Skip to main content
Top

2016 | OriginalPaper | Chapter

2. Background

Authors : Nabila Abdessaied, Rolf Drechsler

Published in: Reversible and Quantum Circuits

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To keep the book self-contained, this chapter briefly introduces the basics on reversible logic, quantum circuits, and other required concepts. The chapter consists of seven parts: the first section introduces the basic definitions and notations of Boolean functions while the second section reviews existing Boolean decomposition. The third and the fourth sections give an overview of exclusive sum of products and Boolean satisfiability, respectively. The fifth section provides a summary on the principles of reversible logic required later in this book. Similarly, the sixth section gives an introduction on quantum computation and quantum circuits. The later section details the different metrics used as a quality-measure of reversible and quantum realizations. Finally, decision diagrams are reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdessaied, N., Soeken, M., Wille, R., Drechsler, R.: Exact template matching using Boolean satisfiability. In: International Symposium on Multiple-Valued Logic, pp. 328–333. IEEE, New York (2013) Abdessaied, N., Soeken, M., Wille, R., Drechsler, R.: Exact template matching using Boolean satisfiability. In: International Symposium on Multiple-Valued Logic, pp. 328–333. IEEE, New York (2013)
2.
go back to reference Abdessaied, N., Wille, R., Soeken, M., Drechsler, R.: Reducing the depth of quantum circuits using additional circuit lines. In: Reversible Computation, pp. 221–233. Springer, New York (2013) Abdessaied, N., Wille, R., Soeken, M., Drechsler, R.: Reducing the depth of quantum circuits using additional circuit lines. In: Reversible Computation, pp. 221–233. Springer, New York (2013)
3.
go back to reference Abdessaied, N., Soeken, M., Drechsler, R.: Quantum circuit optimization by Hadamard gate reduction. In: Reversible Computation, pp. 149–162. Springer, New York (2014) Abdessaied, N., Soeken, M., Drechsler, R.: Quantum circuit optimization by Hadamard gate reduction. In: Reversible Computation, pp. 149–162. Springer, New York (2014)
4.
go back to reference Abdessaied, N., Soeken, M., Thomsen, M.K., Drechsler, R.: Upper bounds for reversible circuits based on Young subgroups. Inf. Process. Lett. 114 (6), 282–286 (2014)CrossRefMATHMathSciNet Abdessaied, N., Soeken, M., Thomsen, M.K., Drechsler, R.: Upper bounds for reversible circuits based on Young subgroups. Inf. Process. Lett. 114 (6), 282–286 (2014)CrossRefMATHMathSciNet
5.
go back to reference Abdessaied, N., Soeken, M., Drechsler, R.: Technology mapping for quantum circuits using Boolean functional decomposition. In: Reversible Computation, pp. 149–162. Springer, New York (2015) Abdessaied, N., Soeken, M., Drechsler, R.: Technology mapping for quantum circuits using Boolean functional decomposition. In: Reversible Computation, pp. 149–162. Springer, New York (2015)
6.
go back to reference Abdessaied, N., Soeken, M., Dueck, G.W., Drechsler, R.: Reversible circuit rewriting with simulated annealing. In: International Conference on Very Large Scale Integration, pp. 286–291. IEEE, New York (2015) Abdessaied, N., Soeken, M., Dueck, G.W., Drechsler, R.: Reversible circuit rewriting with simulated annealing. In: International Conference on Very Large Scale Integration, pp. 286–291. IEEE, New York (2015)
7.
go back to reference Abdessaied, N., Amy, M., Soeken, M., Drechsler, R.: Complexity of reversible circuits and their quantum implementations. Theor. Comput. Sci. 618, 85–106 (2016)CrossRefMATHMathSciNet Abdessaied, N., Amy, M., Soeken, M., Drechsler, R.: Complexity of reversible circuits and their quantum implementations. Theor. Comput. Sci. 618, 85–106 (2016)CrossRefMATHMathSciNet
8.
go back to reference Abdessaied, N., Amy, M., Soeken, M., Drechsler, R.: Technology mapping of reversible circuits to Clifford + T quantum circuits. In: International Symposium on Multiple-Valued Logic. IEEE (2016, accepted) Abdessaied, N., Amy, M., Soeken, M., Drechsler, R.: Technology mapping of reversible circuits to Clifford + T quantum circuits. In: International Symposium on Multiple-Valued Logic. IEEE (2016, accepted)
9.
