Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

Background Lectures on Ideal Visco-Plastic Fluid Flows

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

These notes are intended to supplement a short lecture course covering the theoretical background of the dynamics of ideal visco-plastic fluids, e.g. Bingham fluids, Herschel-Bulkley fluids. They are targeted at an applied mathematics or engineering audience. The intention is to give a non-rigorous introduction to those parts of the theory that: (a) appear to have use in applications; (b) are needed for computational methods; (c) mark out visco-plastic fluids from purely viscous generalised Newtonian fluids.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adachi, K., & Yoshioka, N. (1973). On creeping flow of a visco-plastic fluid past a circular cylinder. Chemical Engineering Science, 28, 215–226.CrossRef Adachi, K., & Yoshioka, N. (1973). On creeping flow of a visco-plastic fluid past a circular cylinder. Chemical Engineering Science, 28, 215–226.CrossRef
go back to reference Beris, A. N., Tsamopoulos, J. A., Armstrong, R. C., & Brown, R. A. (1985). Creeping motion of a sphere through a Bingham plastic. Journal of Fluid Mechanics, 158, 219–244.MathSciNetCrossRef Beris, A. N., Tsamopoulos, J. A., Armstrong, R. C., & Brown, R. A. (1985). Creeping motion of a sphere through a Bingham plastic. Journal of Fluid Mechanics, 158, 219–244.MathSciNetCrossRef
go back to reference Bristeau, M. O. (1975). Application de la mthode des lments finis la rsolution numrique d’inquations variationnelles de type Bingham. These de 3me cycle, Universite de Paris VI, Juin. Bristeau, M. O. (1975). Application de la mthode des lments finis la rsolution numrique d’inquations variationnelles de type Bingham. These de 3me cycle, Universite de Paris VI, Juin.
go back to reference Chakrabarty, J. (2012). Theory of plasticity. Butterworth-Heinemann. Chakrabarty, J. (2012). Theory of plasticity. Butterworth-Heinemann.
go back to reference Chaparian, E., Balmforth, N., & Frigaard, I. A. (2017). Yield limit analysis of symmetric particle sedimentation in a bingham fluid. preprint. Chaparian, E., Balmforth, N., & Frigaard, I. A. (2017). Yield limit analysis of symmetric particle sedimentation in a bingham fluid. preprint.
go back to reference Chatzimina, M., Georgiou, G. C., Argyropaidas, I., Mitsoulis, E., & Huilgol, R. R. (2005). Cessation of Couette and Poiseuille flows of a Bingham plastic and finite stopping times. Journal of Non-Newtonian Fluid Mechanics, 129, 117–127.CrossRef Chatzimina, M., Georgiou, G. C., Argyropaidas, I., Mitsoulis, E., & Huilgol, R. R. (2005). Cessation of Couette and Poiseuille flows of a Bingham plastic and finite stopping times. Journal of Non-Newtonian Fluid Mechanics, 129, 117–127.CrossRef
go back to reference Cioranescu, D. (1976). Sur une classe de fluides non-newtoniens. Applied Mathematics and Optimization, 3, 263–282.MathSciNetCrossRef Cioranescu, D. (1976). Sur une classe de fluides non-newtoniens. Applied Mathematics and Optimization, 3, 263–282.MathSciNetCrossRef
go back to reference Dacorogna, B. (2008). Applied mathematical sciences series. In Direct methods in the calculus of variations (Vol. 78). Springer. Dacorogna, B. (2008). Applied mathematical sciences series. In Direct methods in the calculus of variations (Vol. 78). Springer.
