Skip to main content
Top
Published in: Neuroinformatics 2/2023

08-03-2023 | Review

Automatic Detection of Alzheimer's Disease using Deep Learning Models and Neuro-Imaging: Current Trends and Future Perspectives

Authors: T. Illakiya, R. Karthik

Published in: Neuroinformatics | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep learning algorithms have a huge influence on tackling research issues in the field of medical image processing. It acts as a vital aid for the radiologists in producing accurate results toward effective disease diagnosis. The objective of this research is to highlight the importance of deep learning models in the detection of Alzheimer's Disease (AD). The main objective of this research is to analyze different deep learning methods used for detecting AD. This study examines 103 research articles published in various research databases. These articles have been selected based on specific criteria to find the most relevant findings in the field of AD detection. The review was carried out based on deep learning techniques such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transfer Learning (TL). To propose accurate methods for the detection, segmentation, and severity grading of AD, the radiological features need to be examined in greater depth. This review attempts to analyze different deep learning methods applied for AD detection using neuroimaging modalities like Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), etc. The focus of this review is restricted to deep learning works based on radiological imaging data for AD detection. There are a few works that have utilized other biomarkers to understand the effect of AD. Also, articles published in English were alone considered for analysis. This work concludes by highlighting the key research issues towards effective AD detection. Though several methods have yielded promising results in AD detection, the progression from Mild Cognitive Impairment (MCI) to AD need to be analyzed in greater depth using DL models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abuhmed, T., El-Sappagh, S., & Alonso, J. M. (2021). Robust hybrid deep learning models for Alzheimer’s progression detection. Knowledge-Based Systems, 213, 106688.CrossRef Abuhmed, T., El-Sappagh, S., & Alonso, J. M. (2021). Robust hybrid deep learning models for Alzheimer’s progression detection. Knowledge-Based Systems, 213, 106688.CrossRef
go back to reference Abdelaziz, M., Wang, T., & Elazab, A. (2021). Alzheimer’s disease diagnosis framework from incomplete multimodal data using convolutional neural networks. Journal of Biomedical Informatics, 121, 103863.PubMedCrossRef Abdelaziz, M., Wang, T., & Elazab, A. (2021). Alzheimer’s disease diagnosis framework from incomplete multimodal data using convolutional neural networks. Journal of Biomedical Informatics, 121, 103863.PubMedCrossRef
go back to reference AbdulAzeem, Y., Bahgat, W. M., & Badawy, M. (2021). A CNN based framework for classification of Alzheimer’s disease. Neural Computing and Applications, 33(16), 10415–10428.CrossRef AbdulAzeem, Y., Bahgat, W. M., & Badawy, M. (2021). A CNN based framework for classification of Alzheimer’s disease. Neural Computing and Applications, 33(16), 10415–10428.CrossRef
go back to reference Aderghal, K., Khvostikov, A., Krylov, A., Benois-Pineau, J., Afdel, K., & Catheline, G. (2018). Classification of alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learning. In: 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS) [Internet]. Karlstad: IEEE; p. 345–350. Aderghal, K., Khvostikov, A., Krylov, A., Benois-Pineau, J., Afdel, K., & Catheline, G. (2018). Classification of alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learning. In: 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS) [Internet]. Karlstad: IEEE; p. 345–350.
go back to reference Aderghal, K., Afdel, K., Benois-Pineau, J., & Catheline, G. (2020). Improving Alzheimer’s stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities. Heliyon, 6(12), e05652.PubMedPubMedCentralCrossRef Aderghal, K., Afdel, K., Benois-Pineau, J., & Catheline, G. (2020). Improving Alzheimer’s stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities. Heliyon, 6(12), e05652.PubMedPubMedCentralCrossRef
go back to reference Albert, M., DeCarli, C., DeKosky, S., de Leon, M., Foster, N. L., Frank, R., et al. (2004). The use of MRI and PET for clinical diagnosis of dementia and investigation of cognitive impairment: a consensus report. Albert, M., DeCarli, C., DeKosky, S., de Leon, M., Foster, N. L., Frank, R., et al. (2004). The use of MRI and PET for clinical diagnosis of dementia and investigation of cognitive impairment: a consensus report.
go back to reference Amoroso, N., Diacono, D., Fanizzi, A., La Rocca, M., Monaco, A., Lombardi, A., et al. (2018). Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge. Journal of Neuroscience Methods., 302, 3–9.PubMedCrossRef Amoroso, N., Diacono, D., Fanizzi, A., La Rocca, M., Monaco, A., Lombardi, A., et al. (2018). Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge. Journal of Neuroscience Methods., 302, 3–9.PubMedCrossRef
go back to reference Ashraf, A., Naz, S., Shirazi, S. H., Razzak, I., & Parsad, M. (2021). Deep transfer learning for alzheimer neurological disorder detection. Multimedia Tools and Applications, 80(20), 30117–30142.CrossRef Ashraf, A., Naz, S., Shirazi, S. H., Razzak, I., & Parsad, M. (2021). Deep transfer learning for alzheimer neurological disorder detection. Multimedia Tools and Applications, 80(20), 30117–30142.CrossRef
go back to reference Bae, J. B., Lee, S., Jung, W., Park, S., Kim, W., Oh, H., et al. (2020). Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Science and Reports, 10(1), 22252.CrossRef Bae, J. B., Lee, S., Jung, W., Park, S., Kim, W., Oh, H., et al. (2020). Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Science and Reports, 10(1), 22252.CrossRef
go back to reference Basaia, S., Agosta, F., Wagner, L., Canu, E., Magnani, G., Santangelo, R., et al. (2019). Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage: Clinical, 21, 101645.PubMedCrossRef Basaia, S., Agosta, F., Wagner, L., Canu, E., Magnani, G., Santangelo, R., et al. (2019). Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage: Clinical, 21, 101645.PubMedCrossRef
go back to reference Basheera, S., & Ram, M. S. S. (2019). Convolution neural network–based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimer’s Dementia: Translational Research; Clinical Interventions, 5(1), 974–986.PubMedPubMedCentral Basheera, S., & Ram, M. S. S. (2019). Convolution neural network–based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimer’s Dementia: Translational Research; Clinical Interventions, 5(1), 974–986.PubMedPubMedCentral
