Skip to main content
Top

2012 | OriginalPaper | Chapter

13. Attitude Regulation for Spacecraft with Magnetic Actuators: An LPV Approach

Authors : Andrea Corti, Marco Lovera

Published in: Control of Linear Parameter Varying Systems with Applications

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnetic torquers are an effective and reliable technology for the attitude control of small satellites in low Earth orbit. Such actuators operate by generating a magnetic dipole which interacts with the magnetic field of the Earth. The main difficulty in the design of attitude control laws based on magnetic torquers is that the torques they generate are instantaneously constrained to lie in the plane orthogonal to the local direction of the geomagnetic field vector, which varies according to the current orbital position of the spacecraft. This implies that the attitude regulation problem is formulated over a time-varyingmodel. In recent years, this control problem has been studied extensively, either using methods based on averaged models or via approaches which exploit the quasi-periodic variability of the geomagnetic field. With the exception of other approaches based on Model Predictive Control, none of the above actually exploits at the design stage the fact that the geomagnetic field can be reliably measured on board and, therefore, the above mentioned time-variability of the attitude dynamics can be represented in LPV form. Therefore, in this chapter an LPV approach to the problem of magnetic attitude control law design is proposed. To this purpose, an LPV model of the attitude dynamics is first derived, LPV control laws suitable for on board implementation are synthesized and eventually tested in simulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Apkarian P, Gahinet P (1995) A convex characterization of gain-scheduled H ∞ controllers. IEEE Trans Automat Contr 40(5):853–864MathSciNetMATHCrossRef Apkarian P, Gahinet P (1995) A convex characterization of gain-scheduled H controllers. IEEE Trans Automat Contr 40(5):853–864MathSciNetMATHCrossRef
2.
go back to reference Apkarian P, Gahinet P, Becker G (1995) Self-scheduled H ∞ control of linear parameter varying systems: a design example. Automatica 31(9):1251–1261MathSciNetMATHCrossRef Apkarian P, Gahinet P, Becker G (1995) Self-scheduled H control of linear parameter varying systems: a design example. Automatica 31(9):1251–1261MathSciNetMATHCrossRef
3.
go back to reference Balas G (2002) Linear, parameter-varying control and its application to a turbofan engine. Int J Robust Nonlinear Contr 12(9):763–796MathSciNetMATHCrossRef Balas G (2002) Linear, parameter-varying control and its application to a turbofan engine. Int J Robust Nonlinear Contr 12(9):763–796MathSciNetMATHCrossRef
4.
go back to reference Biannic JM, Apkarian P (1995) Self-scheduled H ∞ control of missile via linear matrix inequalities. J Guid Contr Dyn 18(3):532–538CrossRef Biannic JM, Apkarian P (1995) Self-scheduled H control of missile via linear matrix inequalities. J Guid Contr Dyn 18(3):532–538CrossRef
5.
go back to reference Bittanti S, Colaneri P (2008) Periodic systems: Filtering and control. Springer, London Bittanti S, Colaneri P (2008) Periodic systems: Filtering and control. Springer, London
6.
go back to reference Chen J, Gu W, Postlethwhite I, Natesan K (2008) Robust LPV control of UAV with parameter dependent performance. In: Proceedings of the 17th IFAC world congress, Seoul, South Korea, pp 1838–1843 Chen J, Gu W, Postlethwhite I, Natesan K (2008) Robust LPV control of UAV with parameter dependent performance. In: Proceedings of the 17th IFAC world congress, Seoul, South Korea, pp 1838–1843
7.
go back to reference Corno M, Lovera M (2009) Spacecraft attitude dynamics and control in the presence of large magnetic residuals. Control Eng Pract 17(4):456–468CrossRef Corno M, Lovera M (2009) Spacecraft attitude dynamics and control in the presence of large magnetic residuals. Control Eng Pract 17(4):456–468CrossRef
8.
go back to reference Corno M, Savaresi S, Balas G (2009) On linear parameter varying (LPV) slip-controller design for two-wheeled vehicles. Int J Robust Nonlinear Contr 19(12):1313–1336MathSciNetMATHCrossRef Corno M, Savaresi S, Balas G (2009) On linear parameter varying (LPV) slip-controller design for two-wheeled vehicles. Int J Robust Nonlinear Contr 19(12):1313–1336MathSciNetMATHCrossRef
9.
