Skip to main content
Top

2024 | OriginalPaper | Chapter

2. Der Boden

Author : Jarosław Pytka

Published in: Terramechanik und Geländefahrzeuge

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Der Boden ist eine poröse Oberflache der Erde und besteht aus drei Phasen: fest, flüssig und gasförmig. Er wurde durch verschiedene Prozesse in Tausenden von Jahren geformt, der häufigste davon ist die Verwitterung. Das Rohmaterial für diese Prozesse ist ein Ausgangsgestein, entweder ein solider Fels oder ein lockeres Sediment. In der primären Bodenbildung bewirkt die jahrelange Einwirkung von Wind, Sonne und Niederschlägen unter verschiedenen Temperaturen, dass das Ausgangsgestein physikalisch und chemisch in immer kleinere Teile zerlegt wird. In der Vergrößerung unter einer Lupe sieht der Boden wie ein komplexes Gebilde aus, in dem mehrere natürliche physikalische, chemische und thermische Prozesse ablaufen, die die Veränderungen physikalischer Bodeneigenschaften verursachen. Die mineralischen Bestandteilen des Bodens, die aus Körnern verschiedener Größen und Formen bestehen, bilden Strukturen mit Poren. Die Bodenart beschreibt den Boden in Bezug auf die Korngrößenzusammensetzung der mineralischen Bodenteile (Körnen). Davon geht eine primäre Klassifikation der Böden aus, in der die nachfolgenden Bodenarten unterschieden werden: Sand, Schluff, Ton und Lehm. Bei der sekundären Bodenbildung geht es überwiegend um verschiedene Vorgänge, die die Humusbildung beeinflussen, wie z. B. Vergleyung oder Pseudovergleyung oder Auswaschung von Bodenbestandteilen in tiefere Schichten. Unterschiedliche Erscheinungsformen von Böden, die sich in Form von Bodenhorizonten zeigen (Abb. 2.1), werden als Bodentypen bezeichnet und werden weltweit in der Bodenklassifikation bzw. der Bodensystematik nach verschiedenen Systemen klassifiziert.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pytka, J. (2016). Dynamics of wheel – Soil systems. A soil stress and deformation based approach. CRC Press Taylor&Francis Group.CrossRef Pytka, J. (2016). Dynamics of wheel – Soil systems. A soil stress and deformation based approach. CRC Press Taylor&Francis Group.CrossRef
2.
go back to reference Wawer, R., Nowocień, E., & Łopatka, P. (2016). An approach to dynamic trafficability mapping as a component of battle management systems. A method for determining soil trafficability at the strategic level. Conference Proceedings, „Soil trafficability – challenges for soil and vehicles“ Tart, Estonia. Wawer, R., Nowocień, E., & Łopatka, P. (2016). An approach to dynamic trafficability mapping as a component of battle management systems. A method for determining soil trafficability at the strategic level. Conference Proceedings, „Soil trafficability – challenges for soil and vehicles“ Tart, Estonia.
3.
go back to reference Bachmann, J., Horn, R., & Pets, S. (2014). Hartge/Horn: Einführung in die Bodenphysik. Schweizerbart Verlag. Bachmann, J., Horn, R., & Pets, S. (2014). Hartge/Horn: Einführung in die Bodenphysik. Schweizerbart Verlag.
4.
go back to reference Mitchell, G. J. (1976). Rheology of gels. Journal of Texture Studies, 7(3), 313–339. Mitchell, G. J. (1976). Rheology of gels. Journal of Texture Studies, 7(3), 313–339.
5.
go back to reference Pytka, J., Bydzyński, P., Kamiński, M., Łyszczyk, T., & Józwik, J. (2019). Application of the TDR soil moisture sensor for terramechanical research. Sensors, 19(9), 2116.CrossRef Pytka, J., Bydzyński, P., Kamiński, M., Łyszczyk, T., & Józwik, J. (2019). Application of the TDR soil moisture sensor for terramechanical research. Sensors, 19(9), 2116.CrossRef
6.
go back to reference Shoop, S. A. (1993). Thawing soil strength measurements for predicting vehicle performance. Journal of Terramechanics, 30(6), 405–418.CrossRef Shoop, S. A. (1993). Thawing soil strength measurements for predicting vehicle performance. Journal of Terramechanics, 30(6), 405–418.CrossRef
7.
go back to reference Huber, M. (1903). Specific work of strain as a measure of material effort. Towarzystwo Politechniczne, Czas. Techniczne, Lwów. Huber, M. (1903). Specific work of strain as a measure of material effort. Towarzystwo Politechniczne, Czas. Techniczne, Lwów.