go back to reference Abdessaied, N., Miller, D.M., Soeken, M., Drechsler, R.: Optimization of NCV and Cliffford + T quantum circuits (in preparation) Abdessaied, N., Miller, D.M., Soeken, M., Drechsler, R.: Optimization of NCV and Cliffford + T quantum circuits (in preparation)
10.
go back to reference Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. Trans. CAD Integr. Circuits Syst. 32 (6), 818–830 (2013)CrossRef Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. Trans. CAD Integr. Circuits Syst. 32 (6), 818–830 (2013)CrossRef
11.
go back to reference Amy, M., Maslov, D., Mosca, M.: Polynomial-time T-depth optimization of Clifford + T circuits via matroid partitioning. Trans. Comput.-Aided Des. Integr. Circuits Syst. 33 (10), 1476–1489 (2014)CrossRef Amy, M., Maslov, D., Mosca, M.: Polynomial-time T-depth optimization of Clifford + T circuits via matroid partitioning. Trans. Comput.-Aided Des. Integr. Circuits Syst. 33 (10), 1476–1489 (2014)CrossRef
12.
go back to reference Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible circuits. In: Asia and South Pacific Design Automation Conference, pp. 849–854 (2010) Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible circuits. In: Asia and South Pacific Design Automation Conference, pp. 849–854 (2010)
13.
go back to reference Arabzadeh, M., Zamani, M., Sedighi, M., Saeedi, M.: Logical-depth-oriented reversible logic synthesis. In: Proceedings of the International Workshop on Logic and Synthesis (2011)MATH Arabzadeh, M., Zamani, M., Sedighi, M., Saeedi, M.: Logical-depth-oriented reversible logic synthesis. In: Proceedings of the International Workshop on Logic and Synthesis (2011)MATH
14.
go back to reference Arabzadeh, M., Saheb Zamani, M., Sedighi, M., Saeedi, M.: Depth-optimized reversible circuit synthesis. Quantum Inf. Process. 12 (4), 1677–1699 (2013)CrossRefMATHMathSciNet Arabzadeh, M., Saheb Zamani, M., Sedighi, M., Saeedi, M.: Depth-optimized reversible circuit synthesis. Quantum Inf. Process. 12 (4), 1677–1699 (2013)CrossRefMATHMathSciNet
15.
go back to reference Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Am. Phys. Soc. 52, 3457–3467 (1995) Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Am. Phys. Soc. 52, 3457–3467 (1995)
16.
go back to reference Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (2004)CrossRef Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (2004)CrossRef
18.
go back to reference Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)CrossRef Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)CrossRef
19.
go back to reference Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolicv model checking without BDDs. In: Tools and Algorithms for the Construction and Analysis of Systems, vol. 1579, pp. 193–207. Springer, Heidelberg (1999) Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolicv model checking without BDDs. In: Tools and Algorithms for the Construction and Analysis of Systems, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)
20.
go back to reference Bocharov, A., Svore, K.M.: A depth-optimal canonical form for single-qubit quantum circuits (2012). arXiv preprint arXiv:1206.3223 Bocharov, A., Svore, K.M.: A depth-optimal canonical form for single-qubit quantum circuits (2012). arXiv preprint arXiv:1206.3223
21.
go back to reference Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz, S., Sebastiani, R.: The mathsat 3 system. In: Conference on Automated Deduction, pp. 315–321. Springer, New York (2005) Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz, S., Sebastiani, R.: The mathsat 3 system. In: Conference on Automated Deduction, pp. 315–321. Springer, New York (2005)
22.
go back to reference Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005). doi:10.1103/PhysRevA.71.022316. http://link.aps.org/doi/10.1103/PhysRevA.71.022316 Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005). doi:10.​1103/​PhysRevA.​71.​022316. http://​link.​aps.​org/​doi/​10.​1103/​PhysRevA.​71.​022316
23.
go back to reference Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and arrays. In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 174–177. Springer, New York (2009) Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and arrays. In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 174–177. Springer, New York (2009)
24.