go back to reference Dubash, N., & Frigaard, I. A. (2004). Conditions for static bubbles in viscoplastic fluids. Physics of Fluids, 16, 4319–4330.CrossRef Dubash, N., & Frigaard, I. A. (2004). Conditions for static bubbles in viscoplastic fluids. Physics of Fluids, 16, 4319–4330.CrossRef
go back to reference Duvaut, G., & Lions, J. L. (1976). Inequalities in mechanics and physics. Springer.CrossRef Duvaut, G., & Lions, J. L. (1976). Inequalities in mechanics and physics. Springer.CrossRef
go back to reference Frigaard, I. A. (1998). Stratified exchange flows of two Bingham fluids in an inclined slot. Journal of Non-Newtonian Fluid Mechanics, 78, 61–87.CrossRef Frigaard, I. A. (1998). Stratified exchange flows of two Bingham fluids in an inclined slot. Journal of Non-Newtonian Fluid Mechanics, 78, 61–87.CrossRef
go back to reference Frigaard, I. A., & Scherzer, O. (1998). Uniaxial exchange flows of two Bingham fluids in a cylindrical duct. IMA Journal of Applied Mathematics, 61, 237–266.MathSciNetCrossRef Frigaard, I. A., & Scherzer, O. (1998). Uniaxial exchange flows of two Bingham fluids in a cylindrical duct. IMA Journal of Applied Mathematics, 61, 237–266.MathSciNetCrossRef
go back to reference Frigaard, I. A., & Scherzer, O. (2000). The effects of yield stress variation in uniaxial exchange flows of two Bingham fluids in a pipe. SIAM Journal on Applied Mathematics, 60, 1950–1976.MathSciNetCrossRef Frigaard, I. A., & Scherzer, O. (2000). The effects of yield stress variation in uniaxial exchange flows of two Bingham fluids in a pipe. SIAM Journal on Applied Mathematics, 60, 1950–1976.MathSciNetCrossRef
go back to reference Frigaard, I. A., Scherzer, O., & Sona, G. (2001). Uniqueness and non-uniqueness in the steady displacement of two visco-plastic fluids. ZAMM, 81, 99–118.MathSciNetCrossRef Frigaard, I. A., Scherzer, O., & Sona, G. (2001). Uniqueness and non-uniqueness in the steady displacement of two visco-plastic fluids. ZAMM, 81, 99–118.MathSciNetCrossRef
go back to reference Fuchs, M., & Seregin, G. (2000). Lecture notes in mathematics. In Variational methods for problems from plasticity theory and for generalized newtonian fluids (Vol. 1749). SpringerCrossRef Fuchs, M., & Seregin, G. (2000). Lecture notes in mathematics. In Variational methods for problems from plasticity theory and for generalized newtonian fluids (Vol. 1749). SpringerCrossRef
go back to reference Glowinski, R. (1984). Numerical methods for nonlinear variational problems. Springer.CrossRef Glowinski, R. (1984). Numerical methods for nonlinear variational problems. Springer.CrossRef
go back to reference Glowinski, R., Lions, J. L., & Trémolières, R. (1981). Numerical analysis of variational inequalities. Studies in mathematics and its applications. (trans: from French version of 1976). North-Holland.CrossRef Glowinski, R., Lions, J. L., & Trémolières, R. (1981). Numerical analysis of variational inequalities. Studies in mathematics and its applications. (trans: from French version of 1976). North-Holland.CrossRef
go back to reference Hassani, R., Ionescu, I. R., & Lachand-Robert, T. (2005). Shape optimization and supremal minimization approaches in landslides modelling. Applied Mathematics and Optimization, 52, 349–364.MathSciNetCrossRef Hassani, R., Ionescu, I. R., & Lachand-Robert, T. (2005). Shape optimization and supremal minimization approaches in landslides modelling. Applied Mathematics and Optimization, 52, 349–364.MathSciNetCrossRef
go back to reference Hild, P., Ionescu, I. R., Lachand-Robert, T., & Rosca, I. (2002). The blocking property of an inhomogeneous Bingham fluid. applications to landslides. Mathematical Modelling and Numerical Analysis (M2AN), 36, 1013–1026. Hild, P., Ionescu, I. R., Lachand-Robert, T., & Rosca, I. (2002). The blocking property of an inhomogeneous Bingham fluid. applications to landslides. Mathematical Modelling and Numerical Analysis (M2AN), 36, 1013–1026.
go back to reference Hill, R. (1950). The mathematical theory of plasticity. Oxford University Press. Hill, R. (1950). The mathematical theory of plasticity. Oxford University Press.