8.
go back to reference Jaeger, J. C., & Cook, N. G. W. (1969). Fundamentals of rock mechanics. Wiley. Jaeger, J. C., & Cook, N. G. W. (1969). Fundamentals of rock mechanics. Wiley.
9.
go back to reference Kezdi, A. (1966). Grundlagen einer allgemeinen Bodenphysik. VDJ-Zeitschrift, 108(5), 161–166. Kezdi, A. (1966). Grundlagen einer allgemeinen Bodenphysik. VDJ-Zeitschrift, 108(5), 161–166.
11.
go back to reference Konstankiewicz, K., & Pytka, J. (2008). Soil engineering. In W. Chesworth (Hrsg.), Encyclopedia of soil science. Springer. Konstankiewicz, K., & Pytka, J. (2008). Soil engineering. In W. Chesworth (Hrsg.), Encyclopedia of soil science. Springer.
12.
go back to reference Pukos, A., & Walczak, R. (1973). Podstawy reoretyczne badania właściwości mechanicznych gleb (Grundlagen für die Forschung mechanischen Eigenschaften des Bodens), Problemy Agrofizyki Nr 7, Wydawnictwo Polskiej Akademii Nauk. Pukos, A., & Walczak, R. (1973). Podstawy reoretyczne badania właściwości mechanicznych gleb (Grundlagen für die Forschung mechanischen Eigenschaften des Bodens), Problemy Agrofizyki Nr 7, Wydawnictwo Polskiej Akademii Nauk.
13.
go back to reference Pukos, A. (1987). A size of elementary deformation of soil. ZPPNR PAN( in English). Pukos, A. (1987). A size of elementary deformation of soil. ZPPNR PAN( in English).
14.
go back to reference Boussinesq, J. (1885). Appliction des potentieles à l’étude de l’équilibre et du movement des solides elastique. Boussinesq, J. (1885). Appliction des potentieles à l’étude de l’équilibre et du movement des solides elastique.
15.
16.
go back to reference Akker van den, J. J. H. (2004). SOCOMO: A soil compaction modelt o calculate soil stresses and the subsoil carrying capacity. Soil&Tillage Research, 79(1), 113–127. Akker van den, J. J. H. (2004). SOCOMO: A soil compaction modelt o calculate soil stresses and the subsoil carrying capacity. Soil&Tillage Research, 79(1), 113–127.
17.
go back to reference Cottrell, A. H. (1964). The mechanical properties of matter. Wiley. Cottrell, A. H. (1964). The mechanical properties of matter. Wiley.
18.
go back to reference Bishop, A. W., & Henkel, D. J. (1957). The measurement of soil properties in the triaxial test. Edward Arnold, Ltd. Bishop, A. W., & Henkel, D. J. (1957). The measurement of soil properties in the triaxial test. Edward Arnold, Ltd.
19.
go back to reference von Mises, R. (1913). Mechanik der festen Körper im plastisch deformablen Zustand. Göttingen Nachrichten Mathematical Physics, 1, 582–592. von Mises, R. (1913). Mechanik der festen Körper im plastisch deformablen Zustand. Göttingen Nachrichten Mathematical Physics, 1, 582–592.
20.
go back to reference Drucker, D. C., & Prager, W. (1958). Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, 10(2), 157–165.MathSciNetCrossRef Drucker, D. C., & Prager, W. (1958). Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, 10(2), 157–165.MathSciNetCrossRef
21.
go back to reference Timoshenko, S. P., & Goodier, J. N. (1970). Theory of elasticity (3. Aufl.). McGraw-Hill Book Company. Timoshenko, S. P., & Goodier, J. N. (1970). Theory of elasticity (3. Aufl.). McGraw-Hill Book Company.
