Skip to main content
Top
Published in: Optimization and Engineering 1/2021

23-05-2020 | Research Article

Automatic repair of convex optimization problems

Authors: Shane Barratt, Guillermo Angeris, Stephen Boyd

Published in: Optimization and Engineering | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Given an infeasible, unbounded, or pathological convex optimization problem, a natural question to ask is: what is the smallest change we can make to the problem’s parameters such that the problem becomes solvable? In this paper, we address this question by posing it as an optimization problem involving the minimization of a convex regularization function of the parameters, subject to the constraint that the parameters result in a solvable problem. We propose a heuristic for approximately solving this problem that is based on the penalty method and leverages recently developed methods that can efficiently evaluate the derivative of the solution of a convex cone program with respect to its parameters. We illustrate our method by applying it to examples in optimal control and economics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Agrawal A, Amos B, Barratt S, Boyd S, Diamond S, Kolter J.Z (2019a) Differentiable convex optimization layers. In: Advances in neural information processing systems, pp 9558–9570 Agrawal A, Amos B, Barratt S, Boyd S, Diamond S, Kolter J.Z (2019a) Differentiable convex optimization layers. In: Advances in neural information processing systems, pp 9558–9570
go back to reference Agrawal A, Barratt S, Boyd S, Busseti E, Moursi W (2019b) Differentiating through a cone program. J Appl Numer Optim 1(2):107–115 Agrawal A, Barratt S, Boyd S, Busseti E, Moursi W (2019b) Differentiating through a cone program. J Appl Numer Optim 1(2):107–115
go back to reference Amaldi E (1994) From finding maximum feasible subsystems of linear systems to feedforward neural network design. Ph.D. thesis, Citeseer Amaldi E (1994) From finding maximum feasible subsystems of linear systems to feedforward neural network design. Ph.D. thesis, Citeseer
go back to reference Amaldi E, Pfetsch M, Trotter L (1999) Some structural and algorithmic properties of the maximum feasible subsystem problem. In: International conference on integer programming and combinatorial optimization. Springer, pp 45–59 Amaldi E, Pfetsch M, Trotter L (1999) Some structural and algorithmic properties of the maximum feasible subsystem problem. In: International conference on integer programming and combinatorial optimization. Springer, pp 45–59
go back to reference Amaral P, Júdice J, Sherali H (2008) A reformulation–linearization–convexification algorithm for optimal correction of an inconsistent system of linear constraints. Comput Oper Res 35(5):1494–1509MathSciNetCrossRef Amaral P, Júdice J, Sherali H (2008) A reformulation–linearization–convexification algorithm for optimal correction of an inconsistent system of linear constraints. Comput Oper Res 35(5):1494–1509MathSciNetCrossRef
go back to reference Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications, vol 2. SIAM Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications, vol 2. SIAM
go back to reference Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeCrossRef Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeCrossRef
go back to reference Carver W (1922) Systems of linear inequalities. Ann Math 212–220 Carver W (1922) Systems of linear inequalities. Ann Math 212–220
go back to reference Chinneck J (1996) An effective polynomial-time heuristic for the minimum-cardinality IIS set-covering problem. Ann Math Artif Intell 17(1):127–144MathSciNetCrossRef Chinneck J (1996) An effective polynomial-time heuristic for the minimum-cardinality IIS set-covering problem. Ann Math Artif Intell 17(1):127–144MathSciNetCrossRef
go back to reference Chinneck J (1997) Finding a useful subset of constraints for analysis in an infeasible linear program. INFORMS J Comput 9(2):164–174MathSciNetCrossRef Chinneck J (1997) Finding a useful subset of constraints for analysis in an infeasible linear program. INFORMS J Comput 9(2):164–174MathSciNetCrossRef
go back to reference Chinneck J (2007) Feasibility and infeasibility in optimization: algorithms and computational methods, vol 118. Springer, BerlinMATH Chinneck J (2007) Feasibility and infeasibility in optimization: algorithms and computational methods, vol 118. Springer, BerlinMATH
go back to reference Chinneck J, Dravnieks E (1991) Locating minimal infeasible constraint sets in linear programs. ORSA J Comput 3(2):157–168CrossRef Chinneck J, Dravnieks E (1991) Locating minimal infeasible constraint sets in linear programs. ORSA J Comput 3(2):157–168CrossRef
go back to reference Diamond S, Boyd S (2016) CVXPY: a Python-embedded modeling language for convex optimization. J Mach Learn Res 17(83):1–5MathSciNetMATH Diamond S, Boyd S (2016) CVXPY: a Python-embedded modeling language for convex optimization. J Mach Learn Res 17(83):1–5MathSciNetMATH