go back to reference Basheera, S., & Ram, M. S. S. (2020). A novel CNN based Alzheimer’s disease classification using hybrid enhanced ICA segmented gray matter of MRI. Computerized Medical Imaging and Graphics, 81, 101713.PubMedCrossRef Basheera, S., & Ram, M. S. S. (2020). A novel CNN based Alzheimer’s disease classification using hybrid enhanced ICA segmented gray matter of MRI. Computerized Medical Imaging and Graphics, 81, 101713.PubMedCrossRef
go back to reference Basheera, S., & Ram, M. S. S. (2021). Deep learning based Alzheimer’s disease early diagnosis using T2w segmented gray matter MRI. International Journal of Imaging Systems and Technology, 31(3), 1692–1710.CrossRef Basheera, S., & Ram, M. S. S. (2021). Deep learning based Alzheimer’s disease early diagnosis using T2w segmented gray matter MRI. International Journal of Imaging Systems and Technology, 31(3), 1692–1710.CrossRef
go back to reference Basher, A., Kim, B. C., Lee, K. H., & Jung, H. Y. (2021). Volumetric feature-based Alzheimer’s disease diagnosis from sMRI data using a convolutional neural network and a deep neural network. IEEE Access, 9, 29870–29882.CrossRef Basher, A., Kim, B. C., Lee, K. H., & Jung, H. Y. (2021). Volumetric feature-based Alzheimer’s disease diagnosis from sMRI data using a convolutional neural network and a deep neural network. IEEE Access, 9, 29870–29882.CrossRef
go back to reference Beheshti, I., Demirel, H., & Matsuda, H. (2017). Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Computers in Biology and Medicine., 83, 109–119.PubMedCrossRef Beheshti, I., Demirel, H., & Matsuda, H. (2017). Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Computers in Biology and Medicine., 83, 109–119.PubMedCrossRef
go back to reference Bhatkoti, P., & Paul, M. (2016). Early diagnosis of Alzheimer’s disease: A multi-class deep learning framework with modified k-sparse autoencoder classification. In: 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ) [Internet]. Palmerston North, New Zealand: IEEE, p. 1–5. Bhatkoti, P., & Paul, M. (2016). Early diagnosis of Alzheimer’s disease: A multi-class deep learning framework with modified k-sparse autoencoder classification. In: 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ) [Internet]. Palmerston North, New Zealand: IEEE, p. 1–5.
go back to reference Bi, X., Zhao, X., Huang, H., Chen, D., & Ma, Y. (2020). Functional brain network classification for Alzheimer’s disease detection with deep features and extreme learning machine. Cognitive Computation, 12(3), 513–527.CrossRef Bi, X., Zhao, X., Huang, H., Chen, D., & Ma, Y. (2020). Functional brain network classification for Alzheimer’s disease detection with deep features and extreme learning machine. Cognitive Computation, 12(3), 513–527.CrossRef
go back to reference Chen, Y., Shi, B., Wang, Z., Zhang, P., Smith, C. D., & Liu, J. (2017). Hippocampus segmentation through multi-view ensemble ConvNets. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) [Internet]. Melbourne, Australia: IEEE; [cited 2022 Mar 19]. p. 192–196. Chen, Y., Shi, B., Wang, Z., Zhang, P., Smith, C. D., & Liu, J. (2017). Hippocampus segmentation through multi-view ensemble ConvNets. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) [Internet]. Melbourne, Australia: IEEE; [cited 2022 Mar 19]. p. 192–196.
go back to reference Cheng, B., Liu, M., Zhang, D., & Shen, D. (2019). Robust multi-label transfer feature learning for early diagnosis of Alzheimer’s disease. Brain Imaging and Behavior, 13(1), 138–53.PubMedPubMedCentralCrossRef Cheng, B., Liu, M., Zhang, D., & Shen, D. (2019). Robust multi-label transfer feature learning for early diagnosis of Alzheimer’s disease. Brain Imaging and Behavior, 13(1), 138–53.PubMedPubMedCentralCrossRef
go back to reference Cheng, D., & Liu, M. (2017). Combining convolutional and recurrent neural networks for Alzheimer’s disease diagnosis using PET images. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST). Beijing: IEEE; p. 1–5. Cheng, D., & Liu, M. (2017). Combining convolutional and recurrent neural networks for Alzheimer’s disease diagnosis using PET images. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST). Beijing: IEEE; p. 1–5.
go back to reference Choi, J. Y., & Lee, B. (2020). Combining of multiple deep networks via ensemble generalization loss, based on MRI images, for Alzheimer’s disease classification. IEEE Signal Processing Letters, 27, 206–210.CrossRef Choi, J. Y., & Lee, B. (2020). Combining of multiple deep networks via ensemble generalization loss, based on MRI images, for Alzheimer’s disease classification. IEEE Signal Processing Letters, 27, 206–210.CrossRef
go back to reference Cui, R., Liu, M., Li, G., & Longitudinal analysis for Alzheimer’s disease diagnosis using RNN. In,. (2018). IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) [Internet]. Washington, DC: IEEE, 2018, 1398–1401. Cui, R., Liu, M., Li, G., & Longitudinal analysis for Alzheimer’s disease diagnosis using RNN. In,. (2018). IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) [Internet]. Washington, DC: IEEE, 2018, 1398–1401.
go back to reference Cui, R., & Liu, M. (2019). RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Computerized Medical Imaging and Graphics, 73, 1–10.PubMedCrossRef Cui, R., & Liu, M. (2019). RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Computerized Medical Imaging and Graphics, 73, 1–10.PubMedCrossRef
go back to reference Ding, Y., Sohn, J. H., Kawczynski, M. G., Trivedi, H., Harnish, R., Jenkins, N. W., et al. (2019). A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18 F-FDG PET of the Brain. Radiology, 290(2), 456–464.PubMedCrossRef Ding, Y., Sohn, J. H., Kawczynski, M. G., Trivedi, H., Harnish, R., Jenkins, N. W., et al. (2019). A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18 F-FDG PET of the Brain. Radiology, 290(2), 456–464.PubMedCrossRef
go back to reference Ebrahimi, A., & Luo, S. (2021). Disease neuroimaging initiative for the A. Convolutional neural networks for Alzheimer’s disease detection on MRI images. Journal of Medical Imaging, 8, (02). Ebrahimi, A., & Luo, S. (2021). Disease neuroimaging initiative for the A. Convolutional neural networks for Alzheimer’s disease detection on MRI images. Journal of Medical Imaging, 8, (02).
go back to reference Ebrahimi, A., Luo, S., & Chiong, R. (2020). Introducing transfer learning to 3D ResNet-18 for Alzheimer’s disease detection on MRI images. In: 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ). Wellington, New Zealand: IEEE; p. 1–6. Ebrahimi, A., Luo, S., & Chiong, R. (2020). Introducing transfer learning to 3D ResNet-18 for Alzheimer’s disease detection on MRI images. In: 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ). Wellington, New Zealand: IEEE; p. 1–6.
