Skip to main content
Top
Published in: Tribology Letters 3/2013

01-12-2013 | Original Paper

Atomistic Simulation of Frictional Sliding Between Cellulose Iβ Nanocrystals

Authors: Xiawa Wu, Robert J. Moon, Ashlie Martini

Published in: Tribology Letters | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sliding friction between cellulose Iβ nanocrystals is studied using molecular dynamics simulation. The effects of sliding velocity, normal load, and relative angle between sliding surface are predicted, and the results analyzed in terms of the number of hydrogen bonds within and between the cellulose chains. We find that although the observed friction trends can be correlated with hydrogen bonding, it may not be the most significant factor in determining frictional behavior on cellulose nanocrystal surfaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Azizi Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2), 612–626 (2005)CrossRef Azizi Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2), 612–626 (2005)CrossRef
2.
go back to reference Bergenstråhle, M., Berglund, L.A., Mazeau, K.: Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J. Phys. Chem. B 111(30), 9138–9145 (2007)CrossRef Bergenstråhle, M., Berglund, L.A., Mazeau, K.: Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J. Phys. Chem. B 111(30), 9138–9145 (2007)CrossRef
3.
go back to reference Bogdanovic, G., Tiberg, F., Rutland, M.W.: Sliding friction between cellulose and silica surfaces. Langmuir 17(19), 5911–5916 (2001)CrossRef Bogdanovic, G., Tiberg, F., Rutland, M.W.: Sliding friction between cellulose and silica surfaces. Langmuir 17(19), 5911–5916 (2001)CrossRef
4.
go back to reference Bonelli, F., Manini, N., Cadelano, E., Colombo, L.: Atomistic simulations of the sliding friction of graphene flakes. Eur. Phys. J. B 70(4), 449–459 (2009)CrossRef Bonelli, F., Manini, N., Cadelano, E., Colombo, L.: Atomistic simulations of the sliding friction of graphene flakes. Eur. Phys. J. B 70(4), 449–459 (2009)CrossRef
5.
go back to reference Chen, J., Ratera, I., Park, J., Salmeron, M.: Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 96(23), 236102 (2006) Chen, J., Ratera, I., Park, J., Salmeron, M.: Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 96(23), 236102 (2006)
6.
go back to reference Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92(12), 126101 (2004)CrossRef Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92(12), 126101 (2004)CrossRef
7.
go back to reference Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: A review and guide. J. Vac. Sci. Technol. A Vac. Surf. Films 31(3), 030801–030801 (2013)CrossRef Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: A review and guide. J. Vac. Sci. Technol. A Vac. Surf. Films 31(3), 030801–030801 (2013)CrossRef
8.
go back to reference Dong, Y., Vadakkepatt, A., Martini, A.: Analytical models for atomic friction. Tribol. Lett. 44(3), 367–386 (2011)CrossRef Dong, Y., Vadakkepatt, A., Martini, A.: Analytical models for atomic friction. Tribol. Lett. 44(3), 367–386 (2011)CrossRef
9.
go back to reference Van Duin, A.C., Dasgupta, S., Lorant, F., Goddard, W.A.: Reaxff: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)CrossRef Van Duin, A.C., Dasgupta, S., Lorant, F., Goddard, W.A.: Reaxff: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)CrossRef
10.
go back to reference Eichhorn, S.J., Davies, G.R.: Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3), 291–307 (2006)CrossRef Eichhorn, S.J., Davies, G.R.: Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3), 291–307 (2006)CrossRef
11.
go back to reference Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., Rochas, C.: The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1), 57–65 (2007)CrossRef Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., Rochas, C.: The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1), 57–65 (2007)CrossRef
12.
go back to reference Erbaş, A., Horinek, D., Netz, R.R.: Viscous friction of hydrogen-bonded matter. J. Am. Chem. Soc. 134(1), 623–630 (2011)CrossRef Erbaş, A., Horinek, D., Netz, R.R.: Viscous friction of hydrogen-bonded matter. J. Am. Chem. Soc. 134(1), 623–630 (2011)CrossRef
