Skip to main content
Top
Published in: Pattern Analysis and Applications 2/2023

23-09-2022 | Theoretical Advances

Autoencoder-based improved deep learning approach for schizophrenic EEG signal classification

Authors: Sebamai Parija, Mrutyunjaya Sahani, Ranjeeta Bisoi, P. K. Dash

Published in: Pattern Analysis and Applications | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, deep-stacked error minimized extreme learning machine autoencoder (DSEMELMAE) and sine–cosine monarch butterfly optimization-based minimum variance multikernel random vector functional link network are integrated to recognize the schizophrenia electroencephalogram (EEG) data. The unconventional DSEMELMAE network is modelled to derive very unique unsupervised attributes out of the brain signals and employ as inputs to the proposed supervised SCAMBO-MVMKRVFLN classification methodology to recognize accurately by minimizing the mean-square error for identifying schizophrenia data with encouraging accuracy. The DSEMELMAE-SCAMBO-MVMKRVFLN integrated approach is assessed over benchmark EEG databases. The proposed approach is compared with many related RVFLN-based deep learning approaches and many state-of-the-art methods and found to be the outperformer among all the methods, and this approach is highly accepted owing to faster learning speed, better computational simplicity, good generalization capability, outstanding classification accuracy, and small event identification time. The classifier MVMKRVFLN is unique as it classifies the signal with advantages such as the regularization of the randomization, computational economy, less training expenses, the direct inverse along with minimum reconstruction error. The KRVFLN uses multiple kernels such as wavelet, tan hyperbolic and multiquadric to improve the classification performance. The effectiveness of the proposed method is verified by examining three publicly available schizophrenic EEG datasets such as Poland, Kaggle and Moscow datasets and achieved classification accuracies with 99.989%, 95.012% and 96.69%, respectively. The recognition capability, simplicity and robustness of the proposed methodology prove the outstanding overall performances of schizophrenia recognition and diagnosis in comparison with other state-of-the-art approaches and different learning approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chatterjee I, Agarwal M, Rana B, Lakhyani N, Kumar N (2018) Bi-objective approach for computer-aided diagnosis of schizophrenia patients using fMRI data. Multimed Tools Appl 77(20):26991–27015CrossRef Chatterjee I, Agarwal M, Rana B, Lakhyani N, Kumar N (2018) Bi-objective approach for computer-aided diagnosis of schizophrenia patients using fMRI data. Multimed Tools Appl 77(20):26991–27015CrossRef
2.
go back to reference Han K, Kim IY, Kim JJ (2012) Assessment of cognitive flexibility in real life using virtual reality: a comparison of healthy individuals and schizophrenia patients. Comput Biol Med 42(8):841–847CrossRef Han K, Kim IY, Kim JJ (2012) Assessment of cognitive flexibility in real life using virtual reality: a comparison of healthy individuals and schizophrenia patients. Comput Biol Med 42(8):841–847CrossRef
3.
go back to reference Das K, Pachori RB (2021) Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals. Biomed Signal Process Control 67:102525CrossRef Das K, Pachori RB (2021) Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals. Biomed Signal Process Control 67:102525CrossRef
4.
go back to reference Oh SL, Vicnesh J, Ciaccio EJ, Yuvaraj R, Acharya UR (2019) Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals. Appl Sci 9(14):2870CrossRef Oh SL, Vicnesh J, Ciaccio EJ, Yuvaraj R, Acharya UR (2019) Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals. Appl Sci 9(14):2870CrossRef
5.
go back to reference Jahmunah V, Oh SL, Rajinikanth V, Ciaccio EJ, Cheong KH, Arunkumar N, Acharya UR (2019) Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 100:101698CrossRef Jahmunah V, Oh SL, Rajinikanth V, Ciaccio EJ, Cheong KH, Arunkumar N, Acharya UR (2019) Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 100:101698CrossRef
6.
go back to reference Krishnan PT, Raj ANJ, Balasubramanian P, Chen Y (2020) Schizophrenia detection using multivariate empirical mode decomposition and entropy measures from multichannel EEG signal. Biocybern Biomed Eng 40(3):1124–1139CrossRef Krishnan PT, Raj ANJ, Balasubramanian P, Chen Y (2020) Schizophrenia detection using multivariate empirical mode decomposition and entropy measures from multichannel EEG signal. Biocybern Biomed Eng 40(3):1124–1139CrossRef
7.
