Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Background of Air Insulation Prediction Research

Authors : Zhibin Qiu, Jiangjun Ruan, Shengwen Shu

Published in: Air Insulation Prediction Theory and Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The background of air insulation prediction research is briefly reviewed in this chapter, including the research and development on air discharge tests, discharge theories and physical models. Some beneficial inspirations extracted from the existing researches are concluded. The research assumption of air insulation prediction is described, mainly including the research ideas, implementation method and key technologies. The contents of this book is briefly introduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Thione L, Pigini A, Allen NL et al (1992) Guidelines for the evaluation of the dielectric strength of external insulation. CIGRE Brochure, Paris, France Thione L, Pigini A, Allen NL et al (1992) Guidelines for the evaluation of the dielectric strength of external insulation. CIGRE Brochure, Paris, France
2.
go back to reference Ma NX (1998) Long gap discharge. China Electric Power Press, Beijing Ma NX (1998) Long gap discharge. China Electric Power Press, Beijing
3.
go back to reference Chen WJ, Zeng R, He HX (2013) Research progress of long air gap discharge. High Volt Eng 39(6):1281–1295 Chen WJ, Zeng R, He HX (2013) Research progress of long air gap discharge. High Volt Eng 39(6):1281–1295
4.
go back to reference Gallet G, Leroy G, Lacey R et al (1975) General expression for positive switching impulse strength valid up to extra long air gaps. IEEE Trans Power Appar Syst 94(6):1989–1993CrossRef Gallet G, Leroy G, Lacey R et al (1975) General expression for positive switching impulse strength valid up to extra long air gaps. IEEE Trans Power Appar Syst 94(6):1989–1993CrossRef
5.
go back to reference Cortina R, Garbagnati E, Pigini A et al (1985) Switching impulse strength of phase-to-Earth UHV external insulation-research at the 1000 kV project. IEEE Trans Power Appar Syst 104(11):3161–3168CrossRef Cortina R, Garbagnati E, Pigini A et al (1985) Switching impulse strength of phase-to-Earth UHV external insulation-research at the 1000 kV project. IEEE Trans Power Appar Syst 104(11):3161–3168CrossRef
6.
go back to reference Kishizima I, Matsumoto K, Watanabe Y (1984) New facilities for phase-to-phase switching impulse tests and some test results. IEEE Trans Power Appar Syst 103(6):1211–1216CrossRef Kishizima I, Matsumoto K, Watanabe Y (1984) New facilities for phase-to-phase switching impulse tests and some test results. IEEE Trans Power Appar Syst 103(6):1211–1216CrossRef
7.
go back to reference IEC 60071-2 (1996) Insulation coordination—part 2: application guide IEC 60071-2 (1996) Insulation coordination—part 2: application guide
8.
go back to reference Paris L (1967) Influence of air gap characteristics on line-to-ground switching surge strength. IEEE Trans Power Appar Syst 86(8):936–947CrossRef Paris L (1967) Influence of air gap characteristics on line-to-ground switching surge strength. IEEE Trans Power Appar Syst 86(8):936–947CrossRef
9.
go back to reference Paris L, Cortina R (1968) Switching and lightning impulse discharge characteristics of large air gaps and long insulator strings. IEEE Trans Power Appar Syst 87(4):947–957CrossRef Paris L, Cortina R (1968) Switching and lightning impulse discharge characteristics of large air gaps and long insulator strings. IEEE Trans Power Appar Syst 87(4):947–957CrossRef
10.
go back to reference Huo F (2012) Study on insulation characteristics and electric field distribution of long air-gaps for UHV power transmission line. Dissertation, Wuhan University Huo F (2012) Study on insulation characteristics and electric field distribution of long air-gaps for UHV power transmission line. Dissertation, Wuhan University
11.
go back to reference Sun CX, Sima WX, Shu LC (2002) Atmospheric environment and electrical external insulation. China Electric Power Press, Beijing Sun CX, Sima WX, Shu LC (2002) Atmospheric environment and electrical external insulation. China Electric Power Press, Beijing
12.
go back to reference Townsend JS (1910) The theory of ionization of gases by collision. Van Nostrand Company, New YorkCrossRef Townsend JS (1910) The theory of ionization of gases by collision. Van Nostrand Company, New YorkCrossRef
13.
go back to reference Reather H (1964) Electron avalanches and breakdown in gases. Butterworth, London Reather H (1964) Electron avalanches and breakdown in gases. Butterworth, London
14.
go back to reference Loeb LB, Meek JM (1941) The mechanism of the electric spark. Stanford University Press, USA Loeb LB, Meek JM (1941) The mechanism of the electric spark. Stanford University Press, USA
15.