13.
go back to reference Erbaş, A., Netz, R.R.: Confinement-dependent friction in peptide bundles. Biophys. J. 104(6), 1285–1295 (2013)CrossRef Erbaş, A., Netz, R.R.: Confinement-dependent friction in peptide bundles. Biophys. J. 104(6), 1285–1295 (2013)CrossRef
14.
go back to reference Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., Güntherodt, H.J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84(6), 1172–1175 (2000)CrossRef Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., Güntherodt, H.J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84(6), 1172–1175 (2000)CrossRef
15.
go back to reference Guo, Y., Guo, W., Chen, C.: Modifying atomic-scale friction between two graphene sheets: a molecular-force-field study. Phys. Rev. B 76(15), 155429 (2007)CrossRef Guo, Y., Guo, W., Chen, C.: Modifying atomic-scale friction between two graphene sheets: a molecular-force-field study. Phys. Rev. B 76(15), 155429 (2007)CrossRef
16.
go back to reference Kontturi, E., Tammelin, T., Österberg, M.: Cellulose–model films and the fundamental approach. Chem. Soc. Rev. 35(12), 1287–1304 (2006)CrossRef Kontturi, E., Tammelin, T., Österberg, M.: Cellulose–model films and the fundamental approach. Chem. Soc. Rev. 35(12), 1287–1304 (2006)CrossRef
17.
go back to reference Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435(7044), 929–932 (2005)CrossRef Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435(7044), 929–932 (2005)CrossRef
18.
go back to reference Luzar, A., Chandler, D.: Hydrogen-bond kinetics in liquid water. Nature 379(6560), 55–57 (1996)CrossRef Luzar, A., Chandler, D.: Hydrogen-bond kinetics in liquid water. Nature 379(6560), 55–57 (1996)CrossRef
19.
go back to reference Mattsson, T.R., Lane, J.M.D., Cochrane, K.R., Desjarlais, M.P., Thompson, A.P., Pierce, F., Grest, G.S.: First-principles and classical molecular dynamics simulation of shocked polymers. Phys. Rev. B 81(5), 054103 (2010)CrossRef Mattsson, T.R., Lane, J.M.D., Cochrane, K.R., Desjarlais, M.P., Thompson, A.P., Pierce, F., Grest, G.S.: First-principles and classical molecular dynamics simulation of shocked polymers. Phys. Rev. B 81(5), 054103 (2010)CrossRef
20.
go back to reference Mazeau, K., Heux, L.: Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B 107(10), 2394–2403 (2003)CrossRef Mazeau, K., Heux, L.: Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B 107(10), 2394–2403 (2003)CrossRef
21.
go back to reference Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457(7233), 1116–1119 (2009)CrossRef Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457(7233), 1116–1119 (2009)CrossRef
22.
go back to reference Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)CrossRef Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)CrossRef
23.
go back to reference Nishiyama, Y.: Structure and properties of the cellulose microfibril. J. Wood Sci. 55(4), 241–249 (2009)CrossRef Nishiyama, Y.: Structure and properties of the cellulose microfibril. J. Wood Sci. 55(4), 241–249 (2009)CrossRef
24.
go back to reference Nishiyama, Y., Johnson, G.P., French, A.D., Forsyth, V.T., Langan, P.: Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9(11), 3133–3140 (2008)CrossRef Nishiyama, Y., Johnson, G.P., French, A.D., Forsyth, V.T., Langan, P.: Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9(11), 3133–3140 (2008)CrossRef
25.
go back to reference Nishiyama, Y., Langan, P., Chanzy, H.: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124(31), 9074–9082 (2002)CrossRef Nishiyama, Y., Langan, P., Chanzy, H.: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124(31), 9074–9082 (2002)CrossRef
26.
go back to reference Postek, M.T., Vladar, A., Dagata, J., Farkas, N., Ming, B., Sabo, R., Wegner, T.H., Beecher, J.: Cellulose nanocrystals the next big nano-thing?. Proc. SPIE 7042, 70420D (2008) Postek, M.T., Vladar, A., Dagata, J., Farkas, N., Ming, B., Sabo, R., Wegner, T.H., Beecher, J.: Cellulose nanocrystals the next big nano-thing?. Proc. SPIE 7042, 70420D (2008)