23.
go back to reference Roscoe, K. H., & Burland, J. B. (1968). On the generalised stress-strain behaviour of „wet“ clay. In Engineering Plasticity (S. 535–609). Cambridge University Press. Roscoe, K. H., & Burland, J. B. (1968). On the generalised stress-strain behaviour of „wet“ clay. In Engineering Plasticity (S. 535–609). Cambridge University Press.
24.
go back to reference Mundl, R., Meschke, G., & Liederer, W. (1997). Friction mechanism of tread blocks on snow surfaces. Tire Science and Technology, 25(4), 245–264.CrossRef Mundl, R., Meschke, G., & Liederer, W. (1997). Friction mechanism of tread blocks on snow surfaces. Tire Science and Technology, 25(4), 245–264.CrossRef
25.
go back to reference Casagrande, A. (1936). Characteristics of cohesionless soil affecting the stability of slopes and earth fills. Journal of the Boston Society of Civil Engineers, 23, 13–32. Casagrande, A. (1936). Characteristics of cohesionless soil affecting the stability of slopes and earth fills. Journal of the Boston Society of Civil Engineers, 23, 13–32.
26.
go back to reference Błażejczak, D., Jurga, J., & Pytka, J. (2020). Data grouping method for the purpose of forecasting the mechanical strength of plastic soils. Agronomy, 10(4), 578.CrossRef Błażejczak, D., Jurga, J., & Pytka, J. (2020). Data grouping method for the purpose of forecasting the mechanical strength of plastic soils. Agronomy, 10(4), 578.CrossRef
27.
go back to reference Horn, R., Fleige, H., Peth, S., & Peng, X. (Hrsg.). (2006). Soil management for sustainability (Advances in Geoecology 38). CATENA Verlag GmbH. Horn, R., Fleige, H., Peth, S., & Peng, X. (Hrsg.). (2006). Soil management for sustainability (Advances in Geoecology 38). CATENA Verlag GmbH.
28.
go back to reference Reiner, M. (1960). Deformation, strain and flow: An elementary introduction to rheology. H. K. Lewis.CrossRef Reiner, M. (1960). Deformation, strain and flow: An elementary introduction to rheology. H. K. Lewis.CrossRef
29.
go back to reference Kisiel, I. (1967). Zastosowanie reologicznego ciała M/V w mechanice gruntów (Ansatz des rheologischen Körpers M/V zu Bodenmechanik). Ossolineum. Kisiel, I. (1967). Zastosowanie reologicznego ciała M/V w mechanice gruntów (Ansatz des rheologischen Körpers M/V zu Bodenmechanik). Ossolineum.
30.
go back to reference Hencky, H. (1924). Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannngen. Zeitschrift für Angewandte Mathematik und Mechanik, 4, 323–334.CrossRef Hencky, H. (1924). Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannngen. Zeitschrift für Angewandte Mathematik und Mechanik, 4, 323–334.CrossRef
31.
go back to reference Szwaj, S. (1969). Reologiczny model przestrzenny na przykładzie ośrodka gruntowego (Ein rheologisches Modell für Boden), Sypozjum PTMS. Szwaj, S. (1969). Reologiczny model przestrzenny na przykładzie ośrodka gruntowego (Ein rheologisches Modell für Boden), Sypozjum PTMS.
32.
go back to reference Pukos, A. (1991). Odkształcenia gleby w zależności od rozkładów wielkości porów i cząstek fazy stałej, Problemy Agrofizyki, Zeszyt Nr 61. Instytut Agrofizyki PAN. Pukos, A. (1991). Odkształcenia gleby w zależności od rozkładów wielkości porów i cząstek fazy stałej, Problemy Agrofizyki, Zeszyt Nr 61. Instytut Agrofizyki PAN.
33.
go back to reference Pukos, A. (1983). Thermodynamic interpretation of soil medium deformation. Zeszyty Problemowe Postępów Nauk Rolniczych, 22, 367–399. Pukos, A. (1983). Thermodynamic interpretation of soil medium deformation. Zeszyty Problemowe Postępów Nauk Rolniczych, 22, 367–399.