go back to reference Ebrahimi, A., Luo, S., & Chiong, R. (2021). Deep sequence modelling for Alzheimer’s disease detection using MRI. Computers in Biology and Medicine, 134, 104537.PubMedCrossRef Ebrahimi, A., Luo, S., & Chiong, R. (2021). Deep sequence modelling for Alzheimer’s disease detection using MRI. Computers in Biology and Medicine, 134, 104537.PubMedCrossRef
go back to reference Ebrahimi-Ghahnavieh, A., Luo, S., & Chiong, R. (2019). Transfer Learning for Alzheimer’s Disease Detection on MRI Images. In: 2019 IEEE International Conference on Industry 40, Artificial Intelligence, and Communications Technology (IAICT) [Internet]. BALI, Indonesia: IEEE; p. 133–138. Ebrahimi-Ghahnavieh, A., Luo, S., & Chiong, R. (2019). Transfer Learning for Alzheimer’s Disease Detection on MRI Images. In: 2019 IEEE International Conference on Industry 40, Artificial Intelligence, and Communications Technology (IAICT) [Internet]. BALI, Indonesia: IEEE; p. 133–138.
go back to reference Farooq, A., Anwar, S., Awais, M., & Rehman, S. (2017). A deep CNN based multi-class classification of Alzheimer's disease using MRI. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST), p. 1–6. Farooq, A., Anwar, S., Awais, M., & Rehman, S. (2017). A deep CNN based multi-class classification of Alzheimer's disease using MRI. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST), p. 1–6.
go back to reference Feng, C., Elazab, A., Yang, P., Wang, T., Lei, B., & Xiao, X. (2018). 3D convolutional neural network and stacked bidirectional recurrent neural network for Alzheimer’s disease diagnosis. In: Rekik I, Unal G, Adeli E, Park SH, editors. PRedictive Intelligence in MEdicine Cham: Springer International Publishing; p. 138–146. Feng, C., Elazab, A., Yang, P., Wang, T., Lei, B., & Xiao, X. (2018). 3D convolutional neural network and stacked bidirectional recurrent neural network for Alzheimer’s disease diagnosis. In: Rekik I, Unal G, Adeli E, Park SH, editors. PRedictive Intelligence in MEdicine Cham: Springer International Publishing; p. 138–146.
go back to reference Feng, C., Elazab, A., Yang, P., Wang, T., Zhou, F., Hu, H., et al. (2019). Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBi-LSTM. IEEE Access, 7, 63605–63618.CrossRef Feng, C., Elazab, A., Yang, P., Wang, T., Zhou, F., Hu, H., et al. (2019). Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBi-LSTM. IEEE Access, 7, 63605–63618.CrossRef
go back to reference Feng, W., Halm-Lutterodt, N. V., Tang, H., Mecum, A., Mesregah, M. K., Ma, Y., et al. (2020). Automated MRI-based deep learning model for detection of Alzheimer’s disease process. International Journal of Neural Systems, 30(06), 2050032.PubMedCrossRef Feng, W., Halm-Lutterodt, N. V., Tang, H., Mecum, A., Mesregah, M. K., Ma, Y., et al. (2020). Automated MRI-based deep learning model for detection of Alzheimer’s disease process. International Journal of Neural Systems, 30(06), 2050032.PubMedCrossRef
go back to reference Ge, C., Qu, Q., Gu, I.Y.-H., & Jakola, A. S. (2019). Multi-stream multi-scale deep convolutional networks for Alzheimer’s disease detection using MR images. Neurocomputing, 350, 60–9.CrossRef Ge, C., Qu, Q., Gu, I.Y.-H., & Jakola, A. S. (2019). Multi-stream multi-scale deep convolutional networks for Alzheimer’s disease detection using MR images. Neurocomputing, 350, 60–9.CrossRef
go back to reference Goceri, E. (2019). Diagnosis of Alzheimer’s disease with Sobolev gradient‐based optimization and 3D convolutional neural network. International Journal for Numerical Methods in Biomedical Engineering, 35, (7). Goceri, E. (2019). Diagnosis of Alzheimer’s disease with Sobolev gradient‐based optimization and 3D convolutional neural network. International Journal for Numerical Methods in Biomedical Engineering, 35, (7).
go back to reference Goenka, N., & Tiwari, S. (2021). Deep learning for Alzheimer prediction using brain biomarkers. Artificial Intelligence Review, 54(7), 4827–4871.CrossRef Goenka, N., & Tiwari, S. (2021). Deep learning for Alzheimer prediction using brain biomarkers. Artificial Intelligence Review, 54(7), 4827–4871.CrossRef
go back to reference Gunawardena, K. A. N. N. P., Rajapakse, R. N., & Kodikara, N. D. (2017). Applying convolutional neural networks for pre-detection of alzheimer’s disease from structural MRI data. In: 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) [Internet]. Auckland: IEEE; p. 1–7. Gunawardena, K. A. N. N. P., Rajapakse, R. N., & Kodikara, N. D. (2017). Applying convolutional neural networks for pre-detection of alzheimer’s disease from structural MRI data. In: 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) [Internet]. Auckland: IEEE; p. 1–7.
go back to reference Han, R., Chen, C. L. P., & Liu, Z. (2020). A novel convolutional variation of broad learning system for Alzheimer’s disease diagnosis by using MRI images. IEEE Access, 8, 214646–214657.CrossRef Han, R., Chen, C. L. P., & Liu, Z. (2020). A novel convolutional variation of broad learning system for Alzheimer’s disease diagnosis by using MRI images. IEEE Access, 8, 214646–214657.CrossRef
go back to reference He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Internet]. Las Vegas, NV, USA: IEEE; p. 770–8. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Internet]. Las Vegas, NV, USA: IEEE; p. 770–8.