go back to reference Meek JM, Craggs JD (1953) Electrical breakdown of gases. Oxford University Press, EnglandMATH Meek JM, Craggs JD (1953) Electrical breakdown of gases. Oxford University Press, EnglandMATH
16.
go back to reference Les Renardières Group (1972) Research on long air gap discharges at Les Renardières. Electra 23:53–157 Les Renardières Group (1972) Research on long air gap discharges at Les Renardières. Electra 23:53–157
17.
go back to reference Les Renardières Group (1974) Research on long air gap discharges at Les Renardières–1973 results. Electra 35:49–156 Les Renardières Group (1974) Research on long air gap discharges at Les Renardières–1973 results. Electra 35:49–156
18.
go back to reference Les Renardières Group (1977) Positive discharges in long air gap discharges at Les Renardières–1975 results and conclusions. Electra 53:31–153 Les Renardières Group (1977) Positive discharges in long air gap discharges at Les Renardières–1975 results and conclusions. Electra 53:31–153
19.
go back to reference Les Renardières Group (1981) Negative discharges in long air gap discharges at Les Renardières–1978 results. Electra 74:67–216 Les Renardières Group (1981) Negative discharges in long air gap discharges at Les Renardières–1978 results. Electra 74:67–216
21.
go back to reference Yang JJ (1983) Gas discharge. Science Press, Beijing Yang JJ (1983) Gas discharge. Science Press, Beijing
22.
go back to reference Xu XJ, Zhu DC (1996) Gas discharge physics. Fudan University Press, Shanghai Xu XJ, Zhu DC (1996) Gas discharge physics. Fudan University Press, Shanghai
23.
go back to reference Yan Z, Zhu DH (2007) High voltage and insulation technology, 2nd edn. China Electric Power Press, Beijing Yan Z, Zhu DH (2007) High voltage and insulation technology, 2nd edn. China Electric Power Press, Beijing
24.
go back to reference Peek FW (1929) Dielectric phenomena in high voltage engineering. McGraw-Hill, New York Peek FW (1929) Dielectric phenomena in high voltage engineering. McGraw-Hill, New York
25.
go back to reference Ortéga P, Domens P, Dupuy J et al (1991) Long air gap discharges under non-standard positive impulse voltages. Part 2: physical interpretation. In: Paper presented at the 7th international symposium on high voltage engineering, Dresden, Germany Ortéga P, Domens P, Dupuy J et al (1991) Long air gap discharges under non-standard positive impulse voltages. Part 2: physical interpretation. In: Paper presented at the 7th international symposium on high voltage engineering, Dresden, Germany
26.
go back to reference Lowke JJ, Alessandro FD (2003) Onset corona fields and electrical breakdown criteria. J Phys D Appl Phys 36(21):2673–2682CrossRef Lowke JJ, Alessandro FD (2003) Onset corona fields and electrical breakdown criteria. J Phys D Appl Phys 36(21):2673–2682CrossRef
27.
go back to reference Nasser E, Abou-Seada M (1970) Calculation of streamer thresholds using digital techniques. IEE Conf Publ 70:534–537 Nasser E, Abou-Seada M (1970) Calculation of streamer thresholds using digital techniques. IEE Conf Publ 70:534–537
28.
go back to reference Abdel-Salam M, Nakano M, Mizuno A (2007) Corona-induced pressures, potentials, fields and currents in electrostatic precipitator configurations. J Phys D Appl Phys 40(7):1919–1926CrossRef Abdel-Salam M, Nakano M, Mizuno A (2007) Corona-induced pressures, potentials, fields and currents in electrostatic precipitator configurations. J Phys D Appl Phys 40(7):1919–1926CrossRef
29.
go back to reference Zheng YS, He JL, Zhang B (2011) Onset criterion for positive corona in air. High Volt Eng 37(3):752–757 Zheng YS, He JL, Zhang B (2011) Onset criterion for positive corona in air. High Volt Eng 37(3):752–757
30.
go back to reference Hepworth JK, Klewe RC, Tozer BA (1972) A model of impulse breakdown in divergent field geometries. J Phys D Appl Phys 5(4):730–740CrossRef Hepworth JK, Klewe RC, Tozer BA (1972) A model of impulse breakdown in divergent field geometries. J Phys D Appl Phys 5(4):730–740CrossRef
31.
go back to reference Gallimberti I (1972) A computer model for streamer propagation. J Phys D Appl Phys 5(12):2179–2189CrossRef Gallimberti I (1972) A computer model for streamer propagation. J Phys D Appl Phys 5(12):2179–2189CrossRef
32.
