Skip to main content
Top
Published in: Fire Technology 3/2016

01-05-2016

Autoignition of Dead Shrub Twigs: Influence of Diameter on Ignition

Authors: Virginie Tihay-Felicelli, Paul-Antoine Santoni, Toussaint Barboni, Lara Leonelli

Published in: Fire Technology | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of the diameter of dead twigs of Cistus monspeliensis on their ignition was studied experimentally and theoretically. Autoignition experiments were carried out in a cone calorimeter. The ignition time, surface temperature before ignition, flame residence time, smoldering time and mass loss were measured. The particles were classified into two groups based on their ignitability. The first group contained the most flammable twigs, which had diameters smaller than or equal to 4 mm, along with leaves. The second one included twigs with diameters equal to or larger than 5 mm. For a radiant heat flux of 50 kW/m2, the 4-mm value appeared to be the upper limit for the size of the particles potentially involved in the spread dynamics of wildfires. However, bark detachment was observed on the thickest twigs, which greatly decreased their ignition time. Two ignition criteria were investigated: the ignition temperature and critical mass flux. The ignition temperature increased with the twig diameter, showing that this quantity should be carefully considered in ignition models. A thermal ignition model was proposed to determine the ignition time of twigs according to their diameter. The critical mass flux appeared to be fairly constant for any fuel diameter and could also be convenient for modeling the ignition of shrub fuels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sullivan AL (2007) A review of wildland fire spread modelling, 1990–2007, 1: Physical and quasi-physical models. Int J Wildland Fire 18:349–368CrossRef Sullivan AL (2007) A review of wildland fire spread modelling, 1990–2007, 1: Physical and quasi-physical models. Int J Wildland Fire 18:349–368CrossRef
2.
go back to reference Sullivan AL (2007) A review of wildland fire spread modelling, 1990–2007, 2: Empiricaland quasi-empirical models. Int J Wildland Fire 18:369–386CrossRef Sullivan AL (2007) A review of wildland fire spread modelling, 1990–2007, 2: Empiricaland quasi-empirical models. Int J Wildland Fire 18:369–386CrossRef
3.
go back to reference Porterie B, Consalvi JL, Loraud JC, Giroud F, Picard C (2007) Dynamics of wildland fires and their impact on structures. Combust Flame 149:314–328.CrossRef Porterie B, Consalvi JL, Loraud JC, Giroud F, Picard C (2007) Dynamics of wildland fires and their impact on structures. Combust Flame 149:314–328.CrossRef
4.
go back to reference Mell W, Jenkins MA, Gould J, Cheney P (2007) A physics-based approach to modelling grassland fires. Int J Wildland Fire 16:1–22.CrossRef Mell W, Jenkins MA, Gould J, Cheney P (2007) A physics-based approach to modelling grassland fires. Int J Wildland Fire 16:1–22.CrossRef
5.
go back to reference Morvan S, Méradji S, Accary G (2009) Physical modeling of fire spread in Grasslands. Fire Safety J 44:50–61.CrossRef Morvan S, Méradji S, Accary G (2009) Physical modeling of fire spread in Grasslands. Fire Safety J 44:50–61.CrossRef
6.
go back to reference Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels, Res. Pap. INT-115. Ogden, UT: U.S. Department of Agriculture, Intermountain Forest and Range Experiment Station. Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels, Res. Pap. INT-115. Ogden, UT: U.S. Department of Agriculture, Intermountain Forest and Range Experiment Station.
7.
go back to reference Porterie B, Zekri N, Clerc JP, Loraud JC (2007) Modeling forest fire spread and spotting process with small world networks. Combust Flame 149:63–78.CrossRef Porterie B, Zekri N, Clerc JP, Loraud JC (2007) Modeling forest fire spread and spotting process with small world networks. Combust Flame 149:63–78.CrossRef
8.
go back to reference Santoni PA, Filippi JB, Balbi JH, Bosseur F (2011) Wildland fire behaviour case studies and fuel models for landscape-scale fire modeling. J Combust. doi:10.1155/2011/613424. Santoni PA, Filippi JB, Balbi JH, Bosseur F (2011) Wildland fire behaviour case studies and fuel models for landscape-scale fire modeling. J Combust. doi:10.​1155/​2011/​613424.
9.
go back to reference Fons WL (1946) Analysis of fire spread in light forest fuels. J Agric Res 72:93–121. Fons WL (1946) Analysis of fire spread in light forest fuels. J Agric Res 72:93–121.