34.
go back to reference Shoop, S., Cary, T., Coutermarsh, B., & Stanley, J. (2012). Effect of vegetation biomass on vehicle traction and motion resistance. In Proceedings of the 12th European regional conference International Society for Terrain-Vehicle Systems (ISTVS), 24–27 September. http://istvs.org/publications Shoop, S., Cary, T., Coutermarsh, B., & Stanley, J. (2012). Effect of vegetation biomass on vehicle traction and motion resistance. In Proceedings of the 12th European regional conference International Society for Terrain-Vehicle Systems (ISTVS), 24–27 September. http://​istvs.​org/​publications
35.
go back to reference Wieder, W., & Shoop, S. (2017). Vegetation impact on soil strength (CREEL technical report no. SR – 17 – 2). U.S. Army Cold Regions Research and Engineering Laboratory. Wieder, W., & Shoop, S. (2017). Vegetation impact on soil strength (CREEL technical report no. SR – 17 – 2). U.S. Army Cold Regions Research and Engineering Laboratory.
36.
go back to reference Shoop, S., Wieder, W., MacDonald, K., Carey, T., & Howard, H. (2013). Experimental measurement of biomass impact on soil strength. In Proceedings of the 7th Americas conference of the International Society for Terrain-Vehicle Systems (ISTVS), 4–7 November. Shoop, S., Wieder, W., MacDonald, K., Carey, T., & Howard, H. (2013). Experimental measurement of biomass impact on soil strength. In Proceedings of the 7th Americas conference of the International Society for Terrain-Vehicle Systems (ISTVS), 4–7 November.
37.
go back to reference Ennos, A. R. (1990). The anchorage of leek seedlings: The effect of root length and soil strength. Annals of Botany, 65, 409–416.CrossRef Ennos, A. R. (1990). The anchorage of leek seedlings: The effect of root length and soil strength. Annals of Botany, 65, 409–416.CrossRef
38.
go back to reference Gray, D. H., & Barker, D. (2004). Root-soil mechanics and interactions. In S. J. Bennett & A. Simon (Hrsg.), Riparian vegetation and fluvial geomorphology. American Geophysical Union. Gray, D. H., & Barker, D. (2004). Root-soil mechanics and interactions. In S. J. Bennett & A. Simon (Hrsg.), Riparian vegetation and fluvial geomorphology. American Geophysical Union.
39.
go back to reference Pirnazarov, A., Wijekoon, M., Sellgren, U., Lofgren, B., & Andersson, K. (2012). Modeling of the bearing capacity of nordic forest soil. In Proceedings of the 12th European regional conference of the International Society for Terrain-Vehicle Systems (ISTVS), 24–27 September, Pretoria. Pirnazarov, A., Wijekoon, M., Sellgren, U., Lofgren, B., & Andersson, K. (2012). Modeling of the bearing capacity of nordic forest soil. In Proceedings of the 12th European regional conference of the International Society for Terrain-Vehicle Systems (ISTVS), 24–27 September, Pretoria.
40.
go back to reference Pirnazarov, A., Sellgren, U., & Lofgren, B. (2013). Development of a methodology for predicting the bearing capacity of rooted soft soil. In Proceedings of the 7th American Regional Conference of the International Society for Terrain-Vehicle Systems (ISTVS), 4–7 November. Pirnazarov, A., Sellgren, U., & Lofgren, B. (2013). Development of a methodology for predicting the bearing capacity of rooted soft soil. In Proceedings of the 7th American Regional Conference of the International Society for Terrain-Vehicle Systems (ISTVS), 4–7 November.
41.
go back to reference Affleck, R., Shoop, S., Smith, C., Gagnon, K., & Stone, R. (2011). Soil strength as a function of soil and ground cover types. Presented at the 17th International Conference of the International Society for Terrain-Vehicle Systems, 18–22 September. Affleck, R., Shoop, S., Smith, C., Gagnon, K., & Stone, R. (2011). Soil strength as a function of soil and ground cover types. Presented at the 17th International Conference of the International Society for Terrain-Vehicle Systems, 18–22 September.