go back to reference Gallimberti I (1979) The mechanism of the long spark formation. J Phys Colloq 40(C7):193–250CrossRef Gallimberti I (1979) The mechanism of the long spark formation. J Phys Colloq 40(C7):193–250CrossRef
33.
go back to reference Fofana I, Béroual A (1996) A model for long air gap discharge using an equivalent electrical network. IEEE Trans Dielectr Electr Insul 3(2):273–282CrossRef Fofana I, Béroual A (1996) A model for long air gap discharge using an equivalent electrical network. IEEE Trans Dielectr Electr Insul 3(2):273–282CrossRef
34.
go back to reference Goelian N, Lalande P, Bondiou-Clergerie A et al (1997) A simplified model for the simulation of positive-spark development in long air gaps. J Phys D Appl Phys 30(17):2441–2452CrossRef Goelian N, Lalande P, Bondiou-Clergerie A et al (1997) A simplified model for the simulation of positive-spark development in long air gaps. J Phys D Appl Phys 30(17):2441–2452CrossRef
35.
go back to reference Becerra M, Cooray V (2006) A self-consistent upward leader propagation model. J Phys D Appl Phys 39(16):3708–3715CrossRef Becerra M, Cooray V (2006) A self-consistent upward leader propagation model. J Phys D Appl Phys 39(16):3708–3715CrossRef
36.
go back to reference Becerra M, Cooray V (2006) A simplified physical model to determine the lightning upward connecting leader inception. IEEE Trans Power Deliv 21(2):897–908CrossRef Becerra M, Cooray V (2006) A simplified physical model to determine the lightning upward connecting leader inception. IEEE Trans Power Deliv 21(2):897–908CrossRef
37.
go back to reference Ortéga P, Heilbronner F, Rühling F et al (2005) Charge–voltage relationship of the first impulse corona in long airgaps. J Phys D Appl Phys 38(13):2215–2226CrossRef Ortéga P, Heilbronner F, Rühling F et al (2005) Charge–voltage relationship of the first impulse corona in long airgaps. J Phys D Appl Phys 38(13):2215–2226CrossRef
38.
go back to reference Arevalo L, Cooray V, Wu D et al (2012) A new static calculation of the streamer region for long spark gaps. J Electrostat 70(1):15–19CrossRef Arevalo L, Cooray V, Wu D et al (2012) A new static calculation of the streamer region for long spark gaps. J Electrostat 70(1):15–19CrossRef
39.
go back to reference Carrara G, Thione L (1976) Switching surge strength of large air gaps: a physical approach. IEEE Trans Power Appar Syst 95(2):512–524CrossRef Carrara G, Thione L (1976) Switching surge strength of large air gaps: a physical approach. IEEE Trans Power Appar Syst 95(2):512–524CrossRef
40.
go back to reference Rizk FAM (1989) A model for switching impulse leader inception and breakdown of long air gaps. IEEE Trans Power Deliv 4(1):596–606CrossRef Rizk FAM (1989) A model for switching impulse leader inception and breakdown of long air gaps. IEEE Trans Power Deliv 4(1):596–606CrossRef
41.
go back to reference Rizk FAM (1989) Switching impulse strength of air insulation: leader inception criterion. IEEE Trans Power Deliv 4(4):2187–2195CrossRef Rizk FAM (1989) Switching impulse strength of air insulation: leader inception criterion. IEEE Trans Power Deliv 4(4):2187–2195CrossRef
42.
go back to reference Gallimberti I, Bacchiega G, Bondiou-Clergerie A et al (2002) Fundamental processes in long air gap discharges. C R Physique 3(10):1335–1359CrossRef Gallimberti I, Bacchiega G, Bondiou-Clergerie A et al (2002) Fundamental processes in long air gap discharges. C R Physique 3(10):1335–1359CrossRef
43.
go back to reference Fofana I, Béroual A (1995) Modelling of the leader current with an equivalent electrical network. J Phys D Appl Phys 28(2):305–313CrossRef Fofana I, Béroual A (1995) Modelling of the leader current with an equivalent electrical network. J Phys D Appl Phys 28(2):305–313CrossRef
44.
go back to reference Fofana I, Béroual A (1997) A predictive model of the positive discharge in long air gaps under pure and oscillating impulse shapes. J Phys D Appl Phys 30(11):1653–1667CrossRef Fofana I, Béroual A (1997) A predictive model of the positive discharge in long air gaps under pure and oscillating impulse shapes. J Phys D Appl Phys 30(11):1653–1667CrossRef
45.
go back to reference Hutzler B, Hutzler-Barre D (1978) Leader propagation model for predetermination of switching surge flashover voltage of large air gaps. IEEE Trans Power Appar Syst 97(4):1087–1096CrossRef Hutzler B, Hutzler-Barre D (1978) Leader propagation model for predetermination of switching surge flashover voltage of large air gaps. IEEE Trans Power Appar Syst 97(4):1087–1096CrossRef
46.