go back to reference Shalbaf A, Bagherzadeh S, Maghsoudi A (2020) Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals. Phys Eng Sci Med 43:1–11CrossRef Shalbaf A, Bagherzadeh S, Maghsoudi A (2020) Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals. Phys Eng Sci Med 43:1–11CrossRef
8.
go back to reference Racz FS, Stylianou O, Mukli P, Eke A (2020) Multifractal and entropy-based analysis of delta band neural activity reveals altered functional connectivity dynamics in schizophrenia. Front Syst Neurosci 14:49CrossRef Racz FS, Stylianou O, Mukli P, Eke A (2020) Multifractal and entropy-based analysis of delta band neural activity reveals altered functional connectivity dynamics in schizophrenia. Front Syst Neurosci 14:49CrossRef
9.
go back to reference Aslan Z, Akin M (2020) Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals. Traitement du Signal 37(2):235–244CrossRef Aslan Z, Akin M (2020) Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals. Traitement du Signal 37(2):235–244CrossRef
10.
go back to reference Chandran AN, Sreekumar K. Subha D (2020) EEG-based automated detection of schizophrenia using long short-term memory (LSTM) network. Advances in Machine Learning and Computational Intelligence, Springer, pp 229–236 Chandran AN, Sreekumar K. Subha D (2020) EEG-based automated detection of schizophrenia using long short-term memory (LSTM) network. Advances in Machine Learning and Computational Intelligence, Springer, pp 229–236
11.
go back to reference Sharma M, Acharya UR (2021) Automated detection of schizophrenia using optimal wavelet-based l1-norm features extracted from single-channel EEG. Cogn Neurodyn 15:1–14CrossRef Sharma M, Acharya UR (2021) Automated detection of schizophrenia using optimal wavelet-based l1-norm features extracted from single-channel EEG. Cogn Neurodyn 15:1–14CrossRef
12.
go back to reference Khare SK, Bajaj V (2022) A hybrid decision support system for automatic detection of Schizophrenia using EEG signals. Comput Biol Med 141:105028CrossRef Khare SK, Bajaj V (2022) A hybrid decision support system for automatic detection of Schizophrenia using EEG signals. Comput Biol Med 141:105028CrossRef
13.
go back to reference Beritelli F, Capizzi G, Sciuto GL, Napoli C, Woźniak M (2018) A novel training method to preserve generalization of RBPNN classifiers applied to ECG signals diagnosis. Neural Netw 108:331–338CrossRef Beritelli F, Capizzi G, Sciuto GL, Napoli C, Woźniak M (2018) A novel training method to preserve generalization of RBPNN classifiers applied to ECG signals diagnosis. Neural Netw 108:331–338CrossRef
14.
go back to reference Yan W, Calhoun V, Song M, Cui Y, Yan H, Liu S, Sui J (2019) Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data. EBioMedicine 47:543–552CrossRef Yan W, Calhoun V, Song M, Cui Y, Yan H, Liu S, Sui J (2019) Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data. EBioMedicine 47:543–552CrossRef
15.
go back to reference Witten IH, Frank E (2002) Data mining: practical machine learning tools and techniques with Java implementations. AcmSigmod Record 31(1):76–77CrossRef Witten IH, Frank E (2002) Data mining: practical machine learning tools and techniques with Java implementations. AcmSigmod Record 31(1):76–77CrossRef
16.
go back to reference Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122CrossRef Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122CrossRef
17.
go back to reference Feng G, Huang GB, Lin Q, Gay R (2009) Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans Neural Netw 20(8):1352–1357CrossRef Feng G, Huang GB, Lin Q, Gay R (2009) Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans Neural Netw 20(8):1352–1357CrossRef
18.
go back to reference Narejo S, Pasero E, Kulsoom F (2016) EEG based eye state classification using deep belief network and stacked autoencoder. Int J Electr Comput Eng (IJECE) 6(6):3131–3141CrossRef Narejo S, Pasero E, Kulsoom F (2016) EEG based eye state classification using deep belief network and stacked autoencoder. Int J Electr Comput Eng (IJECE) 6(6):3131–3141CrossRef
19.
go back to reference Dong W, Wozniak M, Wu J, Li W, Bai Z (2022) De-noising aggregation of graph neural networks by using principal component analysis. IEEE Transactions on Industrial Informatics Dong W, Wozniak M, Wu J, Li W, Bai Z (2022) De-noising aggregation of graph neural networks by using principal component analysis. IEEE Transactions on Industrial Informatics
20.