42.
go back to reference MacDonald, K. A., & Shoop, S. A. (2013). Validation of the Vegetation and Soil Shear Tester (VASST) with existing soil strength instruments. In Proceedings of the 7th Americas regional conference of the International Society for Terrain-Vehicle Systems (ISTVS), 4–7 November. MacDonald, K. A., & Shoop, S. A. (2013). Validation of the Vegetation and Soil Shear Tester (VASST) with existing soil strength instruments. In Proceedings of the 7th Americas regional conference of the International Society for Terrain-Vehicle Systems (ISTVS), 4–7 November.
43.
go back to reference Chan, T. K., Lim, H., Tan, T. W., & Lim, C. P. (1999). Variation of bending capacity along the lamina length of a grass, imperata cylindrica var. Major (gramineae). Annals of Botany, 84, 703–708.CrossRef Chan, T. K., Lim, H., Tan, T. W., & Lim, C. P. (1999). Variation of bending capacity along the lamina length of a grass, imperata cylindrica var. Major (gramineae). Annals of Botany, 84, 703–708.CrossRef
44.
go back to reference Kolowca, J., Wróbel, M., & Baran, B. (2009). Model mechaniczny źdźbła trawy Miscanthus Giganteus. Inżynieria Rolnicza, 6(115). Kolowca, J., Wróbel, M., & Baran, B. (2009). Model mechaniczny źdźbła trawy Miscanthus Giganteus. Inżynieria Rolnicza, 6(115).
45.
go back to reference Stinton, D. (1998). Flying qualities and flight testing of the aeroplane. Blackwell Science/AIAA. Stinton, D. (1998). Flying qualities and flight testing of the aeroplane. Blackwell Science/AIAA.
46.
go back to reference Kanafojski, C. (1980). Theory and construction of agricultural equippment (S. 23–36). Warsaw. Kanafojski, C. (1980). Theory and construction of agricultural equippment (S. 23–36). Warsaw.
47.
go back to reference Cenek, P. D., Jamieson, N. J., & McLarin, M. W. (2005). Frictional characteristics of roadside grass types. International Surface Friction Conference, 2005, Christchurch. Cenek, P. D., Jamieson, N. J., & McLarin, M. W. (2005). Frictional characteristics of roadside grass types. International Surface Friction Conference, 2005, Christchurch.
48.
go back to reference Białczyk, W., Cudzik, A., Czarnecki, J., & Pieczarka, K. (2006). Analysis of traction properties of grass area. Zeszyty Naukowe, Wroclaw Agricultural University, No. 545. Białczyk, W., Cudzik, A., Czarnecki, J., & Pieczarka, K. (2006). Analysis of traction properties of grass area. Zeszyty Naukowe, Wroclaw Agricultural University, No. 545.
49.
go back to reference Shoop, S. A., Coutermarsh, B., Cary, T., & Howard, H. (2015). Quantifying vegetation biomass impacts on vehicle mobility. Journal of Terramechanics, 61, 63–76.CrossRef Shoop, S. A., Coutermarsh, B., Cary, T., & Howard, H. (2015). Quantifying vegetation biomass impacts on vehicle mobility. Journal of Terramechanics, 61, 63–76.CrossRef
50.
go back to reference Collins, J. G. (1971). Forecasting trafficability of soils (Report 10 in technical memorandum 3-331). US Army Waterways Experiment Station. Collins, J. G. (1971). Forecasting trafficability of soils (Report 10 in technical memorandum 3-331). US Army Waterways Experiment Station.
51.
go back to reference Anderson, M. G. (1983). On the applicability of soil water finite difference models to operational trafficability models. Journal of Terramechanics, 20(3–4), 139–152.CrossRef Anderson, M. G. (1983). On the applicability of soil water finite difference models to operational trafficability models. Journal of Terramechanics, 20(3–4), 139–152.CrossRef
52.
go back to reference Detweiler, Z. R., & Ferris, J. B. (2008). Interpolation methods for high-fidelity three-dimensional terrain surfaces. Journal of Terramechanics, 47, 219–226. Detweiler, Z. R., & Ferris, J. B. (2008). Interpolation methods for high-fidelity three-dimensional terrain surfaces. Journal of Terramechanics, 47, 219–226.