go back to reference Huilgol, R. R. (2006). A systematic procedure to determine the minimum pressure gradient required for the flow of viscoplastic fluids in pipes of symmetric cross-section. Journal of Non-Newtonian Fluid Mechanics, 136, 140–146.CrossRef Huilgol, R. R. (2006). A systematic procedure to determine the minimum pressure gradient required for the flow of viscoplastic fluids in pipes of symmetric cross-section. Journal of Non-Newtonian Fluid Mechanics, 136, 140–146.CrossRef
go back to reference Ionescu, I. R., & Lachand-Robert, T. (2005). Generalized cheeger’s sets related to landslides. Calculus of Variations and PDEs, 23, 227–249.MathSciNetCrossRef Ionescu, I. R., & Lachand-Robert, T. (2005). Generalized cheeger’s sets related to landslides. Calculus of Variations and PDEs, 23, 227–249.MathSciNetCrossRef
go back to reference Johnson, M. W. (1961). On variational principle for non-newtonian fluids. Transactions. Society of Rheology, 5, 9–21.MathSciNetCrossRef Johnson, M. W. (1961). On variational principle for non-newtonian fluids. Transactions. Society of Rheology, 5, 9–21.MathSciNetCrossRef
go back to reference Joseph, D. D. (1976a). Springer tracts in natural philosophy. Stability of fluid motions II. Springer, Heidelberg.MATH Joseph, D. D. (1976a). Springer tracts in natural philosophy. Stability of fluid motions II. Springer, Heidelberg.MATH
go back to reference Joseph, D. D. (1976b). Springer tracts in natural philosophy. Stability of fluid motions I. Springer, Heidelberg.MATH Joseph, D. D. (1976b). Springer tracts in natural philosophy. Stability of fluid motions I. Springer, Heidelberg.MATH
go back to reference Karimfazli, I., & Frigaard, I. A. (2013). Natural convection flows of a bingham fluid in a long vertical channel. Journal of Non-Newtonian Fluid Mechanics, 201, 39–55.CrossRef Karimfazli, I., & Frigaard, I. A. (2013). Natural convection flows of a bingham fluid in a long vertical channel. Journal of Non-Newtonian Fluid Mechanics, 201, 39–55.CrossRef
go back to reference Karimfazli, I., Frigaard, I. A., & Wachs, A. (2015). A novel heat transfer switch using the yield stress. Journal of Fluid Mechanics, 783, 526–566.MathSciNetCrossRef Karimfazli, I., Frigaard, I. A., & Wachs, A. (2015). A novel heat transfer switch using the yield stress. Journal of Fluid Mechanics, 783, 526–566.MathSciNetCrossRef
go back to reference Malek, J., Ruzicka, M., & Shelukhin, V. V. (2005). Herschel-Bulkley fluids: existence and regularity of steady flows. Mathematical Models and Methods in Applied Sciences, 15, 1845–1861.MathSciNetCrossRef Malek, J., Ruzicka, M., & Shelukhin, V. V. (2005). Herschel-Bulkley fluids: existence and regularity of steady flows. Mathematical Models and Methods in Applied Sciences, 15, 1845–1861.MathSciNetCrossRef
go back to reference Mosolov, P. P., & Miasnikov, V. P. (1965). Variational methods in the theory of the fluidity of a viscous-plastic medium. PPM. Journal of Mechanics and Applied Mathematics, 29, 468–492.CrossRef Mosolov, P. P., & Miasnikov, V. P. (1965). Variational methods in the theory of the fluidity of a viscous-plastic medium. PPM. Journal of Mechanics and Applied Mathematics, 29, 468–492.CrossRef
go back to reference Mosolov, P. P., & Miasnikov, V. P. (1966). On stagnant flow regions of a viscous-plastic medium in pipes. PPM. Journal of Mechanics and Applied Mathematics, 30, 705–717.CrossRef Mosolov, P. P., & Miasnikov, V. P. (1966). On stagnant flow regions of a viscous-plastic medium in pipes. PPM. Journal of Mechanics and Applied Mathematics, 30, 705–717.CrossRef
go back to reference Mosolov, P. P., & Miasnikov, V. P. (1967). On qualitative singularities of the flow of a viscoplastic medium in pipes. PPM. Journal of Mechanics and Applied Mathematics, 31, 581–585.CrossRef Mosolov, P. P., & Miasnikov, V. P. (1967). On qualitative singularities of the flow of a viscoplastic medium in pipes. PPM. Journal of Mechanics and Applied Mathematics, 31, 581–585.CrossRef
go back to reference Moyers-Gonzalez, M. A., & Frigaard, I. A. (2004). Numerical solution of duct flows of multiple visco-plastic fluids. Journal of Non-Newtonian Fluid Mechanics, 122, 227–241.CrossRef Moyers-Gonzalez, M. A., & Frigaard, I. A. (2004). Numerical solution of duct flows of multiple visco-plastic fluids. Journal of Non-Newtonian Fluid Mechanics, 122, 227–241.CrossRef
go back to reference Nouar, C., & Frigaard, I. A. (2001). Nonlinear stability of Poiseuille flow of a Bingham fluid: Theoretical results and comparison with phenomenological criteria. Journal of Non-Newtonian Fluid Mechanics, 100, 127–149.CrossRef Nouar, C., & Frigaard, I. A. (2001). Nonlinear stability of Poiseuille flow of a Bingham fluid: Theoretical results and comparison with phenomenological criteria. Journal of Non-Newtonian Fluid Mechanics, 100, 127–149.CrossRef