go back to reference Hablani H (1995) Comparative stability analysis and performance of magnetic controllers for bias momentum satellites. J Guid Contr Dyn 18(6):1313–1320MATHCrossRef Hablani H (1995) Comparative stability analysis and performance of magnetic controllers for bias momentum satellites. J Guid Contr Dyn 18(6):1313–1320MATHCrossRef
10.
go back to reference Hughes P (1986) Spacecraft attitude dynamics. Wiley, New York Hughes P (1986) Spacecraft attitude dynamics. Wiley, New York
11.
12.
go back to reference Lofberg J (2004) Yalmip: A toolbox for modeling and optimization in matlab. In: 2004 IEEE international symposium on computer aided control systems design, pp 284–289 Lofberg J (2004) Yalmip: A toolbox for modeling and optimization in matlab. In: 2004 IEEE international symposium on computer aided control systems design, pp 284–289
13.
go back to reference Lovera M (2001) Optimal magnetic momentum control for inertially pointing spacecraft. Eur J Contr 7(1):30–39 Lovera M (2001) Optimal magnetic momentum control for inertially pointing spacecraft. Eur J Contr 7(1):30–39
14.
go back to reference Lovera M, De Marchi E, Bittanti S (2002) Periodic attitude control techniques for small satellites with magnetic actuators. IEEE Trans Contr Syst Technol 10(1):90–95CrossRef Lovera M, De Marchi E, Bittanti S (2002) Periodic attitude control techniques for small satellites with magnetic actuators. IEEE Trans Contr Syst Technol 10(1):90–95CrossRef
15.
go back to reference Lovera M, Novara C, Dos Santos PL, Rivera D (2011) Guest editorial special issue on applied LPV modeling and identification. IEEE Trans Contr Syst Technol 19(1):1–4CrossRef Lovera M, Novara C, Dos Santos PL, Rivera D (2011) Guest editorial special issue on applied LPV modeling and identification. IEEE Trans Contr Syst Technol 19(1):1–4CrossRef
16.
go back to reference Martel F, Pal P, Psiaki M (1988) Active magnetic control system for gravity gradient stabilised spacecraft. In: 2nd annual AIAA/USU conference on small satellites, Logan (Utah), USA, 1988 Martel F, Pal P, Psiaki M (1988) Active magnetic control system for gravity gradient stabilised spacecraft. In: 2nd annual AIAA/USU conference on small satellites, Logan (Utah), USA, 1988
18.
go back to reference Pfifer H, Hecker S (2010) LPV controller synthesis for a generic missile model. In: Proceedings of the 4th IEEE multi-conference on systems and control, Yokohama, Japan, pp 1838–1843 Pfifer H, Hecker S (2010) LPV controller synthesis for a generic missile model. In: Proceedings of the 4th IEEE multi-conference on systems and control, Yokohama, Japan, pp 1838–1843
19.
go back to reference Pittelkau M (1993) Optimal periodic control for spacecraft pointing and attitude determination. J Guid Contr Dyn 16(6):1078–1084MATHCrossRef Pittelkau M (1993) Optimal periodic control for spacecraft pointing and attitude determination. J Guid Contr Dyn 16(6):1078–1084MATHCrossRef
20.
go back to reference Psiaki M (2001) Magnetic torquer attitude control via asymptotic periodic linear quadratic regulation. J Guid Contr Dyn 24(2):386–394CrossRef Psiaki M (2001) Magnetic torquer attitude control via asymptotic periodic linear quadratic regulation. J Guid Contr Dyn 24(2):386–394CrossRef
21.
go back to reference Pulecchi T, Lovera M, Varga A (2010) Optimal discrete-time design of three-axis magnetic attitude control laws. IEEE Trans Contr Syst Technol 18(3):714–722CrossRef Pulecchi T, Lovera M, Varga A (2010) Optimal discrete-time design of three-axis magnetic attitude control laws. IEEE Trans Contr Syst Technol 18(3):714–722CrossRef
22.
go back to reference Sato M, Ebihara Y, Peaucelle D (2010) Gain-scheduled state-feedback controllers using inexactly measured scheduling parameters: H 2 and H ∞ problems. In: Proceedings of the 2010 American control conference, Baltimore, USA Sato M, Ebihara Y, Peaucelle D (2010) Gain-scheduled state-feedback controllers using inexactly measured scheduling parameters: H 2 and H problems. In: Proceedings of the 2010 American control conference, Baltimore, USA
23.
go back to reference Scherer C (1996) Mixed h 2 ∕ h ∞ control for time-varying and linear parametrically-varying systems. Int J Robust Nonlinear Contr 6(9–10):929–952MathSciNetMATHCrossRef Scherer C (1996) Mixed h 2h control for time-varying and linear parametrically-varying systems. Int J Robust Nonlinear Contr 6(9–10):929–952MathSciNetMATHCrossRef
25.
go back to reference Sidi M (1997) Spacecraft dynamics and control. Cambridge University Press, Cambridge Sidi M (1997) Spacecraft dynamics and control. Cambridge University Press, Cambridge