53.
go back to reference Lee, R., & Sandu, C. (2009). Terrain profile modeling using stochastic partial differential equations. International Journal of Vehicle Systems Modelling and Testing, 4(2009), 318–356.CrossRef Lee, R., & Sandu, C. (2009). Terrain profile modeling using stochastic partial differential equations. International Journal of Vehicle Systems Modelling and Testing, 4(2009), 318–356.CrossRef
54.
go back to reference Sandu, C., Sandu, A., & Li, L. (2005). Stochastic modelling of terrain profiles and soil parameters. SAE Transactions. Sandu, C., Sandu, A., & Li, L. (2005). Stochastic modelling of terrain profiles and soil parameters. SAE Transactions.
55.
go back to reference Ngwangwa, H. M., Heyns, P. S., Labuschange, F. J. J., & Kululanga, G. K. (2010). Reconstruction of road defects and road roughness classification using vehicle response with artificial neural networks simulation. Journal of Terramechanics, 47(3), 97–111.CrossRef Ngwangwa, H. M., Heyns, P. S., Labuschange, F. J. J., & Kululanga, G. K. (2010). Reconstruction of road defects and road roughness classification using vehicle response with artificial neural networks simulation. Journal of Terramechanics, 47(3), 97–111.CrossRef
56.
go back to reference Sołtyński, A. (1978). Mechanika układu pojazd – teren. WMON Warszawa (auf Polnisch). Sołtyński, A. (1978). Mechanika układu pojazd – teren. WMON Warszawa (auf Polnisch).
57.
go back to reference Sun, T. C., Chaika, M., Gorsich, D., Wei, J., & Alyass, K. (2007). Methods of simulation of terrain profiles. Proc. ISTVS Conf. Fairbanks. Sun, T. C., Chaika, M., Gorsich, D., Wei, J., & Alyass, K. (2007). Methods of simulation of terrain profiles. Proc. ISTVS Conf. Fairbanks.
58.
go back to reference Smith, H., & Ferris, J. B. (2010). Techniques for averting and correcting errors in 3D terrain topology measurements. Journal of Terramechanics, 47(4), 219–226.CrossRef Smith, H., & Ferris, J. B. (2010). Techniques for averting and correcting errors in 3D terrain topology measurements. Journal of Terramechanics, 47(4), 219–226.CrossRef
59.
go back to reference Abele, G., & Gow, A. (1975). Compressibility characteristics of undisturbed snow. (Research Report 336). U.S. Army Cold Regions Research and Engineering Laboratory. Abele, G., & Gow, A. (1975). Compressibility characteristics of undisturbed snow. (Research Report 336). U.S. Army Cold Regions Research and Engineering Laboratory.
60.
go back to reference Lee, J. (2009). A new indentation model for snow. Journal of Terramechanics, 46, 1–13.CrossRef Lee, J. (2009). A new indentation model for snow. Journal of Terramechanics, 46, 1–13.CrossRef
61.
go back to reference Li, L., Sandu, C., Lee, J., & Liu, B. (2009). Stochastic modeling of tire–snow interaction using a polynomial chaos approach. Journal of Terramechanics, 46, 165–188.CrossRef Li, L., Sandu, C., Lee, J., & Liu, B. (2009). Stochastic modeling of tire–snow interaction using a polynomial chaos approach. Journal of Terramechanics, 46, 165–188.CrossRef
62.
go back to reference Shapiro, L., Johnson, J., Sturm, M., & Blaisdell, G. (1997). Snow mechanics: Review of the state of knowledge and applications (CRREL Report 97-3). U.S. Army Cold Regions Research and Engineering Laboratory. Shapiro, L., Johnson, J., Sturm, M., & Blaisdell, G. (1997). Snow mechanics: Review of the state of knowledge and applications (CRREL Report 97-3). U.S. Army Cold Regions Research and Engineering Laboratory.
63.
go back to reference Shoop, S., Young, B., Alger, R., & Davis, J. (1994). Winter traction testing. Automotive Engineering, 102(1), 75–78. SAE Paper 940110. Shoop, S., Young, B., Alger, R., & Davis, J. (1994). Winter traction testing. Automotive Engineering, 102(1), 75–78. SAE Paper 940110.