go back to reference Hedayati, R., Khedmati, M., & Taghipour-Gorjikolaie, M. (2021). Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer’s disease diagnosis. Biomedical Signal Processing and Control, 66, 102397.CrossRef Hedayati, R., Khedmati, M., & Taghipour-Gorjikolaie, M. (2021). Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer’s disease diagnosis. Biomedical Signal Processing and Control, 66, 102397.CrossRef
go back to reference Helaly, H. A., Badawy, M., & Haikal, A. Y. (2022). Toward deep MRI segmentation for Alzheimer’s disease detection. Neural Computing and Applications, 34(2), 1047–1063.CrossRef Helaly, H. A., Badawy, M., & Haikal, A. Y. (2022). Toward deep MRI segmentation for Alzheimer’s disease detection. Neural Computing and Applications, 34(2), 1047–1063.CrossRef
go back to reference Hesamian, M. H., Jia, W., He, X., & Kennedy, P. (2019). Deep learning techniques for medical image segmentation: Achievements and challenges. Journal of Digital Imaging, 32(4), 582–596.PubMedPubMedCentralCrossRef Hesamian, M. H., Jia, W., He, X., & Kennedy, P. (2019). Deep learning techniques for medical image segmentation: Achievements and challenges. Journal of Digital Imaging, 32(4), 582–596.PubMedPubMedCentralCrossRef
go back to reference Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al. (2017) MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:170404861 Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al. (2017) MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:​170404861
go back to reference Huang, G., Liu, Z., & Van Der Maaten, L. (2017) Weinberger KQ. Densely Connected Convolutional Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Honolulu, HI: IEEE; p. 2261–2269. Huang, G., Liu, Z., & Van Der Maaten, L. (2017) Weinberger KQ. Densely Connected Convolutional Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Honolulu, HI: IEEE; p. 2261–2269.
go back to reference Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2017). Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5mb model size. 13. ICLR conference 2017. Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2017). Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5mb model size. 13. ICLR conference 2017.
go back to reference Islam, J., & Zhang, Y. (2018). Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Informatics, 5(2), 2.PubMedPubMedCentralCrossRef Islam, J., & Zhang, Y. (2018). Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Informatics, 5(2), 2.PubMedPubMedCentralCrossRef
go back to reference Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., et al. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685–691.PubMedCrossRef Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., et al. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685–691.PubMedCrossRef
go back to reference Jain, R., Jain, N., Aggarwal, A., & Hemanth, D. J. (2019). Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cognitive Systems Research, 57, 147–159.CrossRef Jain, R., Jain, N., Aggarwal, A., & Hemanth, D. J. (2019). Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cognitive Systems Research, 57, 147–159.CrossRef
go back to reference Janghel, R. R., & Rathore, Y. K. (2021). Deep convolution neural network based system for early diagnosis of Alzheimer’s disease. IRBM, 42(4), 258–267.CrossRef Janghel, R. R., & Rathore, Y. K. (2021). Deep convolution neural network based system for early diagnosis of Alzheimer’s disease. IRBM, 42(4), 258–267.CrossRef
go back to reference Ji, H., Liu, Z., Yan, W. Q., & Klette, R. (2019) Early diagnosis of Alzheimer’s disease using deep learning. In: Proceedings of the 2nd International Conference on Control and Computer Vision - ICCCV 2019 [Internet]. Jeju, Republic of Korea: ACM Press [cited 2022 Mar 19]. p. 87–91. Ji, H., Liu, Z., Yan, W. Q., & Klette, R. (2019) Early diagnosis of Alzheimer’s disease using deep learning. In: Proceedings of the 2nd International Conference on Control and Computer Vision - ICCCV 2019 [Internet]. Jeju, Republic of Korea: ACM Press [cited 2022 Mar 19]. p. 87–91.
go back to reference Jo, T., Nho, K., Risacher, S. L., & Saykin, A. J. (2020). Deep learning detection of informative features in tau PET for Alzheimer’s disease classification. BMC Bioinformatics, 21(S21), 496.PubMedPubMedCentralCrossRef Jo, T., Nho, K., Risacher, S. L., & Saykin, A. J. (2020). Deep learning detection of informative features in tau PET for Alzheimer’s disease classification. BMC Bioinformatics, 21(S21), 496.PubMedPubMedCentralCrossRef
go back to reference Johnson, K. A., Fox, N. C., Sperling, R. A., & Klunk, W. E. (2012). Brain Imaging in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine., 2(4), a006213–a006213.PubMedPubMedCentralCrossRef Johnson, K. A., Fox, N. C., Sperling, R. A., & Klunk, W. E. (2012). Brain Imaging in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine., 2(4), a006213–a006213.PubMedPubMedCentralCrossRef
go back to reference Kim, S., Lee, P., Oh, K. T., Byun, M. S., Yi, D., Lee, J. H., et al. (2021). Deep learning-based amyloid PET positivity classification model in the Alzheimer’s disease continuum by using 2-[18F]FDG PET. EJNMMI Research, 11(1), 56.PubMedPubMedCentralCrossRef Kim, S., Lee, P., Oh, K. T., Byun, M. S., Yi, D., Lee, J. H., et al. (2021). Deep learning-based amyloid PET positivity classification model in the Alzheimer’s disease continuum by using 2-[18F]FDG PET. EJNMMI Research, 11(1), 56.PubMedPubMedCentralCrossRef
go back to reference Kiran Gulhare, K., Shukla, S. P., & Sharma, L. K. (2017). Overview on segmentation and classification for the Alzheimer’s disease detection from brain MRI. IJCTT, 43(2), 130–132.CrossRef Kiran Gulhare, K., Shukla, S. P., & Sharma, L. K. (2017). Overview on segmentation and classification for the Alzheimer’s disease detection from brain MRI. IJCTT, 43(2), 130–132.CrossRef
go back to reference Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems [Internet]. Curran Associates, Inc. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems [Internet]. Curran Associates, Inc.
go back to reference Kundaram, S. S., & Pathak, K. C. (2021). Deep Learning-Based Alzheimer Disease Detection. In: Nath V, Mandal JK, editors. Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems [Internet]. Singapore: Springer Singapore, p. 587–597. Kundaram, S. S., & Pathak, K. C. (2021). Deep Learning-Based Alzheimer Disease Detection. In: Nath V, Mandal JK, editors. Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems [Internet]. Singapore: Springer Singapore, p. 587–597.
go back to reference Lee, G., Nho, K., Kang, B., Sohn, K.-A., & Kim, D. (2019). Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Scientific Reports, 9(1), 1952.PubMedPubMedCentralCrossRef Lee, G., Nho, K., Kang, B., Sohn, K.-A., & Kim, D. (2019). Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Scientific Reports, 9(1), 1952.PubMedPubMedCentralCrossRef
go back to reference Lee, B., Yamanakkanavar, N., & Choi, J. Y. (2020). Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture. Punithakumar K, editor. PLoS ONE, 15(8), e0236493. Lee, B., Yamanakkanavar, N., & Choi, J. Y. (2020). Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture. Punithakumar K, editor. PLoS ONE, 15(8), e0236493.
