40(2), 503–526 (2014).
33.
go back to reference Shin J., Yang D., Kim C.: A channel rendezvous scheme for cognitive radio networks. IEEE Commun. Lett. 14(10), 954–956 (2010). Shin J., Yang D., Kim C.: A channel rendezvous scheme for cognitive radio networks. IEEE Commun. Lett. 14(10), 954–956 (2010).
34.
go back to reference Theis N., Thomas R., DaSilva L.: Rendezvous for cognitive radios. IEEE Trans. Mob. Comput. 10(2), 216–227 (2011). Theis N., Thomas R., DaSilva L.: Rendezvous for cognitive radios. IEEE Trans. Mob. Comput. 10(2), 216–227 (2011).
35.
go back to reference Wu K., Han F., Han F., Kong D: Rendezvous sequence construction in cognitive radio ad-hoc networks based on difference sets. In: 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 1840–1845 (2013). Wu K., Han F., Han F., Kong D: Rendezvous sequence construction in cognitive radio ad-hoc networks based on difference sets. In: 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 1840–1845 (2013).
36.
go back to reference Xiang Q.: Recent progress in algebraic design theory. Finite Fields Their Appl. 11(3), 622–653 (2005). Xiang Q.: Recent progress in algebraic design theory. Finite Fields Their Appl. 11(3), 622–653 (2005).
Metadata
Title
Asynchronous channel hopping systems from difference sets
Authors
Xiaotian Chen
Yue Zhou
Publication date
14-05-2016
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 1/2017
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0221-8

Other articles of this Issue 1/2017

Designs, Codes and Cryptography 1/2017 Go to the issue

Premium Partner