go back to reference Lin Q, Ye SQ, Huang XM, Li SY, Zhang MZ, Xue Y, Chen WS (2016) Classification of epileptic EEG signals with stacked sparse autoencoder based on deep learning. In: International conference on intelligent computing, Springer, Cham, pp 802–810 Lin Q, Ye SQ, Huang XM, Li SY, Zhang MZ, Xue Y, Chen WS (2016) Classification of epileptic EEG signals with stacked sparse autoencoder based on deep learning. In: International conference on intelligent computing, Springer, Cham, pp 802–810
21.
go back to reference Zhang L, Suganthan PN (2016) A comprehensive evaluation of random vector functional link networks. Inf Sci 367:1094–1105CrossRef Zhang L, Suganthan PN (2016) A comprehensive evaluation of random vector functional link networks. Inf Sci 367:1094–1105CrossRef
22.
go back to reference Nayak DR, Dash R, Majhi B, Pachori RB, Zhang Y (2020) A deep stacked random vector functional link network autoencoder for diagnosis of brain abnormalities and breast cancer. Biomed Signal Process Control 58:101860CrossRef Nayak DR, Dash R, Majhi B, Pachori RB, Zhang Y (2020) A deep stacked random vector functional link network autoencoder for diagnosis of brain abnormalities and breast cancer. Biomed Signal Process Control 58:101860CrossRef
23.
go back to reference Sahani M, Dash PK (2020) FPGA-based deep convolutional neural network of process adaptive VMD data with online sequential RVFLN for power quality events recognition. IEEE Trans Power Electron 36(4):4006–4015CrossRef Sahani M, Dash PK (2020) FPGA-based deep convolutional neural network of process adaptive VMD data with online sequential RVFLN for power quality events recognition. IEEE Trans Power Electron 36(4):4006–4015CrossRef
24.
go back to reference Parija S, Dash PK, Bisoi R (2020) Multi-kernel-based random vector functional link network with decomposed features for epileptic EEG signal classification. IET Signal Proc 14(3):162–174CrossRef Parija S, Dash PK, Bisoi R (2020) Multi-kernel-based random vector functional link network with decomposed features for epileptic EEG signal classification. IET Signal Proc 14(3):162–174CrossRef
25.
go back to reference Rout SK, Sahani M, Dash PK, Biswal PK (2021) Multifuse multilayer multikernel RVFLN+ of process modes decomposition and approximate entropy data from iEEG/sEEG signals for epileptic seizure recognition. Comput Biol Med 132:104299CrossRef Rout SK, Sahani M, Dash PK, Biswal PK (2021) Multifuse multilayer multikernel RVFLN+ of process modes decomposition and approximate entropy data from iEEG/sEEG signals for epileptic seizure recognition. Comput Biol Med 132:104299CrossRef
26.
go back to reference Wang GG, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31(7):1995–2014CrossRef Wang GG, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31(7):1995–2014CrossRef
27.
go back to reference Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133CrossRef Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133CrossRef
28.
go back to reference Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166CrossRef Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166CrossRef
29.
go back to reference Połap D, Woźniak M (2017) Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism. Symmetry 9(10):203CrossRef Połap D, Woźniak M (2017) Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism. Symmetry 9(10):203CrossRef
30.
go back to reference Połap D, Woźniak M (2021) Red fox optimization algorithm. Expert Syst Appl 166:114107CrossRef Połap D, Woźniak M (2021) Red fox optimization algorithm. Expert Syst Appl 166:114107CrossRef
31.
go back to reference Khishe M, Mosavi MR (2020) Chimp optimization algorithm. Expert Syst Appl 149:113338CrossRef Khishe M, Mosavi MR (2020) Chimp optimization algorithm. Expert Syst Appl 149:113338CrossRef
32.
go back to reference Singh N, Singh SB (2017) A novel hybrid GWO-SCA approach for optimization problems. Eng Sci Technol Int J 20(6):1586–1601 Singh N, Singh SB (2017) A novel hybrid GWO-SCA approach for optimization problems. Eng Sci Technol Int J 20(6):1586–1601
33.
go back to reference Chegini SN, Bagheri A, Najafi F (2018) PSOSCALF: a new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems. Appl Soft Comput 73:697–726CrossRef Chegini SN, Bagheri A, Najafi F (2018) PSOSCALF: a new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems. Appl Soft Comput 73:697–726CrossRef
34.
go back to reference Naik J, Dash PK, Bisoi R (2021) Optimized droop controller based energy management for stand-alone micro-grid using hybrid monarch butterfly and sine-cosine algorithm. Sustain Technol Assess 46:101310 Naik J, Dash PK, Bisoi R (2021) Optimized droop controller based energy management for stand-alone micro-grid using hybrid monarch butterfly and sine-cosine algorithm. Sustain Technol Assess 46:101310
35.