go back to reference Lenzi, D., Serra, L., Perri, R., Pantano, P., Lenzi, G. L., Paulesu, E., et al. (2011). Single domain amnestic MCI: A multiple cognitive domains fMRI investigation. Neurobiology of Aging., 32(9), 1542–1557.PubMedCrossRef Lenzi, D., Serra, L., Perri, R., Pantano, P., Lenzi, G. L., Paulesu, E., et al. (2011). Single domain amnestic MCI: A multiple cognitive domains fMRI investigation. Neurobiology of Aging., 32(9), 1542–1557.PubMedCrossRef
go back to reference Li, F., Cheng, D., & Liu, M. (2017). Alzheimer’s disease classification based on combination of multi-model convolutional networks. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST) [Internet]. Beijing: IEEE; [cited 2022 Mar 19]. p. 1–5. Li, F., Cheng, D., & Liu, M. (2017). Alzheimer’s disease classification based on combination of multi-model convolutional networks. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST) [Internet]. Beijing: IEEE; [cited 2022 Mar 19]. p. 1–5.
go back to reference Li, F., & Liu, M. (2019). A hybrid Convolutional and Recurrent Neural Network for Hippocampus Analysis in Alzheimer’s Disease. Journal of Neuroscience Methods, 323, 108–118.PubMedCrossRef Li, F., & Liu, M. (2019). A hybrid Convolutional and Recurrent Neural Network for Hippocampus Analysis in Alzheimer’s Disease. Journal of Neuroscience Methods, 323, 108–118.PubMedCrossRef
go back to reference Lin, W., Tong, T., Gao, Q., Guo, D., Du, X., Yang, Y., et al. (2018). Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Frontiers in Neuroscience, 5(12), 777.CrossRef Lin, W., Tong, T., Gao, Q., Guo, D., Du, X., Yang, Y., et al. (2018). Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Frontiers in Neuroscience, 5(12), 777.CrossRef
go back to reference Liu, M., Cheng, D., & Yan, W. (2018). Alzheimer’s disease neuroimaging initiative classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images. Frontiers in Neuroinformatics, 12, 35.PubMedPubMedCentralCrossRef Liu, M., Cheng, D., & Yan, W. (2018). Alzheimer’s disease neuroimaging initiative classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images. Frontiers in Neuroinformatics, 12, 35.PubMedPubMedCentralCrossRef
go back to reference Liu, M., Li, F., Yan, H., Wang, K., Ma, Y., Shen, L., et al. (2020). A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. NeuroImage, 208, 116459.PubMedCrossRef Liu, M., Li, F., Yan, H., Wang, K., Ma, Y., Shen, L., et al. (2020). A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. NeuroImage, 208, 116459.PubMedCrossRef
go back to reference Liu, J., Li, M., Luo, Y., Yang, S., Li, W., & Bi, Y. (2021). Alzheimer’s disease detection using depthwise separable convolutional neural networks. Computer Methods and Programs in Biomedicine, 203, 106032.PubMedCrossRef Liu, J., Li, M., Luo, Y., Yang, S., Li, W., & Bi, Y. (2021). Alzheimer’s disease detection using depthwise separable convolutional neural networks. Computer Methods and Programs in Biomedicine, 203, 106032.PubMedCrossRef
go back to reference Lu, B., Li, H. X., Chang, Z. K., Li, L., Chen, N. X., Zhu, Z. C., et al. (2022). A practical Alzheimer’s disease classifier via brain imaging-based deep learning on 85,721 samples. Journal of Big Data, 9(1), 101.CrossRef Lu, B., Li, H. X., Chang, Z. K., Li, L., Chen, N. X., Zhu, Z. C., et al. (2022). A practical Alzheimer’s disease classifier via brain imaging-based deep learning on 85,721 samples. Journal of Big Data, 9(1), 101.CrossRef
go back to reference Maqsood, M., Nazir, F., Khan, U., Aadil, F., Jamal, H., Mehmood, I., et al. (2019). Transfer learning assisted classification and detection of Alzheimer’s disease stages using 3D MRI scans. Sensors, 19(11), 2645.PubMedPubMedCentralCrossRef Maqsood, M., Nazir, F., Khan, U., Aadil, F., Jamal, H., Mehmood, I., et al. (2019). Transfer learning assisted classification and detection of Alzheimer’s disease stages using 3D MRI scans. Sensors, 19(11), 2645.PubMedPubMedCentralCrossRef
go back to reference Mehmood, A., Maqsood, M., Bashir, M., & Shuyuan, Y. (2020). A deep siamese convolution neural network for multi-class classification of Alzheimer disease. Brain Sciences, 10(2), 84.PubMedPubMedCentralCrossRef Mehmood, A., Maqsood, M., Bashir, M., & Shuyuan, Y. (2020). A deep siamese convolution neural network for multi-class classification of Alzheimer disease. Brain Sciences, 10(2), 84.PubMedPubMedCentralCrossRef
go back to reference Muscari, A., Clavarino, F., Allegri, V., Farolfi, A., Macchiarulo, M., Maestri, L., et al. (2021). “2-step MCI-AD”: A simple scoring system to predict rapid conversion from mild cognitive impairment to Alzheimer dementia. Archives of Gerontology and Geriatrics, 94, 104359.PubMedCrossRef Muscari, A., Clavarino, F., Allegri, V., Farolfi, A., Macchiarulo, M., Maestri, L., et al. (2021). “2-step MCI-AD”: A simple scoring system to predict rapid conversion from mild cognitive impairment to Alzheimer dementia. Archives of Gerontology and Geriatrics, 94, 104359.PubMedCrossRef
go back to reference Nguyen, M., He, T., An, L., Alexander, D. C., Feng, J., & Yeo, B. T. T. (2020). Predicting Alzheimer’s disease progression using deep recurrent neural networks. NeuroImage, 222, 117203.PubMedCrossRef Nguyen, M., He, T., An, L., Alexander, D. C., Feng, J., & Yeo, B. T. T. (2020). Predicting Alzheimer’s disease progression using deep recurrent neural networks. NeuroImage, 222, 117203.PubMedCrossRef
go back to reference Oh, K., Chung, Y.-C., Kim, K. W., Kim, W.-S., & Oh, I.-S. (2019). Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning. Science and Reports, 9(1), 18150.CrossRef Oh, K., Chung, Y.-C., Kim, K. W., Kim, W.-S., & Oh, I.-S. (2019). Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning. Science and Reports, 9(1), 18150.CrossRef
go back to reference Oommen, L., Chandran, S., & Prathapan, V. L. (2020). Early detection of alzheimer’s disease using deep learning techniques. Alz Res Therapy, 07(06), 12. Oommen, L., Chandran, S., & Prathapan, V. L. (2020). Early detection of alzheimer’s disease using deep learning techniques. Alz Res Therapy, 07(06), 12.