go back to reference Gambella C, Marecek J, Mevissen M (2019) Projections onto the set of feasible inputs and the set of feasible solutions. In: Allerton conference on communication, control, and computing. IEEE, pp 937–943 Gambella C, Marecek J, Mevissen M (2019) Projections onto the set of feasible inputs and the set of feasible solutions. In: Allerton conference on communication, control, and computing. IEEE, pp 937–943
go back to reference Greenberg H (1987) ANALYZE: a computer-assisted analysis system for linear programming models. Oper Res Lett 6(5):249–255CrossRef Greenberg H (1987) ANALYZE: a computer-assisted analysis system for linear programming models. Oper Res Lett 6(5):249–255CrossRef
go back to reference Greenberg H (1987) Computer-assisted analysis for diagnosing infeasible or unbounded linear programs. In: Computation mathematical programming. Springer, pp 79–97 Greenberg H (1987) Computer-assisted analysis for diagnosing infeasible or unbounded linear programs. In: Computation mathematical programming. Springer, pp 79–97
go back to reference Greenberg H, Murphy F (1991) Approaches to diagnosing infeasible linear programs. ORSA J Comput 3(3):253–261CrossRef Greenberg H, Murphy F (1991) Approaches to diagnosing infeasible linear programs. ORSA J Comput 3(3):253–261CrossRef
go back to reference GUROBI Optimization (2019) Gurobi optimizer reference manual GUROBI Optimization (2019) Gurobi optimizer reference manual
go back to reference IBM (2016) IBM ILOG CPLEX optimization studio CPLEX user’s manual IBM (2016) IBM ILOG CPLEX optimization studio CPLEX user’s manual
go back to reference Karp R (1972) Reducibility among combinatorial problems. In: Complexity of computer computations, pp 85–103 Karp R (1972) Reducibility among combinatorial problems. In: Complexity of computer computations, pp 85–103
go back to reference Kellner K, Pfetsch M, Theobald T (2019) Irreducible infeasible subsystems of semidefinite systems. J Optim Theory Appl 181(3):727–742MathSciNetCrossRef Kellner K, Pfetsch M, Theobald T (2019) Irreducible infeasible subsystems of semidefinite systems. J Optim Theory Appl 181(3):727–742MathSciNetCrossRef
go back to reference Kurator W, O’Neill R (1980) PERUSE: an interactive system for mathematical programs. ACM Trans Math Softw 6(4):489–509CrossRef Kurator W, O’Neill R (1980) PERUSE: an interactive system for mathematical programs. ACM Trans Math Softw 6(4):489–509CrossRef
go back to reference Martinet B (1970) Brève communication. régularisation d’inéquations variationnelles par approximations successives. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 4(R3):154–158MATH Martinet B (1970) Brève communication. régularisation d’inéquations variationnelles par approximations successives. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 4(R3):154–158MATH
go back to reference Obuchowska W (1998) Infeasibility analysis for systems of quadratic convex inequalities. Eur J Oper Res 107(3):633–643CrossRef Obuchowska W (1998) Infeasibility analysis for systems of quadratic convex inequalities. Eur J Oper Res 107(3):633–643CrossRef
go back to reference O’Donoghue B, Chu E, Parikh N, Boyd S (2016) Conic optimization via operator splitting and homogeneous self-dual embedding. J Optim Theory Appl 169(3):1042–1068MathSciNetCrossRef O’Donoghue B, Chu E, Parikh N, Boyd S (2016) Conic optimization via operator splitting and homogeneous self-dual embedding. J Optim Theory Appl 169(3):1042–1068MathSciNetCrossRef
go back to reference Pfetsch M (2003) The maximum feasible subsystem problem and vertex-facet incidences of polyhedra. Ph.D. thesis Pfetsch M (2003) The maximum feasible subsystem problem and vertex-facet incidences of polyhedra. Ph.D. thesis
go back to reference Sankaran J (1993) A note on resolving infeasibility in linear programs by constraint relaxation. Oper Res Lett 13(1):19–20MathSciNetCrossRef Sankaran J (1993) A note on resolving infeasibility in linear programs by constraint relaxation. Oper Res Lett 13(1):19–20MathSciNetCrossRef
go back to reference Tamiz M, Mardle S, Jones D (1995) Resolving inconsistency in infeasible linear programmes. Technical report, School of Mathematical Studies, University of Portsmouth, UK Tamiz M, Mardle S, Jones D (1995) Resolving inconsistency in infeasible linear programmes. Technical report, School of Mathematical Studies, University of Portsmouth, UK
go back to reference Tamiz M, Mardle S, Jones D (1996) Detecting IIS in infeasible linear programmes using techniques from goal programming. Comput Oper Res 23(2):113–119CrossRef Tamiz M, Mardle S, Jones D (1996) Detecting IIS in infeasible linear programmes using techniques from goal programming. Comput Oper Res 23(2):113–119CrossRef
Metadata
Title
Automatic repair of convex optimization problems
Authors
Shane Barratt
Guillermo Angeris
Stephen Boyd
Publication date
23-05-2020
Publisher
Springer US
Published in
Optimization and Engineering / Issue 1/2021
Print ISSN: 1389-4420
Electronic ISSN: 1573-2924
DOI
https://doi.org/10.1007/s11081-020-09508-9

Other articles of this Issue 1/2021

Optimization and Engineering 1/2021 Go to the issue

Premium Partners