64.
go back to reference Shoop, S. A. (2001). Finite element Modeling of Tire – Terrain Interaction (CREEL Technical Report No. TR – 01 – 16). U.S. Army Cold Regions Research and Engineering Laboratory. Shoop, S. A. (2001). Finite element Modeling of Tire – Terrain Interaction (CREEL Technical Report No. TR – 01 – 16). U.S. Army Cold Regions Research and Engineering Laboratory.
65.
go back to reference Fauve, M., Rhyner, H., & Schneebeli, M. (2002). Preparation and maintenance of pistes. Handbook for practitioners. Swiss federal Institute for Snow and Avalanche Research SLF. Fauve, M., Rhyner, H., & Schneebeli, M. (2002). Preparation and maintenance of pistes. Handbook for practitioners. Swiss federal Institute for Snow and Avalanche Research SLF.
66.
go back to reference Colbeck, S., Akitaya, E., Armstrong, R., Gubler, H., Lafeuille, J., Lied, K., McClung, D., & Morris, E. (1985). The international classification for seasonal snow on the ground. International Commission on Snow and Ice. Colbeck, S., Akitaya, E., Armstrong, R., Gubler, H., Lafeuille, J., Lied, K., McClung, D., & Morris, E. (1985). The international classification for seasonal snow on the ground. International Commission on Snow and Ice.
67.
go back to reference Johnson, J., Brown, J., Gaffney, E., Blaisdell, G., & Solie, D. (1992). Shock response of snow (CRREL Report 92-12). U.S. Army Cold Regions Research and Engineering Laboratory. Johnson, J., Brown, J., Gaffney, E., Blaisdell, G., & Solie, D. (1992). Shock response of snow (CRREL Report 92-12). U.S. Army Cold Regions Research and Engineering Laboratory.
68.
go back to reference Bell, J. (2008). The martian surface. composition, mineralogy and physical properties. Cambridge Planetary Science, Cambridge University Press.CrossRef Bell, J. (2008). The martian surface. composition, mineralogy and physical properties. Cambridge Planetary Science, Cambridge University Press.CrossRef
69.
go back to reference Blakkolb, B., Logan, C., Jandura, L., Okon, A., Anderson, M., Katz, I., Aveni, G., Brown, K., Chung, S., Ferraro, N., Limonadi, D., Melko, J., Mennella, J., & Yavrouian, A. (2014). Organic cleanliness of the Mars Science Laboratory sample transfer chain. Review of Scientific Instruments, 85(7), 075111-075111-7.CrossRef Blakkolb, B., Logan, C., Jandura, L., Okon, A., Anderson, M., Katz, I., Aveni, G., Brown, K., Chung, S., Ferraro, N., Limonadi, D., Melko, J., Mennella, J., & Yavrouian, A. (2014). Organic cleanliness of the Mars Science Laboratory sample transfer chain. Review of Scientific Instruments, 85(7), 075111-075111-7.CrossRef
70.
go back to reference Li, W., Hang, Y., Cui, Y., Dong, S., & Wang, J. (2010). Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion. Journal of Terramechanics, 47, 161–172.CrossRef Li, W., Hang, Y., Cui, Y., Dong, S., & Wang, J. (2010). Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion. Journal of Terramechanics, 47, 161–172.CrossRef
71.
go back to reference McKay, D., Carter, J. L., Boles, W. W., Allen, C. C., & Allton, J. H. (1994). JSC-1: A new lunar soil simulant. Engineering, construction and operations in space IV (S. 857–866). American Society of Civil Engineers. McKay, D., Carter, J. L., Boles, W. W., Allen, C. C., & Allton, J. H. (1994). JSC-1: A new lunar soil simulant. Engineering, construction and operations in space IV (S. 857–866). American Society of Civil Engineers.