go back to reference Ortiz, A., Munilla, J., Górriz, J. M., & Ramírez, J. (2016). Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. International Journal of Neural Systems, 26(07), 1650025.PubMedCrossRef Ortiz, A., Munilla, J., Górriz, J. M., & Ramírez, J. (2016). Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. International Journal of Neural Systems, 26(07), 1650025.PubMedCrossRef
go back to reference Pan, D., Zeng, A., Jia, L., Huang, Y., Frizzell, T., & Song, X. (2020). Early detection of Alzheimer’s disease using magnetic resonance imaging: A novel approach combining convolutional neural networks and ensemble learning. Frontiers in Neuroscience, 13(14), 259.CrossRef Pan, D., Zeng, A., Jia, L., Huang, Y., Frizzell, T., & Song, X. (2020). Early detection of Alzheimer’s disease using magnetic resonance imaging: A novel approach combining convolutional neural networks and ensemble learning. Frontiers in Neuroscience, 13(14), 259.CrossRef
go back to reference Park, G., Hong, J., Duffy, B. A., Lee, J.-M., & Kim, H. (2021). White matter hyperintensities segmentation using the ensemble U-Net with multi-scale highlighting foregrounds. NeuroImage, 237, 118140.PubMedCrossRef Park, G., Hong, J., Duffy, B. A., Lee, J.-M., & Kim, H. (2021). White matter hyperintensities segmentation using the ensemble U-Net with multi-scale highlighting foregrounds. NeuroImage, 237, 118140.PubMedCrossRef
go back to reference Puente-Castro, A., Fernandez-Blanco, E., Pazos, A., & Munteanu, C. R. (2020). Automatic assessment of Alzheimer’s disease diagnosis based on deep learning techniques. Computers in Biology and Medicine, 120, 103764.PubMedCrossRef Puente-Castro, A., Fernandez-Blanco, E., Pazos, A., & Munteanu, C. R. (2020). Automatic assessment of Alzheimer’s disease diagnosis based on deep learning techniques. Computers in Biology and Medicine, 120, 103764.PubMedCrossRef
go back to reference Raju, M., Gopi, V. P., Anitha, V. S., & Wahid, K. A. (2020). Multi-class diagnosis of Alzheimer’s disease using cascaded three dimensional-convolutional neural network. Physical and Engineering Sciences in Medicine, 43(4), 1219–1228.PubMedCrossRef Raju, M., Gopi, V. P., Anitha, V. S., & Wahid, K. A. (2020). Multi-class diagnosis of Alzheimer’s disease using cascaded three dimensional-convolutional neural network. Physical and Engineering Sciences in Medicine, 43(4), 1219–1228.PubMedCrossRef
go back to reference Ramzan, F., Khan, M. U. G., Rehmat, A., Iqbal, S., Saba, T., Rehman, A., et al. (2020). A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state fMRI and residual neural networks. Journal of Medical Systems, 44(2), 37.CrossRef Ramzan, F., Khan, M. U. G., Rehmat, A., Iqbal, S., Saba, T., Rehman, A., et al. (2020). A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state fMRI and residual neural networks. Journal of Medical Systems, 44(2), 37.CrossRef
go back to reference Ren, F., Yang, C., Qiu, Q., Zeng, N., Cai, C., Hou, C., et al. (2019). Exploiting discriminative regions of brain slices based on 2D CNNs for Alzheimer’s disease classification. IEEE Access, 7, 181423–181433.CrossRef Ren, F., Yang, C., Qiu, Q., Zeng, N., Cai, C., Hou, C., et al. (2019). Exploiting discriminative regions of brain slices based on 2D CNNs for Alzheimer’s disease classification. IEEE Access, 7, 181423–181433.CrossRef
go back to reference Sarraf, S., & Tofighi, G. (2016). Classification of Alzheimer’s disease using fMRI data and deep learning convolutional neural networks. arXiv:160308631 Sarraf, S., & Tofighi, G. (2016). Classification of Alzheimer’s disease using fMRI data and deep learning convolutional neural networks. arXiv:​160308631
go back to reference Sarraf, S., Desouza, D. D., Anderson, J. A. E., & Saverino, C. (2019). MCADNNet: Recognizing stages of cognitive impairment through efficient convolutional fMRI and MRI neural network topology models. IEEE Access, 7, 155584–155600.PubMedPubMedCentralCrossRef Sarraf, S., Desouza, D. D., Anderson, J. A. E., & Saverino, C. (2019). MCADNNet: Recognizing stages of cognitive impairment through efficient convolutional fMRI and MRI neural network topology models. IEEE Access, 7, 155584–155600.PubMedPubMedCentralCrossRef
go back to reference Sathish Kumar, L., Hariharasitaraman, S., Narayanasamy, K., Thinakaran, K., Mahalakshmi, J., & Pandimurugan, V. (2022). AlexNet approach for early stage Alzheimer’s disease detection from MRI brain images. Materials Today: Proceedings, 51, 58–65. Sathish Kumar, L., Hariharasitaraman, S., Narayanasamy, K., Thinakaran, K., Mahalakshmi, J., & Pandimurugan, V. (2022). AlexNet approach for early stage Alzheimer’s disease detection from MRI brain images. Materials Today: Proceedings, 51, 58–65.
go back to reference Savaş, S. (2022). Detecting the stages of Alzheimer’s disease with pre-trained deep learning architectures. Arabian Journal for Science and Engineering, 47(2), 2201–2218.CrossRef Savaş, S. (2022). Detecting the stages of Alzheimer’s disease with pre-trained deep learning architectures. Arabian Journal for Science and Engineering, 47(2), 2201–2218.CrossRef
go back to reference Scheltens, P. (2009). Imaging in Alzheimer’s disease. Clinical Research, 11(2), 9. Scheltens, P. (2009). Imaging in Alzheimer’s disease. Clinical Research, 11(2), 9.
go back to reference Schonhaut, D. R., & Rabinovici, G. D. (2016). Neuroimaging advances in Alzheimer’s disease. In: Genomics, Circuits, and Pathways in Clinical Neuropsychiatry [Internet]. Elsevier; [cited 2022 Mar 19]. p. 263–82. Schonhaut, D. R., & Rabinovici, G. D. (2016). Neuroimaging advances in Alzheimer’s disease. In: Genomics, Circuits, and Pathways in Clinical Neuropsychiatry [Internet]. Elsevier; [cited 2022 Mar 19]. p. 263–82.