go back to reference Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT 4 SMT solver. In: Computer Aided Verification, pp. 299–303. Springer, New York (2008) Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT 4 SMT solver. In: Computer Aided Verification, pp. 299–303. Springer, New York (2008)
25.
go back to reference Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comp. 35 (8), 677–691 (1986)CrossRefMATH Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comp. 35 (8), 677–691 (1986)CrossRefMATH
26.
go back to reference Buhrman, H., Cleve, R., Laurent, M., Linden, N., Schrijver, A., Unger, F.: New limits on fault-tolerant quantum computation. In: Symposium on Foundations of Computer Science, pp. 411–419. IEEE, New York (2006) Buhrman, H., Cleve, R., Laurent, M., Linden, N., Schrijver, A., Unger, F.: New limits on fault-tolerant quantum computation. In: Symposium on Foundations of Computer Science, pp. 411–419. IEEE, New York (2006)
27.
go back to reference Chakrabarti, A., Sur-Kolay, S.: Nearest neighbour based synthesis of quantum Boolean circuits. Eng. Lett. 15, 356–361 (2007) Chakrabarti, A., Sur-Kolay, S.: Nearest neighbour based synthesis of quantum Boolean circuits. Eng. Lett. 15, 356–361 (2007)
28.
go back to reference Chuang, I.L., Yamamoto, Y.: A simple quantum computer (1995). arXiv preprint quant-ph/9505011 Chuang, I.L., Yamamoto, Y.: A simple quantum computer (1995). arXiv preprint quant-ph/9505011
29.
go back to reference Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods Syst. Des. 19 (1), 7–34 (2001)CrossRefMATH Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods Syst. Des. 19 (1), 7–34 (2001)CrossRefMATH
30.
go back to reference Cook, S.A.: The complexity of theorem-proving procedures. In: ACM Symposium on Theory of Computing, pp. 151–158. ACM, New York (1971) Cook, S.A.: The complexity of theorem-proving procedures. In: ACM Symposium on Theory of Computing, pp. 151–158. ACM, New York (1971)
31.
go back to reference Curtis, H.A.: A New Approach to the Design of Switching Circuits. van Nostrand, Princeton, NJ (1962) Curtis, H.A.: A New Approach to the Design of Switching Circuits. van Nostrand, Princeton, NJ (1962)
32.
go back to reference Datta, K., Gokhale, A., Sengupta, I., Rahaman, H.: An esop-based reversible circuit synthesis flow using simulated annealing. In: Applied Computation and Security Systems, pp. 131–144. Springer, New York (2015) Datta, K., Gokhale, A., Sengupta, I., Rahaman, H.: An esop-based reversible circuit synthesis flow using simulated annealing. In: Applied Computation and Security Systems, pp. 131–144. Springer, New York (2015)
33.
go back to reference Datta, K., Sengupta, I., Rahaman, H.: A post-synthesis optimization technique for reversible circuits exploiting negative control lines. Trans. Comput. 64 (4), 1208–1214 (2015)CrossRefMathSciNet Datta, K., Sengupta, I., Rahaman, H.: A post-synthesis optimization technique for reversible circuits exploiting negative control lines. Trans. Comput. 64 (4), 1208–1214 (2015)CrossRefMathSciNet
34.
go back to reference Davio, M., Thayse, A., Deschamps, J.P.: Discrete and switching functions. McGraw-Hill, New York (1978)MATH Davio, M., Thayse, A., Deschamps, J.P.: Discrete and switching functions. McGraw-Hill, New York (1978)MATH
37.
go back to reference de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer, New York (2008) de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer, New York (2008)
38.
go back to reference De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing and Applications. Wiley, London (2010)CrossRefMATH De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing and Applications. Wiley, London (2010)CrossRefMATH
40.
go back to reference Desoete, B., De Vos, A.: A reversible carry-look-ahead adder using control gates. Integr. VLSI J. 33 (1), 89–104 (2002)CrossRefMATH Desoete, B., De Vos, A.: A reversible carry-look-ahead adder using control gates. Integr. VLSI J. 33 (1), 89–104 (2002)CrossRefMATH
41.