72.
go back to reference King, R. H., Van Susante, P., & Gefreh, M. A. (2011). Analytical models and laboratory measurements of the soil – Tool interaction force to push a narrow tool through JSC-1A lunar simulant and Ottawa sand at different cutting depths. Journal of Terramechanics, 48, 85–95.CrossRef King, R. H., Van Susante, P., & Gefreh, M. A. (2011). Analytical models and laboratory measurements of the soil – Tool interaction force to push a narrow tool through JSC-1A lunar simulant and Ottawa sand at different cutting depths. Journal of Terramechanics, 48, 85–95.CrossRef
73.
go back to reference Taylor, L. A., Pieters, C. M., & Britt, D. (2016). Evaluations of lunar regolith simulants. Planetary and Space Science, 126, 1–7.CrossRef Taylor, L. A., Pieters, C. M., & Britt, D. (2016). Evaluations of lunar regolith simulants. Planetary and Space Science, 126, 1–7.CrossRef
74.
go back to reference Oravec, H. A., Zeng, X., & Ansani, V. M. (2010). Design and characterization of GRC-1: A soil for lunar terramechanics testing in Earth-ambient conditions. Journal of Terramechanics, 47, 361–377.CrossRef Oravec, H. A., Zeng, X., & Ansani, V. M. (2010). Design and characterization of GRC-1: A soil for lunar terramechanics testing in Earth-ambient conditions. Journal of Terramechanics, 47, 361–377.CrossRef
75.
go back to reference Brunskill, C., Patel, N., Gouache, T. P., Scott, G. P., Saaj, C. M., Matthews, M., & Cui, L. (2011). Characterisation of martian soil simulants for the ExoMars rover testbed. Journal of Terramechanics, 48, 419–438.CrossRef Brunskill, C., Patel, N., Gouache, T. P., Scott, G. P., Saaj, C. M., Matthews, M., & Cui, L. (2011). Characterisation of martian soil simulants for the ExoMars rover testbed. Journal of Terramechanics, 48, 419–438.CrossRef
76.
go back to reference Cannon, K. M., Britt, D. T., Smith, T. M., Fritsche, R. F., & Batcheldor, D. (2019). Mars global simulant MGS-1: A Rocknest-based open standard for basaltic martian regolith simulants. Icarus, 317, 470–478.CrossRef Cannon, K. M., Britt, D. T., Smith, T. M., Fritsche, R. F., & Batcheldor, D. (2019). Mars global simulant MGS-1: A Rocknest-based open standard for basaltic martian regolith simulants. Icarus, 317, 470–478.CrossRef
77.
go back to reference Spohn, T., Seiferlin, K., Hagermann, A., Knollenberg, J., Ball, A. J., Banaszkiewicz, M., Benkhoff, J., Gadomski, S., Gregorczyk, W., Grygorczuk, J., Hlond, M., Kargl, G., Kuhrt, E., Komle, N., Krasowski, J., Marczewski, W., & Zarnecki, J. C. (2007). Mupus – A thermal and mechanical properties probe for the Rosetta Lander Philae. Space Science Reviews, 128, 339–362.CrossRef Spohn, T., Seiferlin, K., Hagermann, A., Knollenberg, J., Ball, A. J., Banaszkiewicz, M., Benkhoff, J., Gadomski, S., Gregorczyk, W., Grygorczuk, J., Hlond, M., Kargl, G., Kuhrt, E., Komle, N., Krasowski, J., Marczewski, W., & Zarnecki, J. C. (2007). Mupus – A thermal and mechanical properties probe for the Rosetta Lander Philae. Space Science Reviews, 128, 339–362.CrossRef
78.
go back to reference Pytka, J., Łyszczyk, T., Józwik J., & Gnapowski, E. (2018). Design of Integrated Field Sensor for Grassy Runway Conditions Monitoring System, 2018 12th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA), Lublin, Poland, 2018, S. 1–9. https://doi.org/10.1109/ISEMA.2018.8442305. Pytka, J., Łyszczyk, T., Józwik J., & Gnapowski, E. (2018). Design of Integrated Field Sensor for Grassy Runway Conditions Monitoring System, 2018 12th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA), Lublin, Poland, 2018, S. 1–9. https://​doi.​org/​10.​1109/​ISEMA.​2018.​8442305.
Metadata
Title
Der Boden
Author
Jarosław Pytka
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-658-32013-3_2

Premium Partner