10.
go back to reference Koo E, Pagni P, Stephens S, Huff J, Woycheese J, Weise DR (2005) A simple physical model for forest fire spread rate. In: Fire Safety Science Proceedings of the Eighth International Symposium, pp 851–862. Koo E, Pagni P, Stephens S, Huff J, Woycheese J, Weise DR (2005) A simple physical model for forest fire spread rate. In: Fire Safety Science Proceedings of the Eighth International Symposium, pp 851–862.
11.
go back to reference Babrauskas V (2001) Ignition of wood: a review of the state of the art. In: Interflam 2001, Interscience Communications Ltd., London, pp 71–88. Babrauskas V (2001) Ignition of wood: a review of the state of the art. In: Interflam 2001, Interscience Communications Ltd., London, pp 71–88.
12.
go back to reference Finney MA, Cohen JD, McAllister SS, Jolly WM (2013) On the need for a theory of wildland fire spread. Int J Wildland Fire 22:25–36.CrossRef Finney MA, Cohen JD, McAllister SS, Jolly WM (2013) On the need for a theory of wildland fire spread. Int J Wildland Fire 22:25–36.CrossRef
13.
go back to reference Rasbash DJ, Drysdale DD, Deepak D (1986) Critical heat and mass transfer at pilot ignition and extinction of material. Fire Safety J 10:1–10.CrossRef Rasbash DJ, Drysdale DD, Deepak D (1986) Critical heat and mass transfer at pilot ignition and extinction of material. Fire Safety J 10:1–10.CrossRef
14.
go back to reference Melinek SJ (1969) Ignition behaviour of heated wood surfaces. Fire Research Station, Borehamwood. Melinek SJ (1969) Ignition behaviour of heated wood surfaces. Fire Research Station, Borehamwood.
15.
go back to reference Delichatsios MA (2005) Piloted ignition times, critical heat fluxes and mass loss rates at reduced oxygen atmospheres. Fire Safety J 40:197–212CrossRef Delichatsios MA (2005) Piloted ignition times, critical heat fluxes and mass loss rates at reduced oxygen atmospheres. Fire Safety J 40:197–212CrossRef
16.
go back to reference Lyon RE, Quintere JG (2007) Criteria for piloted ignition of combustible solids. Combust Flame 151:551–559CrossRef Lyon RE, Quintere JG (2007) Criteria for piloted ignition of combustible solids. Combust Flame 151:551–559CrossRef
17.
go back to reference McAllister S (2013) Critical mass flux for flaming ignition of wet wood. Fire Safety J 61:200–206CrossRef McAllister S (2013) Critical mass flux for flaming ignition of wet wood. Fire Safety J 61:200–206CrossRef
18.
go back to reference Fateh T, Rogaume T, Luche J, Richard F, Jabouille F (2014) Characterization of the thermal decomposition of two kinds ofplywood with a cone calorimeter—FTIR apparatus. J Anal Appl Pyrol 107:87–100.CrossRef Fateh T, Rogaume T, Luche J, Richard F, Jabouille F (2014) Characterization of the thermal decomposition of two kinds ofplywood with a cone calorimeter—FTIR apparatus. J Anal Appl Pyrol 107:87–100.CrossRef
19.
go back to reference Torero JL, Simeoni A (2010) Heat and mass transfer in fires: scaling laws, ignition of solid fuels and application to forest fires. Open Thermodyn J 4:145–155CrossRef Torero JL, Simeoni A (2010) Heat and mass transfer in fires: scaling laws, ignition of solid fuels and application to forest fires. Open Thermodyn J 4:145–155CrossRef
20.
go back to reference Simeoni A, Thomas JC, Bartoli P, Borowieck P, Reszka P, Colella F, Santoni PA, Torero JL (2012) Flammability studies for wildland and wildland–urban interface fires applied to pine needles and solid polymers. Fire Safety J 54:203–217CrossRef Simeoni A, Thomas JC, Bartoli P, Borowieck P, Reszka P, Colella F, Santoni PA, Torero JL (2012) Flammability studies for wildland and wildland–urban interface fires applied to pine needles and solid polymers. Fire Safety J 54:203–217CrossRef
21.