go back to reference Prager, W. (1954). Studies in mathematics and mechanics. In On slow visco-plastic flow (pp. 208–216). New York: Academic Press Inc. Presented to Richard von Mises by Friends, Colleagues, and Pupils.CrossRef Prager, W. (1954). Studies in mathematics and mechanics. In On slow visco-plastic flow (pp. 208–216). New York: Academic Press Inc. Presented to Richard von Mises by Friends, Colleagues, and Pupils.CrossRef
go back to reference Putz, A., & Frigaard, I. A. (2010). Creeping flow around particles in a Bingham fluid. Journal of Non-Newtonian Fluid Mechanics, 165, 263–280.CrossRef Putz, A., & Frigaard, I. A. (2010). Creeping flow around particles in a Bingham fluid. Journal of Non-Newtonian Fluid Mechanics, 165, 263–280.CrossRef
go back to reference Randolph, M. F., & Houlsby, G. T. (1984). The limiting pressure on a circular pile loaded laterally in cohesive soil. Géotechnique, 34, 613–623.CrossRef Randolph, M. F., & Houlsby, G. T. (1984). The limiting pressure on a circular pile loaded laterally in cohesive soil. Géotechnique, 34, 613–623.CrossRef
go back to reference Roustaei, A., Chevalier, T., Talon, L., & Frigaard, I. A. (2016). Non-darcy effects in fracture flows of a yield stress fluid. submitted to Journal of Fluid Mechanics.MathSciNetCrossRef Roustaei, A., Chevalier, T., Talon, L., & Frigaard, I. A. (2016). Non-darcy effects in fracture flows of a yield stress fluid. submitted to Journal of Fluid Mechanics.MathSciNetCrossRef
go back to reference Serrin, J. (1959). On the stability of viscous fluid motions. Archive for Rational Mechanics and Analysis, 3, 1–13.MathSciNetCrossRef Serrin, J. (1959). On the stability of viscous fluid motions. Archive for Rational Mechanics and Analysis, 3, 1–13.MathSciNetCrossRef
go back to reference Temam, R., & Strang, G. (1980). Functions of bounded deformation. Archive for Rational Mechanics and Analysis, 75, 7–21.MathSciNetCrossRef Temam, R., & Strang, G. (1980). Functions of bounded deformation. Archive for Rational Mechanics and Analysis, 75, 7–21.MathSciNetCrossRef
go back to reference Tokpavi, D., Magnin, A., & Jay, P. (2008). Very slow flow of Bingham viscoplastic fluid around a circular cylinder. Journal of Non-Newtonian Fluid Mechanics, 154, 65–76.CrossRef Tokpavi, D., Magnin, A., & Jay, P. (2008). Very slow flow of Bingham viscoplastic fluid around a circular cylinder. Journal of Non-Newtonian Fluid Mechanics, 154, 65–76.CrossRef
go back to reference Tsamopoulos, J., Dimakopoulos, Y., Chatzidai, N., Karapetsas, G., & Pavlidis, M. (2008). Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment. Journal of Fluid Mechanics, 601, 123–164.MathSciNetCrossRef Tsamopoulos, J., Dimakopoulos, Y., Chatzidai, N., Karapetsas, G., & Pavlidis, M. (2008). Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment. Journal of Fluid Mechanics, 601, 123–164.MathSciNetCrossRef
go back to reference Wachs, A., & Frigaard, I. A. (2016). Particle settling in yield stress fluids: limiting time, distance and applications. submitted to Journal of Non-Newtonian Fluid Mechanics.MathSciNetCrossRef Wachs, A., & Frigaard, I. A. (2016). Particle settling in yield stress fluids: limiting time, distance and applications. submitted to Journal of Non-Newtonian Fluid Mechanics.MathSciNetCrossRef
go back to reference Yoshioka, N., & Adachi, K. (1971a) On variational principles for a non-newtonian fluid. Journal of Chemical Engineering of Japan, 4, 217–220.CrossRef Yoshioka, N., & Adachi, K. (1971a) On variational principles for a non-newtonian fluid. Journal of Chemical Engineering of Japan, 4, 217–220.CrossRef
go back to reference Yoshioka, N., & Adachi, K. (1971b). Applications of the extremum principles for non-newtonian fluids. Journal of Chemical Engineering of Japan, 4, 221–226.CrossRef Yoshioka, N., & Adachi, K. (1971b). Applications of the extremum principles for non-newtonian fluids. Journal of Chemical Engineering of Japan, 4, 221–226.CrossRef
go back to reference Yoshioka, N., & Adachi, K. (1973). Some deductions from the extremum principles for non-newtonian fluids. Journal of Chemical Engineering of Japan, 6, 134–140.CrossRef Yoshioka, N., & Adachi, K. (1973). Some deductions from the extremum principles for non-newtonian fluids. Journal of Chemical Engineering of Japan, 6, 134–140.CrossRef
Metadata
Title
Background Lectures on Ideal Visco-Plastic Fluid Flows
Author
I. A. Frigaard
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-89438-6_1

Premium Partners