go back to reference Shanmugam, J. V., Duraisamy, B., Simon, B. C., & Bhaskaran, P. (2022). Alzheimer’s disease classification using pre-trained deep networks. Biomedical Signal Processing and Control, 71, 103217.CrossRef Shanmugam, J. V., Duraisamy, B., Simon, B. C., & Bhaskaran, P. (2022). Alzheimer’s disease classification using pre-trained deep networks. Biomedical Signal Processing and Control, 71, 103217.CrossRef
go back to reference Sharma, N., Ray, A., Shukla, K., Sharma, S., Pradhan, S., Srivastva, A., et al. (2010). Automated medical image segmentation techniques. Journal of Medical Physics, 35(1), 3.PubMedPubMedCentralCrossRef Sharma, N., Ray, A., Shukla, K., Sharma, S., Pradhan, S., Srivastva, A., et al. (2010). Automated medical image segmentation techniques. Journal of Medical Physics, 35(1), 3.PubMedPubMedCentralCrossRef
go back to reference Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv:14091556 [cs] [Internet]. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv:​14091556 [cs] [Internet].
go back to reference Spasov, S. E., Passamonti, L., Duggento, A., Lio, P., & Toschi, N. (2018) A multi-modal convolutional neural network framework for the prediction of Alzheimer’s disease. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) [Internet]. Honolulu, HI: IEEE; p. 1271–1274. Spasov, S. E., Passamonti, L., Duggento, A., Lio, P., & Toschi, N. (2018) A multi-modal convolutional neural network framework for the prediction of Alzheimer’s disease. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) [Internet]. Honolulu, HI: IEEE; p. 1271–1274.
go back to reference Spasov, S., Passamonti, L., Duggento, A., Liò, P., & Toschi, N. (2019). A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. NeuroImage, 189, 276–287.PubMedCrossRef Spasov, S., Passamonti, L., Duggento, A., Liò, P., & Toschi, N. (2019). A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. NeuroImage, 189, 276–287.PubMedCrossRef
go back to reference Sun, J., Yan, S., Song, C., & Han, B. (2020). Dual-functional neural network for bilateral hippocampi segmentation and diagnosis of Alzheimer’s disease. International Journal of Computer Assisted Radiology and Surgery, 15(3), 445–455.PubMedCrossRef Sun, J., Yan, S., Song, C., & Han, B. (2020). Dual-functional neural network for bilateral hippocampi segmentation and diagnosis of Alzheimer’s disease. International Journal of Computer Assisted Radiology and Surgery, 15(3), 445–455.PubMedCrossRef
go back to reference Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-v4, inception-resnet and the impact of residual connections on learning. 4278–4284. arXiv:160207261 Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-v4, inception-resnet and the impact of residual connections on learning. 4278–4284. arXiv:​160207261
go back to reference Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015) Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE; p. 1–9. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015) Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE; p. 1–9.
go back to reference Tabarestani, S., Aghili, M., Shojaie, M., Freytes, C., Cabrerizo, M., Barreto, A., et al. (2019). Longitudinal Prediction Modeling of Alzheimer Disease using Recurrent Neural Networks. In: 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) [Internet]. Chicago, IL, USA: IEEE; p. 1–4. Tabarestani, S., Aghili, M., Shojaie, M., Freytes, C., Cabrerizo, M., Barreto, A., et al. (2019). Longitudinal Prediction Modeling of Alzheimer Disease using Recurrent Neural Networks. In: 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) [Internet]. Chicago, IL, USA: IEEE; p. 1–4.
go back to reference Tanveer, M., Rashid, A. H., Ganaie, M. A., Reza, M., Razzak, I., & Hua, K.-L. (2021). Classification of Alzheimer’s disease using ensemble of deep neural networks trained through transfer learning. IEEE Journal of Biomedical and Health Informatics, 1–1. Tanveer, M., Rashid, A. H., Ganaie, M. A., Reza, M., Razzak, I., & Hua, K.-L. (2021). Classification of Alzheimer’s disease using ensemble of deep neural networks trained through transfer learning. IEEE Journal of Biomedical and Health Informatics, 1–1.
go back to reference The Need for Early Detection and Treatment in Alzheimer’s Disease. (2016). EBioMedicine. 9:1–2 The Need for Early Detection and Treatment in Alzheimer’s Disease. (2016). EBioMedicine. 9:1–2
go back to reference Thung, K.-H., Wee, C.-Y., Yap, P.-T., & Shen, D. (2016). Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans. Brain Structure & Function, 221(8), 3979–3995.CrossRef Thung, K.-H., Wee, C.-Y., Yap, P.-T., & Shen, D. (2016). Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans. Brain Structure & Function, 221(8), 3979–3995.CrossRef
go back to reference Tufail, A. B., Ma, Y.-K., & Zhang, Q.-N. (2020). Binary classification of Alzheimer’s disease using sMRI imaging modality and deep learning. Journal of Digital Imaging, 33(5), 1073–1090.PubMedPubMedCentralCrossRef Tufail, A. B., Ma, Y.-K., & Zhang, Q.-N. (2020). Binary classification of Alzheimer’s disease using sMRI imaging modality and deep learning. Journal of Digital Imaging, 33(5), 1073–1090.PubMedPubMedCentralCrossRef
go back to reference Valverde, J. M., Imani, V., Abdollahzadeh, A., De Feo, R., Prakash, M., Ciszek, R., et al. (2021). Transfer learning in magnetic resonance brain imaging: A systematic review. Journal of Imaging, 7(4), 66.PubMedPubMedCentralCrossRef Valverde, J. M., Imani, V., Abdollahzadeh, A., De Feo, R., Prakash, M., Ciszek, R., et al. (2021). Transfer learning in magnetic resonance brain imaging: A systematic review. Journal of Imaging, 7(4), 66.PubMedPubMedCentralCrossRef
go back to reference Velazquez, M., Anantharaman, R., Velazquez, S., & Lee, Y. (2019). RNN-based Alzheimer’s disease prediction from prodromal stage using diffusion tensor imaging. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) [Internet]. San Diego, CA, USA: IEEE; p. 1665–1672. Velazquez, M., Anantharaman, R., Velazquez, S., & Lee, Y. (2019). RNN-based Alzheimer’s disease prediction from prodromal stage using diffusion tensor imaging. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) [Internet]. San Diego, CA, USA: IEEE; p. 1665–1672.