go back to reference McArthur AG (1962) Control burning in eucalypt forests. In: Commonwealth of Australia Forest and Timber Bureau, Leaflet Number 80. Canberra, ACT McArthur AG (1962) Control burning in eucalypt forests. In: Commonwealth of Australia Forest and Timber Bureau, Leaflet Number 80. Canberra, ACT
22.
go back to reference Peet GB (1965) A fire danger rating and controlled burning guide for the Northern Jarrah (Euc Marginata sm) forest of Western Australia. Forests Dept, Perth Peet GB (1965) A fire danger rating and controlled burning guide for the Northern Jarrah (Euc Marginata sm) forest of Western Australia. Forests Dept, Perth
23.
go back to reference Burrows ND (2001) Flame residence times and rates of weight loss of eucalypt forest fuel particles. Int J Wildland Fire 10:137–143CrossRef Burrows ND (2001) Flame residence times and rates of weight loss of eucalypt forest fuel particles. Int J Wildland Fire 10:137–143CrossRef
24.
go back to reference DeBano LF, Neary DG, Fflolliott PF (1998) Fire Effects on Ecosystems. Wiley, New York DeBano LF, Neary DG, Fflolliott PF (1998) Fire Effects on Ecosystems. Wiley, New York
25.
go back to reference Cohen JD, Deeming JE (1985) The National Fire-Danger Rating System: basic equations, General Technical Report PSW-82, United States Department of Agriculture Forest Service. Cohen JD, Deeming JE (1985) The National Fire-Danger Rating System: basic equations, General Technical Report PSW-82, United States Department of Agriculture Forest Service.
26.
go back to reference Simms DL (1960) Ignition of cellulosic materials by radiation. Combust Flame 4:293–300CrossRef Simms DL (1960) Ignition of cellulosic materials by radiation. Combust Flame 4:293–300CrossRef
27.
go back to reference Simms DL, Law M (1967) The ignition of wet and dry wood by radiation. Combust Flame 11:377–388CrossRef Simms DL, Law M (1967) The ignition of wet and dry wood by radiation. Combust Flame 11:377–388CrossRef
28.
go back to reference Shi L, Yit M, Chew L (2013) Experimental study of woods under external heat flux by autoignition, ignition time and mass loss rate. J Therm Anal Calorim 111:1399–1407CrossRef Shi L, Yit M, Chew L (2013) Experimental study of woods under external heat flux by autoignition, ignition time and mass loss rate. J Therm Anal Calorim 111:1399–1407CrossRef
29.
go back to reference Poespowati T (2009) An experimental study on autoignition of wood. In: Recent advances in technologies, Maurizio A Strangio, InTech, pp 577–586 Poespowati T (2009) An experimental study on autoignition of wood. In: Recent advances in technologies, Maurizio A Strangio, InTech, pp 577–586
30.
go back to reference Atreya A, Carpentier C, Harkleroad M (1986) Effect of sample orientation on piloted ignition and flame spread. Fire Safety Sci 1:97–109CrossRef Atreya A, Carpentier C, Harkleroad M (1986) Effect of sample orientation on piloted ignition and flame spread. Fire Safety Sci 1:97–109CrossRef
31.
go back to reference Dietenberg MA (1995) Protocol for ignitability, lateral flame spread and heat release rate using lift apparatus, chapter 29. Fire Polym II, pp 435–449CrossRef Dietenberg MA (1995) Protocol for ignitability, lateral flame spread and heat release rate using lift apparatus, chapter 29. Fire Polym II, pp 435–449CrossRef
32.
go back to reference Harada T (2001) Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test. Fire Mater 25:161–167CrossRef Harada T (2001) Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test. Fire Mater 25:161–167CrossRef
33.
go back to reference Spearpoint MJ, Quintiere JG (2001) Predicting the piloted ignition of wood in the cone calorimeter using an integral model—effect of species, grain orientation and heat flux. Fire Safety J 36:391–415CrossRef Spearpoint MJ, Quintiere JG (2001) Predicting the piloted ignition of wood in the cone calorimeter using an integral model—effect of species, grain orientation and heat flux. Fire Safety J 36:391–415CrossRef
34.
go back to reference Delichatsios MA (2005) Piloted ignition times, critical heat fluxes and mass loss rates at reduced oxygen atmospheres. Fire Safety J 40:197–212CrossRef Delichatsios MA (2005) Piloted ignition times, critical heat fluxes and mass loss rates at reduced oxygen atmospheres. Fire Safety J 40:197–212CrossRef
35.