go back to reference Ortéga P (1992) Comportement diélectrique des grands intervalles d’air soumis à des ondes de tension de polarité positive ou negative. PhD thesis, Université de Pau et des Pays de l’Adour Ortéga P (1992) Comportement diélectrique des grands intervalles d’air soumis à des ondes de tension de polarité positive ou negative. PhD thesis, Université de Pau et des Pays de l’Adour
47.
go back to reference Lemke E (1967) Durchschlagmechanisms und Schlagweite-Durchschlagspannungs-Kennlinien von inhomogenen Luftfunkenstrecken bei Schaltspannungen. PhD thesis, Technical University of Dresden Lemke E (1967) Durchschlagmechanisms und Schlagweite-Durchschlagspannungs-Kennlinien von inhomogenen Luftfunkenstrecken bei Schaltspannungen. PhD thesis, Technical University of Dresden
48.
go back to reference Aleksandrov GN, Podporkyn GV (1979) Analysis of experimental data on the electric strength of long air gaps. IEEE Trans Power Appar Syst 98(2):597–605CrossRef Aleksandrov GN, Podporkyn GV (1979) Analysis of experimental data on the electric strength of long air gaps. IEEE Trans Power Appar Syst 98(2):597–605CrossRef
49.
go back to reference Jones B (1973) Switching surges and air insulation. Phil Trans R Soc Lond A 275(1248):165–180CrossRef Jones B (1973) Switching surges and air insulation. Phil Trans R Soc Lond A 275(1248):165–180CrossRef
50.
go back to reference Bazelyan EM (1987) The leader of a long positive spark. Electr Tech USSR 2:47–60 Bazelyan EM (1987) The leader of a long positive spark. Electr Tech USSR 2:47–60
51.
go back to reference Bondiou A, Gallimberti I (1994) Theoretical modelling of the development of the positive spark in long gaps. J Phys D Appl Phys 27(6):1252–1266CrossRef Bondiou A, Gallimberti I (1994) Theoretical modelling of the development of the positive spark in long gaps. J Phys D Appl Phys 27(6):1252–1266CrossRef
52.
go back to reference Arevalo L, Cooray V, Montano R (2009) Numerical simulation of long laboratory sparks generated by positive switching impulses. J Electrostat 67(2–3):228–234CrossRef Arevalo L, Cooray V, Montano R (2009) Numerical simulation of long laboratory sparks generated by positive switching impulses. J Electrostat 67(2–3):228–234CrossRef
53.
go back to reference Arevalo L, Wu D, Jacobson B (2013) A consistent approach to estimate the breakdown voltage of high voltage electrodes under positive switching impulses. J Appl Phys 114(8):083301CrossRef Arevalo L, Wu D, Jacobson B (2013) A consistent approach to estimate the breakdown voltage of high voltage electrodes under positive switching impulses. J Appl Phys 114(8):083301CrossRef
54.
go back to reference Beroual A, Fofana I (2016) Discharge in long air gaps: modelling and applications. IOP Publishing, Bristol Beroual A, Fofana I (2016) Discharge in long air gaps: modelling and applications. IOP Publishing, Bristol
55.
go back to reference Fofana I, Beroual A, Rakotonandrasana J-H (2013) Application of dynamic models to predict switching impulse withstand voltages of long air gaps. IEEE Trans Dielectr Electr Insul 20(1):89–97CrossRef Fofana I, Beroual A, Rakotonandrasana J-H (2013) Application of dynamic models to predict switching impulse withstand voltages of long air gaps. IEEE Trans Dielectr Electr Insul 20(1):89–97CrossRef
56.
go back to reference Wang Y, An YZ, E SL et al (2016) Statistical characteristics of breakdowns in long air gaps at negative switching impulses. IEEE Trans Dielectr Electr Insul 23(2):779–786CrossRef Wang Y, An YZ, E SL et al (2016) Statistical characteristics of breakdowns in long air gaps at negative switching impulses. IEEE Trans Dielectr Electr Insul 23(2):779–786CrossRef
57.
go back to reference Shu SW, Ruan JJ, Huang DC et al (2015) Prediction for breakdown voltage of air gap based on electric field features and SVM. Proc CSEE 35(3):742–750 Shu SW, Ruan JJ, Huang DC et al (2015) Prediction for breakdown voltage of air gap based on electric field features and SVM. Proc CSEE 35(3):742–750
Metadata
Title
Background of Air Insulation Prediction Research
Authors
Zhibin Qiu
Jiangjun Ruan
Shengwen Shu
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5163-0_1