27.
go back to reference Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91(8), 084502 (2003)CrossRef Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91(8), 084502 (2003)CrossRef
28.
go back to reference Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87(17), 174301 (2001)CrossRef Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87(17), 174301 (2001)CrossRef
29.
go back to reference Stiernstedt, J., Brumer, H., Zhou, Q., Teeri, T.T., Rutland, M.W.: Friction between cellulose surfaces and effect of xyloglucan adsorption. Biomacromolecules 7(7), 2147–2153 (2006)CrossRef Stiernstedt, J., Brumer, H., Zhou, Q., Teeri, T.T., Rutland, M.W.: Friction between cellulose surfaces and effect of xyloglucan adsorption. Biomacromolecules 7(7), 2147–2153 (2006)CrossRef
30.
go back to reference Stiernstedt, J., Nordgren, N., Wågberg, L., Brumer III, H., Gray, D.G., Rutland, M.W.: Friction and forces between cellulose model surfaces: a comparison. J. Colloid Interface Sci. 303(1), 117–123 (2006)CrossRef Stiernstedt, J., Nordgren, N., Wågberg, L., Brumer III, H., Gray, D.G., Rutland, M.W.: Friction and forces between cellulose model surfaces: a comparison. J. Colloid Interface Sci. 303(1), 117–123 (2006)CrossRef
31.
go back to reference Tanaka, F., Okamura, K.: Characterization of cellulose molecules in bio-system studied by modeling methods. Cellulose 12(3), 243–252 (2005)CrossRef Tanaka, F., Okamura, K.: Characterization of cellulose molecules in bio-system studied by modeling methods. Cellulose 12(3), 243–252 (2005)CrossRef
32.
go back to reference Theander, K., Pugh, R.J., Rutland, M.W.: Friction force measurements relevant to de-inking by means of atomic force microscope. J. Colloid Interface Sci. 291(2), 361–368 (2005)CrossRef Theander, K., Pugh, R.J., Rutland, M.W.: Friction force measurements relevant to de-inking by means of atomic force microscope. J. Colloid Interface Sci. 291(2), 361–368 (2005)CrossRef
33.
go back to reference Wu, X., Moon, R.J., Martini, A.: Calculation of single chain cellulose elasticity using fully atomistic modeling. TAPPI J. 10(4), 37–43 (2011) Wu, X., Moon, R.J., Martini, A.: Calculation of single chain cellulose elasticity using fully atomistic modeling. TAPPI J. 10(4), 37–43 (2011)
34.
go back to reference Wu, X., Moon, R.J., Martini, A.: Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation. Cellulose 20(1), 43–55 (2013)CrossRef Wu, X., Moon, R.J., Martini, A.: Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation. Cellulose 20(1), 43–55 (2013)CrossRef
35.
go back to reference Zauscher, S., Klingenberg, D.J.: Friction between cellulose surfaces measured with colloidal probe microscopy. Colloids Surf. A 178(1), 213–229 (2001)CrossRef Zauscher, S., Klingenberg, D.J.: Friction between cellulose surfaces measured with colloidal probe microscopy. Colloids Surf. A 178(1), 213–229 (2001)CrossRef
36.
go back to reference Zhang, Q., Bulone, V., Ågren, H., Tu, Y.: A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18(2), 207–221 (2011)CrossRef Zhang, Q., Bulone, V., Ågren, H., Tu, Y.: A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18(2), 207–221 (2011)CrossRef
37.
go back to reference Zhang, Q., Qi, Y., Hector Jr, L.G., Çağın, T., Goddard III, W.A.: Atomic simulations of kinetic friction and its velocity dependence at Al/Al and α−Al2O3/α−Al2O3 interfaces. Phys. Rev. B 72(4), 045406 (2005) Zhang, Q., Qi, Y., Hector Jr, L.G., Çağın, T., Goddard III, W.A.: Atomic simulations of kinetic friction and its velocity dependence at Al/Al and α−Al2O3/α−Al2O3 interfaces. Phys. Rev. B 72(4), 045406 (2005)
Metadata
Title
Atomistic Simulation of Frictional Sliding Between Cellulose Iβ Nanocrystals
Authors
Xiawa Wu
Robert J. Moon
Ashlie Martini
Publication date
01-12-2013
Publisher
Springer US
Published in
Tribology Letters / Issue 3/2013
Print ISSN: 1023-8883
Electronic ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-013-0223-x

Other articles of this Issue 3/2013

Tribology Letters 3/2013 Go to the issue

Premium Partners