go back to reference Olejarczyk E, Jernajczyk W (2017) Graph-based analysis of brain connectivity in schizophrenia. PLoS ONE 12(11):e0188629CrossRef Olejarczyk E, Jernajczyk W (2017) Graph-based analysis of brain connectivity in schizophrenia. PLoS ONE 12(11):e0188629CrossRef
36.
go back to reference Siuly S, Khare SK, Bajaj V, Wang H, Zhang Y (2020) A computerized method for automatic detection of schizophrenia using EEG signals. IEEE Trans Neural Syst Rehabil Eng 28(11):2390–2400CrossRef Siuly S, Khare SK, Bajaj V, Wang H, Zhang Y (2020) A computerized method for automatic detection of schizophrenia using EEG signals. IEEE Trans Neural Syst Rehabil Eng 28(11):2390–2400CrossRef
37.
go back to reference Khare SK, Bajaj V, Acharya UR (2021) SPWVD-CNN for automated detection of schizophrenia patients using EEG signals. IEEE Trans Instrum Meas 70:1–9CrossRef Khare SK, Bajaj V, Acharya UR (2021) SPWVD-CNN for automated detection of schizophrenia patients using EEG signals. IEEE Trans Instrum Meas 70:1–9CrossRef
38.
39.
go back to reference Ganaie MA, Tanveer M, Suganthan PN (2020) Minimum variance embedded random vector functional link network. In: International conference on neural information processing, Springer, Cham, pp 412–419 Ganaie MA, Tanveer M, Suganthan PN (2020) Minimum variance embedded random vector functional link network. In: International conference on neural information processing, Springer, Cham, pp 412–419
40.
go back to reference Dash PK, Majumder I, Nayak N, Bisoi R (2020) Point and interval solar power forecasting using hybrid empirical wavelet transform and robust wavelet kernel ridge regression. Nat Resour Res 29:1–29CrossRef Dash PK, Majumder I, Nayak N, Bisoi R (2020) Point and interval solar power forecasting using hybrid empirical wavelet transform and robust wavelet kernel ridge regression. Nat Resour Res 29:1–29CrossRef
41.
go back to reference Sahani M, Rout SK, Dash PK (2021) Epileptic seizure recognition using reduced deep convolutional stack autoencoder and improved kernel RVFLN from EEG signals. IEEE Trans Biomed Circuits Syst 15(3):595–605CrossRef Sahani M, Rout SK, Dash PK (2021) Epileptic seizure recognition using reduced deep convolutional stack autoencoder and improved kernel RVFLN from EEG signals. IEEE Trans Biomed Circuits Syst 15(3):595–605CrossRef
42.
go back to reference K. Singh, S. Singh, J. Malhotra (2020) Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients, Proc Inst Mech Engrs Part H: J Eng Med, 0954411920966937 K. Singh, S. Singh, J. Malhotra (2020) Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients, Proc Inst Mech Engrs Part H: J Eng Med, 0954411920966937
43.
go back to reference Garcia S, Herrera F (2008) An extension on" statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J Mach Learn Res 9(12) Garcia S, Herrera F (2008) An extension on" statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J Mach Learn Res 9(12)
44.
go back to reference Khare SK, Bajaj V (2021) A self-learned decomposition and classification model for schizophrenia diagnosis. Comput Methods Programs Biomed 211:106450CrossRef Khare SK, Bajaj V (2021) A self-learned decomposition and classification model for schizophrenia diagnosis. Comput Methods Programs Biomed 211:106450CrossRef
45.
go back to reference Khare SK, Bajaj V, Siuly S, Sinha GR (2020) Classification of schizophrenia patients through empirical wavelet transformation using electroencephalogram signals. In: Modelling and analysis of active biopotential signals in healthcare IOP Publishing, vol 1, pp 1–26 Khare SK, Bajaj V, Siuly S, Sinha GR (2020) Classification of schizophrenia patients through empirical wavelet transformation using electroencephalogram signals. In: Modelling and analysis of active biopotential signals in healthcare IOP Publishing, vol 1, pp 1–26
46.
go back to reference Phang CR, Noman F, Hussain H, Ting CM, Ombao H (2019) A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns. IEEE J Biomed Health Inform 24(5):1333–1343CrossRef Phang CR, Noman F, Hussain H, Ting CM, Ombao H (2019) A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns. IEEE J Biomed Health Inform 24(5):1333–1343CrossRef
Metadata
Title
Autoencoder-based improved deep learning approach for schizophrenic EEG signal classification
Authors
Sebamai Parija
Mrutyunjaya Sahani
Ranjeeta Bisoi
P. K. Dash
Publication date
23-09-2022
Publisher
Springer London
Published in
Pattern Analysis and Applications / Issue 2/2023
Print ISSN: 1433-7541
Electronic ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-022-01107-x

Other articles of this Issue 2/2023

Pattern Analysis and Applications 2/2023 Go to the issue

Premium Partner