26.
go back to reference Silani E, Lovera M (2005) Magnetic spacecraft attitude control: a survey and some new results. Contr Eng Pract 13(3):357–371CrossRef Silani E, Lovera M (2005) Magnetic spacecraft attitude control: a survey and some new results. Contr Eng Pract 13(3):357–371CrossRef
27.
go back to reference Stickler A, Alfriend K (1976) An elementary magnetic attitude control system. J Spacecr Rockets 13(5):282–287CrossRef Stickler A, Alfriend K (1976) An elementary magnetic attitude control system. J Spacecr Rockets 13(5):282–287CrossRef
28.
go back to reference Toh K, Todd M, Tutuncu R (1999) Sdpt3-a matlab software package for semidefinite programming. Optim Methods Softw 11(12):545–581MathSciNetCrossRef Toh K, Todd M, Tutuncu R (1999) Sdpt3-a matlab software package for semidefinite programming. Optim Methods Softw 11(12):545–581MathSciNetCrossRef
29.
go back to reference Toth R, Lovera M, Heuberger P, van den Hof P (2009) Discretization of linear fractional representations of LPV systems. In: Proceedings of the 48th IEEE conference on decision and control, Shanghai, China Toth R, Lovera M, Heuberger P, van den Hof P (2009) Discretization of linear fractional representations of LPV systems. In: Proceedings of the 48th IEEE conference on decision and control, Shanghai, China
30.
go back to reference Varga A, Pieters S (1998) Gradient-based approach to solve optimal periodic output feedback control problems. Automatica 34(4):477–481MathSciNetMATHCrossRef Varga A, Pieters S (1998) Gradient-based approach to solve optimal periodic output feedback control problems. Automatica 34(4):477–481MathSciNetMATHCrossRef
31.
go back to reference Vigano L, Bergamasco M, Lovera M, Varga A (2010) Optimal periodic output feedback control: a continuous-time approach and a case study. Int J Contr 83(5):897–914MathSciNetMATHCrossRef Vigano L, Bergamasco M, Lovera M, Varga A (2010) Optimal periodic output feedback control: a continuous-time approach and a case study. Int J Contr 83(5):897–914MathSciNetMATHCrossRef
32.
go back to reference Wertz J (1978) Spacecraft attitude determination and control. D. Reidel Publishing Company, DordrechtCrossRef Wertz J (1978) Spacecraft attitude determination and control. D. Reidel Publishing Company, DordrechtCrossRef
33.
go back to reference Wisniewski R (2000) Linear time-varying approach to satellite attitude control using only electromagnetic actuation. J Guid Contr Dyn 23(4):640–646MathSciNetCrossRef Wisniewski R (2000) Linear time-varying approach to satellite attitude control using only electromagnetic actuation. J Guid Contr Dyn 23(4):640–646MathSciNetCrossRef
34.
go back to reference Wisniewski R, Markley L (1999) Optimal magnetic attitude control. In: 14th IFAC world congress, Beijing, China Wisniewski R, Markley L (1999) Optimal magnetic attitude control. In: 14th IFAC world congress, Beijing, China
35.
go back to reference Wood M, Chen WH, Fertin D (2006) Model predictive control of low earth orbiting spacecraft with magneto-torquers. In: IEEE international conference on control applications, Munich, Germany Wood M, Chen WH, Fertin D (2006) Model predictive control of low earth orbiting spacecraft with magneto-torquers. In: IEEE international conference on control applications, Munich, Germany
36.
go back to reference Wu F (1995) Control of linear parameter varying systems. PhD thesis, University of California, Berkeley, USA Wu F (1995) Control of linear parameter varying systems. PhD thesis, University of California, Berkeley, USA
37.
go back to reference Yan H, Ross IM, Alfriend KT (2007) Pseudospectral feedback control for three-axis magnetic attitude stabilization in elliptic orbits. J Guid Contr Dyn 30(4):1107–1115CrossRef Yan H, Ross IM, Alfriend KT (2007) Pseudospectral feedback control for three-axis magnetic attitude stabilization in elliptic orbits. J Guid Contr Dyn 30(4):1107–1115CrossRef
38.
go back to reference Zanchettin A, Lovera M (2011) H ∞ attitude control of magnetically actuated satellites. In: IFAC world congress, Milano, Italy Zanchettin A, Lovera M (2011) H attitude control of magnetically actuated satellites. In: IFAC world congress, Milano, Italy
Metadata
Title
Attitude Regulation for Spacecraft with Magnetic Actuators: An LPV Approach
Authors
Andrea Corti
Marco Lovera
Copyright Year
2012
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4614-1833-7_13