go back to reference van de Mortel, L. A., Thomas, R. M., & van Wingen, G. A. (2021). Grey matter loss at different stages of cognitive decline: A role for the thalamus in developing Alzheimer’s disease. Journal of Alzheimer’s Disease, 83(2), 705–720.PubMedPubMedCentralCrossRef van de Mortel, L. A., Thomas, R. M., & van Wingen, G. A. (2021). Grey matter loss at different stages of cognitive decline: A role for the thalamus in developing Alzheimer’s disease. Journal of Alzheimer’s Disease, 83(2), 705–720.PubMedPubMedCentralCrossRef
go back to reference Vu, T.-D., Ho, N.-H., Yang, H.-J., Kim, J., & Song, H.-C. (2018). Non-white matter tissue extraction and deep convolutional neural network for Alzheimer’s disease detection. Soft Computing, 22(20), 6825–6833.CrossRef Vu, T.-D., Ho, N.-H., Yang, H.-J., Kim, J., & Song, H.-C. (2018). Non-white matter tissue extraction and deep convolutional neural network for Alzheimer’s disease detection. Soft Computing, 22(20), 6825–6833.CrossRef
go back to reference Wang, S., Yi, L., Chen, Q., Meng, Z., Dong, H., & He, Z. (2019). Edge-aware fully convolutional network with CRF-RNN layer for hippocampus segmentation. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) [Internet]. Chongqing, China: IEEE; [cited 2022 Mar 19]. p. 803–806. Wang, S., Yi, L., Chen, Q., Meng, Z., Dong, H., & He, Z. (2019). Edge-aware fully convolutional network with CRF-RNN layer for hippocampus segmentation. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) [Internet]. Chongqing, China: IEEE; [cited 2022 Mar 19]. p. 803–806.
go back to reference Wee, C.-Y., Liu, C., Lee, A., Poh, J. S., Ji, H., & Qiu, A. (2019). Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. NeuroImage: Clinical, 23, 101929.PubMedCrossRef Wee, C.-Y., Liu, C., Lee, A., Poh, J. S., Ji, H., & Qiu, A. (2019). Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. NeuroImage: Clinical, 23, 101929.PubMedCrossRef
go back to reference Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., Bottani, S., et al. (2020). Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical Image Analysis, 63, 101694.PubMedCrossRef Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., Bottani, S., et al. (2020). Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical Image Analysis, 63, 101694.PubMedCrossRef
go back to reference Woo, B., & Lee, M. (2021). Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images. In: 2021 International Conference on Electronics, Information, and Communication (ICEIC) [Internet]. Jeju, Korea (South): IEEE; [cited 2022 Mar 19]. p. 1–4. Woo, B., & Lee, M. (2021). Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images. In: 2021 International Conference on Electronics, Information, and Communication (ICEIC) [Internet]. Jeju, Korea (South): IEEE; [cited 2022 Mar 19]. p. 1–4.
go back to reference Wu, Z., Peng, Y., Hong, M., & Zhang, Y. (2021). Gray matter deterioration pattern during Alzheimer’s disease progression: a regions-of-interest based surface morphometry study. Frontiers in Aging Neuroscience, 13, 593898.PubMedPubMedCentralCrossRef Wu, Z., Peng, Y., Hong, M., & Zhang, Y. (2021). Gray matter deterioration pattern during Alzheimer’s disease progression: a regions-of-interest based surface morphometry study. Frontiers in Aging Neuroscience, 13, 593898.PubMedPubMedCentralCrossRef
go back to reference Wyman, B. T., Harvey, D. J., Crawford, K., Bernstein, M. A., Carmichael, O., Cole, P. E., et al. (2013). Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s & Dementia, 9(3), 332–337.CrossRef Wyman, B. T., Harvey, D. J., Crawford, K., Bernstein, M. A., Carmichael, O., Cole, P. E., et al. (2013). Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s & Dementia, 9(3), 332–337.CrossRef
go back to reference Yamanakkanavar, N., Choi, J. Y., & Lee, B. (2020). MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: A survey. Sensors, 20(11), 3243.PubMedPubMedCentralCrossRef Yamanakkanavar, N., Choi, J. Y., & Lee, B. (2020). MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: A survey. Sensors, 20(11), 3243.PubMedPubMedCentralCrossRef
go back to reference Zhang, F., Li, Z., Zhang, B., Du, H., Wang, B., & Zhang, X. (2019). Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s disease. Neurocomputing, 361, 185–195.CrossRef Zhang, F., Li, Z., Zhang, B., Du, H., Wang, B., & Zhang, X. (2019). Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s disease. Neurocomputing, 361, 185–195.CrossRef
go back to reference Zhang, J., Zheng, B., Gao, A., Feng, X., Liang, D., & Long, X. (2021). A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer’s disease classification. Magnetic Resonance Imaging, 78, 119–126.PubMedCrossRef Zhang, J., Zheng, B., Gao, A., Feng, X., Liang, D., & Long, X. (2021). A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer’s disease classification. Magnetic Resonance Imaging, 78, 119–126.PubMedCrossRef
go back to reference Zhao, W., Wang, X., Yin, C., He, M., Li, S., & Han, Y. (2019). Trajectories of the hippocampal subfields atrophy in the Alzheimer’s disease: a structural imaging study. Frontiers in Neuroinformatics, 22(13), 13.CrossRef Zhao, W., Wang, X., Yin, C., He, M., Li, S., & Han, Y. (2019). Trajectories of the hippocampal subfields atrophy in the Alzheimer’s disease: a structural imaging study. Frontiers in Neuroinformatics, 22(13), 13.CrossRef
go back to reference Zhao, X., Ang, C. K. E., Acharya, U. R., & Cheong, K. H. (2021). Application of Artificial Intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybernetics and Biomedical Engineering., 41(2), 456–473.CrossRef Zhao, X., Ang, C. K. E., Acharya, U. R., & Cheong, K. H. (2021). Application of Artificial Intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybernetics and Biomedical Engineering., 41(2), 456–473.CrossRef
Metadata
Title
Automatic Detection of Alzheimer's Disease using Deep Learning Models and Neuro-Imaging: Current Trends and Future Perspectives
Authors
T. Illakiya
R. Karthik
Publication date
08-03-2023
Publisher
Springer US
Published in
Neuroinformatics / Issue 2/2023
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-023-09625-7

Other articles of this Issue 2/2023

Neuroinformatics 2/2023 Go to the issue

Premium Partner