Skip to main content
Top
Published in: Machine Vision and Applications 5/2014

01-07-2014 | Special Issue Paper

Background subtraction: separating the modeling and the inference

Authors: Manjunath Narayana, Allen Hanson, Erik G. Learned-Miller

Published in: Machine Vision and Applications | Issue 5/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In its early implementations, background modeling was a process of building a model for the background of a video with a stationary camera, and identifying pixels that did not conform well to this model. The pixels that were not well-described by the background model were assumed to be moving objects. Many systems today maintain models for the foreground as well as the background, and these models compete to explain the pixels in a video. If the foreground model explains the pixels better, they are considered foreground. Otherwise they are considered background. In this paper, we argue that the logical endpoint of this evolution is to simply use Bayes’ rule to classify pixels. In particular, it is essential to have a background likelihood, a foreground likelihood, and a prior at each pixel. A simple application of Bayes’ rule then gives a posterior probability over the label. The only remaining question is the quality of the component models: the background likelihood, the foreground likelihood, and the prior. We describe a model for the likelihoods that is built by using not only the past observations at a given pixel location, but by also including observations in a spatial neighborhood around the location. This enables us to model the influence between neighboring pixels and is an improvement over earlier pixelwise models that do not allow for such influence. Although similar in spirit to the joint domain-range model, we show that our model overcomes certain deficiencies in that model. We use a spatially dependent prior for the background and foreground. The background and foreground labels from the previous frame, after spatial smoothing to account for movement of objects, are used to build the prior for the current frame. These components are, by themselves, not novel aspects in background modeling. As we will show, many existing systems account for these aspects in different ways. We argue that separating these components as suggested in this paper yields a very simple and effective model. Our intuitive description also isolates the model components from the classification or inference step. Improvements to each model component can be carried out without any changes to the inference or other components. The various components can hence be modeled effectively and their impact on the overall system understood more easily.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
We have modified their equation to allow probabilistic contributions from the pixels and changed the notation to make it easily comparable to ours.
 
2
Observations from the ground truth labels from videos in the change detection data set [4] show that between 95 and 100 % of all pixels labeled as background in each frame retain their background label in the next frame. We believe the use of the value \(0.95\) for background prior is justified in light of this observation. The use of \(0.50\) for the background prior in pixel locations that were labeled as foreground in the previous frame essentially allows the likelihood to decide the labels of these pixels in the current frame.
 
3
The KDE and jKDE models are our own implementations and include spatially-dependent priors and Bayes’ classification criterion in order to make a fair comparison.
 
4
For a detailed comparison of our model and the joint domain-range model, the reader is referred to our earlier paper [13].
 
