Skip to main content
Top

2018 | OriginalPaper | Chapter

Attention-Guided Curriculum Learning for Weakly Supervised Classification and Localization of Thoracic Diseases on Chest Radiographs

Authors : Yuxing Tang, Xiaosong Wang, Adam P. Harrison, Le Lu, Jing Xiao, Ronald M. Summers

Published in: Machine Learning in Medical Imaging

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we exploit the task of joint classification and weakly supervised localization of thoracic diseases from chest radiographs, with only image-level disease labels coupled with disease severity-level (DSL) information of a subset. A convolutional neural network (CNN) based attention-guided curriculum learning (AGCL) framework is presented, which leverages the severity-level attributes mined from radiology reports. Images in order of difficulty (grouped by different severity-levels) are fed to CNN to boost the learning gradually. In addition, highly confident samples (measured by classification probabilities) and their corresponding class-conditional heatmaps (generated by the CNN) are extracted and further fed into the AGCL framework to guide the learning of more distinctive convolutional features in the next iteration. A two-path network architecture is designed to regress the heatmaps from selected seed samples in addition to the original classification task. The joint learning scheme can improve the classification and localization performance along with more seed samples for the next iteration. We demonstrate the effectiveness of this iterative refinement framework via extensive experimental evaluations on the publicly available ChestXray14 dataset. AGCL achieves over 5.7% (averaged over 14 diseases) increase in classification AUC and 7%/11% increases in Recall/Precision for the localization task compared to the state of the art.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Up-to-date results using the DenseNet-121: https://​arxiv.​org/​abs/​1807.​07532.
 
Literature
1.
go back to reference Bengio, Y., Louradour, J., et al.: Curriculum learning. In: ICML (2009) Bengio, Y., Louradour, J., et al.: Curriculum learning. In: ICML (2009)
2.
go back to reference He, K., et al.: Deep residual learning for image recognition. In: IEEE CVPR (2016) He, K., et al.: Deep residual learning for image recognition. In: IEEE CVPR (2016)
3.
go back to reference Jin, D., Xu, Z., et al.: CT-realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation. In: MICCAI (2018) Jin, D., Xu, Z., et al.: CT-realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation. In: MICCAI (2018)
4.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
5.
go back to reference Lakhani, P., Sundaram, B.: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2), 574–582 (2017) Lakhani, P., Sundaram, B.: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2), 574–582 (2017)
6.
go back to reference Li, Z., Wang, C., Han, M., Xue, Y., Wei, W., Li, L.J., Fei-Fei, L.: Thoracic disease identification and localization with limited supervision. In: IEEE CVPR (2018) Li, Z., Wang, C., Han, M., Xue, Y., Wei, W., Li, L.J., Fei-Fei, L.: Thoracic disease identification and localization with limited supervision. In: IEEE CVPR (2018)
7.
go back to reference Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., et al.: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv:1711.05225 (2017) Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., et al.: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv:​1711.​05225 (2017)
8.
go back to reference Shi, M., Ferrari, V.: Weakly supervised object localization using size estimates. In: ECCV (2016) Shi, M., Ferrari, V.: Weakly supervised object localization using size estimates. In: ECCV (2016)
9.
go back to reference Tang, Y., Wang, J., Gao, B., et al.: Large scale semi-supervised object detection using visual and semantic knowledge transfer. In: IEEE CVPR (2016) Tang, Y., Wang, J., Gao, B., et al.: Large scale semi-supervised object detection using visual and semantic knowledge transfer. In: IEEE CVPR (2016)
10.
go back to reference Tang, Y., et al.: Semi-automatic RECIST labeling on CT scans with cascaded convolutional neural networks. In: MICCAI (2018) Tang, Y., et al.: Semi-automatic RECIST labeling on CT scans with cascaded convolutional neural networks. In: MICCAI (2018)
11.
go back to reference Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: IEEE CVPR (2017) Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: IEEE CVPR (2017)
12.
go back to reference Wang, X., Peng, Y., et al.: TieNet: text-image embedding network for common thorax disease classification and reporting in chest X-rays. In: IEEE CVPR (2018) Wang, X., Peng, Y., et al.: TieNet: text-image embedding network for common thorax disease classification and reporting in chest X-rays. In: IEEE CVPR (2018)
13.
go back to reference Yan, K., et al.: Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501 (2018) Yan, K., et al.: Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501 (2018)
14.
go back to reference Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: IEEE CVPR (2016) Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: IEEE CVPR (2016)
Metadata
Title
Attention-Guided Curriculum Learning for Weakly Supervised Classification and Localization of Thoracic Diseases on Chest Radiographs
Authors
Yuxing Tang
Xiaosong Wang
Adam P. Harrison
Le Lu
Jing Xiao
Ronald M. Summers
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00919-9_29

Premium Partner