go back to reference [35] Bilbao R, Mastral JF, Aldea ME, Ceamanos J, Betran M (2001) Experimental and theoretical study of the ignition and smoldering of wood including convective effects. Combust Flame 126:1363–1372CrossRef [35] Bilbao R, Mastral JF, Aldea ME, Ceamanos J, Betran M (2001) Experimental and theoretical study of the ignition and smoldering of wood including convective effects. Combust Flame 126:1363–1372CrossRef
36.
go back to reference [36] Koohyar AN, Welker JR, Sliepcevich CM (1968) The irradiation and ignition of wood by flame. Fire Technol 4:284–291CrossRef [36] Koohyar AN, Welker JR, Sliepcevich CM (1968) The irradiation and ignition of wood by flame. Fire Technol 4:284–291CrossRef
37.
38.
go back to reference [38] Dimitrakopoulos AP (2001) A statistical classification of Mediterranean species based on their flammability components. Int J Wildland Fire 10:113–118CrossRef [38] Dimitrakopoulos AP (2001) A statistical classification of Mediterranean species based on their flammability components. Int J Wildland Fire 10:113–118CrossRef
39.
go back to reference Mindykowski P, Fuentes A, Consalvi JL, Porterie B (2011) Piloted ignition of wildland fuels. Fire Safety J 46:34–40CrossRef Mindykowski P, Fuentes A, Consalvi JL, Porterie B (2011) Piloted ignition of wildland fuels. Fire Safety J 46:34–40CrossRef
40.
go back to reference Tihay V, Santoni PA, Barboni T, Leonelli L (2014) Experimental and theoretical study of diameter effect on the ignition of cistus twigs. In: Viegas DX (ed) VII International Conference on Forest Fire Research Tihay V, Santoni PA, Barboni T, Leonelli L (2014) Experimental and theoretical study of diameter effect on the ignition of cistus twigs. In: Viegas DX (ed) VII International Conference on Forest Fire Research
41.
go back to reference Cruz G, Butler BW, Viegas DX, Palheiro P (2011) Characterization of flame radiosity in shrubland fires. Combust Flame 158:1970–1976CrossRef Cruz G, Butler BW, Viegas DX, Palheiro P (2011) Characterization of flame radiosity in shrubland fires. Combust Flame 158:1970–1976CrossRef
42.
go back to reference Boulet P, Parent G, Acem Z, Collin A, Séro-Guillaume O (2011) On the emission of radiation by flames and corresponding absorption by vegetation in forest fires. Fire Safety J 46:21–26CrossRef Boulet P, Parent G, Acem Z, Collin A, Séro-Guillaume O (2011) On the emission of radiation by flames and corresponding absorption by vegetation in forest fires. Fire Safety J 46:21–26CrossRef
43.
go back to reference [43] Tihay V, Santoni PA, Simeoni A, Garo JP, Vantelon JP (2009) Skeletal and global mechanisms for the combustion of gases released by crushed forest fuels. Combust Flame 156:1565–1575.CrossRef [43] Tihay V, Santoni PA, Simeoni A, Garo JP, Vantelon JP (2009) Skeletal and global mechanisms for the combustion of gases released by crushed forest fuels. Combust Flame 156:1565–1575.CrossRef
44.
go back to reference Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, The Atrium, Southern Gate, Chichester Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, The Atrium, Southern Gate, Chichester
45.
go back to reference Wilkie CA, Morgan AB (2009) Fire retardancy of polymeric materials. CRC Press, Boca RatonCrossRef Wilkie CA, Morgan AB (2009) Fire retardancy of polymeric materials. CRC Press, Boca RatonCrossRef
46.
go back to reference Andrews PL (1986) BEHAVE: Fire behavior prediction and fuel modeling system—Burn Subsystem Part 1, General Technical Report INT-1 94, United States Department of Agriculture Forest Service. Andrews PL (1986) BEHAVE: Fire behavior prediction and fuel modeling system—Burn Subsystem Part 1, General Technical Report INT-1 94, United States Department of Agriculture Forest Service.