Literature
1.
go back to reference Aeschliman, C., Park, J., Kak, A.: A probabilistic framework for joint segmentation and tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1371–1378 (2010) Aeschliman, C., Park, J., Kak, A.: A probabilistic framework for joint segmentation and tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1371–1378 (2010)
3.
go back to reference Elgammal, A.M., Harwood, D., Davis, L.S.: Non-parametric model for background subtraction. In: European Conference on Computer Vision, pp. 751–767 (2000) Elgammal, A.M., Harwood, D., Davis, L.S.: Non-parametric model for background subtraction. In: European Conference on Computer Vision, pp. 751–767 (2000)
4.
go back to reference Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: IEEE Workshop on Change Detection (CDW 12) at CVPR (2012) Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: IEEE Workshop on Change Detection (CDW 12) at CVPR (2012)
6.
go back to reference Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Proceedings of 2nd European Workshop on Advanced Video Based Surveillance Systems, vol. 5308 (2001) Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Proceedings of 2nd European Workshop on Advanced Video Based Surveillance Systems, vol. 5308 (2001)
7.
go back to reference Ko, T., Soatto, S., Estrin, D.: Background subtraction on distributions. European Conference on Computer Vision, ECCV ’08, pp. 276–289. Springer, Berlin (2008) Ko, T., Soatto, S., Estrin, D.: Background subtraction on distributions. European Conference on Computer Vision, ECCV ’08, pp. 276–289. Springer, Berlin (2008)
8.
go back to reference Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Foreground object detection from videos containing complex background. In: ACM International Conference on Multimedia, pp. 2–10 (2003) Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Foreground object detection from videos containing complex background. In: ACM International Conference on Multimedia, pp. 2–10 (2003)
9.
go back to reference Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M., Li, S.Z.: Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 1301–1306 (2010) Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M., Li, S.Z.: Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 1301–1306 (2010)
10.
go back to reference Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. II-302–II-309 (2004) Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. II-302–II-309 (2004)
11.
go back to reference Narayana, M.: Automatic segmentation and tracking of moving objects in video for surveillance applications. Master’s thesis, University of Kansas, Lawrence, Kansas, USA (2007) Narayana, M.: Automatic segmentation and tracking of moving objects in video for surveillance applications. Master’s thesis, University of Kansas, Lawrence, Kansas, USA (2007)
12.
go back to reference Narayana, M., Hanson, A., Learned-Miller, E.: Background modeling using adaptive pixelwise kernel variances in a hybrid feature space. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012) Narayana, M., Hanson, A., Learned-Miller, E.: Background modeling using adaptive pixelwise kernel variances in a hybrid feature space. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)
13.
15.
go back to reference Sevilla-Lara, L., Learned-Miller, E.: Distribution fields for tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012) Sevilla-Lara, L., Learned-Miller, E.: Distribution fields for tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)
16.
go back to reference Sheikh, Y., Shah, M.: Bayesian modeling of dynamic scenes for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1778–1792 (2005)CrossRef Sheikh, Y., Shah, M.: Bayesian modeling of dynamic scenes for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1778–1792 (2005)CrossRef
17.
go back to reference Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 246–252 (1999) Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 246–252 (1999)
18.
go back to reference Tavakkoli, A., Nicolescu, M., Bebis, G., Nicolescu, M.: Non-parametric statistical background modeling for efficient foreground region detection. Mach. Vis. Appl. 7, 1–15 (2009) Tavakkoli, A., Nicolescu, M., Bebis, G., Nicolescu, M.: Non-parametric statistical background modeling for efficient foreground region detection. Mach. Vis. Appl. 7, 1–15 (2009)
20.
go back to reference Turlach, B.A.: Bandwidth selection in kernel density estimation: a review. In: CORE and Institut de Statistique (1993) Turlach, B.A.: Bandwidth selection in kernel density estimation: a review. In: CORE and Institut de Statistique (1993)
22.
go back to reference Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans.Pattern Anal. Mach. Intell. 19, 780–785 (1997). doi:10.1109/34.598236 CrossRef Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans.Pattern Anal. Mach. Intell. 19, 780–785 (1997). doi:10.​1109/​34.​598236 CrossRef
23.
go back to reference Yao, J., Odobez, J.M.: Multi-layer background subtraction based on color and texture. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007) Yao, J., Odobez, J.M.: Multi-layer background subtraction based on color and texture. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)
24.
go back to reference Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: International Conference on Pattern Recognition (ICPR), vol. 2, pp. 28–31 (2004) Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: International Conference on Pattern Recognition (ICPR), vol. 2, pp. 28–31 (2004)
Metadata
Title
Background subtraction: separating the modeling and the inference
Authors
Manjunath Narayana
Allen Hanson
Erik G. Learned-Miller
Publication date
01-07-2014
Publisher
Springer Berlin Heidelberg
Published in
Machine Vision and Applications / Issue 5/2014
Print ISSN: 0932-8092
Electronic ISSN: 1432-1769
DOI
https://doi.org/10.1007/s00138-013-0569-y

Other articles of this Issue 5/2014

Machine Vision and Applications 5/2014 Go to the issue

Premium Partner