Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Background and Research Scope

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, the characteristics of acoustic metamaterials in manipulation of elastodynamic and acoustic waves is explained. Acoustic bandgaps are introduced and the role of topology optimisation for enhancing the bandgap efficiency of PhCrs is discussed. Application of PhPs in manipulation of guided waves in thin-walled structures for design of low loss vibroacoustic devices and structural health monitoring is explained. Finally, the research scope targeting topology optimisation of PhPs is introduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Assouar, M. B., Senesi, M., Oudich, M., Ruzzene, M., & Hou, Z. (2012). Broadband plate-type acoustic metamaterial for low-frequency sound attenuation. Applied Physics Letters, 101(17), 173505.CrossRef Assouar, M. B., Senesi, M., Oudich, M., Ruzzene, M., & Hou, Z. (2012). Broadband plate-type acoustic metamaterial for low-frequency sound attenuation. Applied Physics Letters, 101(17), 173505.CrossRef
go back to reference Deymier, P. (2011). Acoustic metamaterials and phononic crystals. Berlin: Springer. Deymier, P. (2011). Acoustic metamaterials and phononic crystals. Berlin: Springer.
go back to reference Halkjær, S., Sigmund, O., & Jensen, J. S. (2006). Maximizing band gaps in plate structures. Structural and Multidisciplinary Optimization, 32(4), 263–275.CrossRef Halkjær, S., Sigmund, O., & Jensen, J. S. (2006). Maximizing band gaps in plate structures. Structural and Multidisciplinary Optimization, 32(4), 263–275.CrossRef
go back to reference Hedayatrasa, S., Abhary, K., & Uddin, M. (2016). On topology optimization of acoustic metamaterial lattices for locally resonant bandgaps of flexural waves. The 2nd Australasian Acoustical Societies’ Conference. Hedayatrasa, S., Abhary, K., & Uddin, M. (2016). On topology optimization of acoustic metamaterial lattices for locally resonant bandgaps of flexural waves. The 2nd Australasian Acoustical Societies’ Conference.
go back to reference Hsu, J.-C., & Wu, T.-T. (2007, May 14). Lamb waves in binary locally resonant phononic plates with two-dimensional lattices, Applied Physics Letters, 90(20), pp. 201904–201903. Hsu, J.-C., & Wu, T.-T. (2007, May 14). Lamb waves in binary locally resonant phononic plates with two-dimensional lattices, Applied Physics Letters, 90(20), pp. 201904–201903.
go back to reference Kundu, T. (2004). Ultrasonic nondestructive evaluation—Engineering and biological material characterization. Boca Raton: CRC Press. Kundu, T. (2004). Ultrasonic nondestructive evaluation—Engineering and biological material characterization. Boca Raton: CRC Press.
go back to reference Li, J., & Chan, C. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5), 055602.CrossRef Li, J., & Chan, C. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5), 055602.CrossRef
go back to reference Lin, C.-M., Hsu, J.-C., Senesky, D. G., & Pisano, A. P. (2014) Anchor loss reduction in ALN Lamb wave resonators using phononic crystal strip tethers. In Frequency Control Symposium (FCS), 2014 IEEE International, pp. 1–5. Lin, C.-M., Hsu, J.-C., Senesky, D. G., & Pisano, A. P. (2014) Anchor loss reduction in ALN Lamb wave resonators using phononic crystal strip tethers. In Frequency Control Symposium (FCS), 2014 IEEE International, pp. 1–5.
go back to reference Lin, S.-C. S., Huang, T. J., Sun, J.-H., & Wu, T.-T. (2009). Gradient-index phononic crystals. Physical Review B, 79(9), 094302.CrossRef Lin, S.-C. S., Huang, T. J., Sun, J.-H., & Wu, T.-T. (2009). Gradient-index phononic crystals. Physical Review B, 79(9), 094302.CrossRef
go back to reference Mohammadi, S. (2010) Phononic band gap micro/nano-mechanical structures for communications and sensing applications. Georgia Institute of Technology. Mohammadi, S. (2010) Phononic band gap micro/nano-mechanical structures for communications and sensing applications. Georgia Institute of Technology.
go back to reference Olsson Iii, R. H., & El-Kady, I. F. (2009). Microfabricated phononic crystal devices and applications. Measurement Science & Technology, 20(1), 012002.CrossRef Olsson Iii, R. H., & El-Kady, I. F. (2009). Microfabricated phononic crystal devices and applications. Measurement Science & Technology, 20(1), 012002.CrossRef
go back to reference Su, Z., & Ye, L. (2009). Identification of damage using lamb waves: From fundamentals to applications. Berlin: Springer.CrossRefMATH Su, Z., & Ye, L. (2009). Identification of damage using lamb waves: From fundamentals to applications. Berlin: Springer.CrossRefMATH
go back to reference Veidt, M., Ng, C.-T., Hames, S., & Wattinger, T. (2008). Imaging laminar damage in plates using Lamb wave beamforming. Advanced Materials Research, 47, 666–669.CrossRef Veidt, M., Ng, C.-T., Hames, S., & Wattinger, T. (2008). Imaging laminar damage in plates using Lamb wave beamforming. Advanced Materials Research, 47, 666–669.CrossRef
go back to reference Wang, P., Casadei, F., Shan, S., Weaver, J. C., & Bertoldi, K. (2014). Harnessing buckling to design tunable locally resonant acoustic metamaterials. Physical Review Letters, 113(1), 014301.CrossRef Wang, P., Casadei, F., Shan, S., Weaver, J. C., & Bertoldi, K. (2014). Harnessing buckling to design tunable locally resonant acoustic metamaterials. Physical Review Letters, 113(1), 014301.CrossRef
go back to reference Wang, P., Shim, J., & Bertoldi, K. (2013). Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Physical Review B, 88(1), 014304.CrossRef Wang, P., Shim, J., & Bertoldi, K. (2013). Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Physical Review B, 88(1), 014304.CrossRef
go back to reference Wang, G., Wen, X., Wen, J., Shao, L., & Liu, Y. (2004). Two-dimensional locally resonant phononic crystals with binary structures. Physical Review Letters, 93(15), 154302.CrossRef Wang, G., Wen, X., Wen, J., Shao, L., & Liu, Y. (2004). Two-dimensional locally resonant phononic crystals with binary structures. Physical Review Letters, 93(15), 154302.CrossRef
go back to reference Zhu, H., & Semperlotti, F. (2013). Metamaterial based embedded acoustic filters for structural applications. AIP Advances, 3(9), 092121.CrossRef Zhu, H., & Semperlotti, F. (2013). Metamaterial based embedded acoustic filters for structural applications. AIP Advances, 3(9), 092121.CrossRef
Metadata
Title
Background and Research Scope
Author
Dr. Saeid Hedayatrasa
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-72959-6_1

Premium Partners