47.
go back to reference Finney MA (1998) FARSITE: fire area simulator—Model Development and Evaluation, Research Paper RMRS-RP-4 Revised, United States Department of Agriculture Forest Service Finney MA (1998) FARSITE: fire area simulator—Model Development and Evaluation, Research Paper RMRS-RP-4 Revised, United States Department of Agriculture Forest Service
48.
go back to reference Dupuy JL, Larini M (1999) Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects. Int J Wildland Fire 9:155–172CrossRef Dupuy JL, Larini M (1999) Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects. Int J Wildland Fire 9:155–172CrossRef
49.
go back to reference Cruz MG, Butler BW, Alexander ME, Forthofer JM, Wakimoto RH (2006) Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization. Int J Wildland Fire 15:47–60CrossRef Cruz MG, Butler BW, Alexander ME, Forthofer JM, Wakimoto RH (2006) Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization. Int J Wildland Fire 15:47–60CrossRef
50.
go back to reference Cruz MG, Butler BW, Alexander ME (2006) Predicting the ignition of crown fuels above a spreading surface fire. Part 2: model evaluation. Int J Wildland Fire 15:61–67CrossRef Cruz MG, Butler BW, Alexander ME (2006) Predicting the ignition of crown fuels above a spreading surface fire. Part 2: model evaluation. Int J Wildland Fire 15:61–67CrossRef
51.
go back to reference Staggs JE (2001) Ignition of char-forming polymers at a critical mass flux. Polym Degrad Stabil 74:433–439.CrossRef Staggs JE (2001) Ignition of char-forming polymers at a critical mass flux. Polym Degrad Stabil 74:433–439.CrossRef
52.
go back to reference Özisik MN (1993) Heat conduction. Wiley, New York Özisik MN (1993) Heat conduction. Wiley, New York
53.
go back to reference Nield DA, Bejan A (2006) Convection in porous media. Springer, BerlinMATH Nield DA, Bejan A (2006) Convection in porous media. Springer, BerlinMATH
54.
go back to reference Moro C (2006) Détermination des caractéristiques physiques de particules de quelques espèces forestières méditerranéennes, INRA PIF2006-06. Moro C (2006) Détermination des caractéristiques physiques de particules de quelques espèces forestières méditerranéennes, INRA PIF2006-06.
55.
go back to reference Liodakis S, Bakirtzis D, Dimitrakopoulos AP (2003) Autoignition and thermogravimetric analysis of forest species treated with fire retardants. Thermochim Acta 399:31-42.CrossRef Liodakis S, Bakirtzis D, Dimitrakopoulos AP (2003) Autoignition and thermogravimetric analysis of forest species treated with fire retardants. Thermochim Acta 399:31-42.CrossRef
56.
go back to reference Leroy V, Cancellieri D, Leoni E (2006) Thermal degradation of logno-cellulosic fuels: DSC and TGA studies. Thermochim Acta 451:131–138CrossRef Leroy V, Cancellieri D, Leoni E (2006) Thermal degradation of logno-cellulosic fuels: DSC and TGA studies. Thermochim Acta 451:131–138CrossRef
57.
go back to reference Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer. Wiley, New York. Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer. Wiley, New York.
58.
go back to reference Morandini F, Perez-Ramirez Y, Tihay V, Santoni PA, Barboni T (2013) Radiant, convective and heat release characterization of vegetation fire. Int J Therm Sci 70:83–91CrossRef Morandini F, Perez-Ramirez Y, Tihay V, Santoni PA, Barboni T (2013) Radiant, convective and heat release characterization of vegetation fire. Int J Therm Sci 70:83–91CrossRef
59.
go back to reference Heskestad G (1983) Luminous height of turbulent diffusion flames. Fire Safety J 5:103–108CrossRef Heskestad G (1983) Luminous height of turbulent diffusion flames. Fire Safety J 5:103–108CrossRef
60.
go back to reference Howell JR, Siegel R, Pinar Menguc M (2010) Thermal radiation heat transfer, 5th edn. Taylor and Francis/CRC, New York. Howell JR, Siegel R, Pinar Menguc M (2010) Thermal radiation heat transfer, 5th edn. Taylor and Francis/CRC, New York.
Metadata
Title
Autoignition of Dead Shrub Twigs: Influence of Diameter on Ignition
Authors
Virginie Tihay-Felicelli
Paul-Antoine Santoni
Toussaint Barboni
Lara Leonelli
Publication date
01-05-2016
Publisher
Springer US
Published in
Fire Technology / Issue 3/2016
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-015-0514-x

Other articles of this Issue 3/2016

Fire Technology 3/2016 Go to the issue