go back to reference Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. R. Soc. Lond. Ser. A: Math. Phys. Sci. 439 (1907), 553–558 (1992)CrossRefMATHMathSciNet Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. R. Soc. Lond. Ser. A: Math. Phys. Sci. 439 (1907), 553–558 (1992)CrossRefMATHMathSciNet
42.
go back to reference Devitt, S.J.: Classical control of large-scale quantum computers. In: International Conference Reversible Computation, pp. 26–39 (2014) Devitt, S.J.: Classical control of large-scale quantum computers. In: International Conference Reversible Computation, pp. 26–39 (2014)
43.
go back to reference Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of some graph problems. In: Automata, Languages and Programming, pp. 481–493. Springer, New York (2004) Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of some graph problems. In: Automata, Languages and Programming, pp. 481–493. Springer, New York (2004)
45.
go back to reference Eén, N., Sörensson, N.: An extensible SAT solver. In: SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, New York (2004) Eén, N., Sörensson, N.: An extensible SAT solver. In: SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, New York (2004)
46.
go back to reference Fazel, K., Thornton, M., Rice, J.: Esop-based Toffoli gate cascade generation. In: Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 206–209 (2007) Fazel, K., Thornton, M., Rice, J.: Esop-based Toffoli gate cascade generation. In: Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 206–209 (2007)
47.
go back to reference Fowler, A., Devitt, S., Hollenberg, L.: Implementation of shor’s algorithm on a linear nearest neighbour qubit array. Quantum Inf. Comput. 4 (4), 237–251 (2004)MATHMathSciNet Fowler, A., Devitt, S., Hollenberg, L.: Implementation of shor’s algorithm on a linear nearest neighbour qubit array. Quantum Inf. Comput. 4 (4), 237–251 (2004)MATHMathSciNet
48.
go back to reference Fowler, A.G., Stephens, A.M., Groszkowski, P.: High-threshold universal quantum computation on the surface code. Phys. Rev. A 80 (5), 052312 (2009)CrossRef Fowler, A.G., Stephens, A.M., Groszkowski, P.: High-threshold universal quantum computation on the surface code. Phys. Rev. A 80 (5), 052312 (2009)CrossRef
50.
go back to reference Gaidukov, A.: Algorithm to derive minimum ESOP for 6-variable function. In: International Workshop on Boolean Problems, pp. 141–148 (2002) Gaidukov, A.: Algorithm to derive minimum ESOP for 6-variable function. In: International Workshop on Boolean Problems, pp. 141–148 (2002)
51.
go back to reference Giles, B., Selinger, P.: Exact synthesis of multiqubit Clifford + T circuits. Phys. Rev. A 87 (3), 032332 (2013)CrossRef Giles, B., Selinger, P.: Exact synthesis of multiqubit Clifford + T circuits. Phys. Rev. A 87 (3), 032332 (2013)CrossRef
52.
go back to reference Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible toffoli circuits and their synthesis. Trans. Comput. 61 (9), 1341–1353 (2012)CrossRefMathSciNet Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible toffoli circuits and their synthesis. Trans. Comput. 61 (9), 1341–1353 (2012)CrossRefMathSciNet
53.
go back to reference Gosset, D., Kliuchnikov, V., Mosca, M., Russo, V.: An algorithm for the T-count. Quantum Inf. Comput. 14 (15–16), 1261–1276 (2014)MathSciNet Gosset, D., Kliuchnikov, V., Mosca, M., Russo, V.: An algorithm for the T-count. Quantum Inf. Comput. 14 (15–16), 1261–1276 (2014)MathSciNet
54.
go back to reference Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli network synthesis with SAT techniques. Trans. Comput.-Aided Des. Integr. Circuits Syst. 28 (5), 703–715 (2009)CrossRef Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli network synthesis with SAT techniques. Trans. Comput.-Aided Des. Integr. Circuits Syst. 28 (5), 703–715 (2009)CrossRef
55.
go back to reference Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact synthesis of elementary quantum gate circuits. J. Multiple-Valued Log. Soft Comput. 15 (4), 283–300 (2009)MATHMathSciNet Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact synthesis of elementary quantum gate circuits. J. Multiple-Valued Log. Soft Comput. 15 (4), 283–300 (2009)MATHMathSciNet
56.
go back to reference Grover, L.K.: A fast quantum mechanical algorithm for database search. In: The Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New York (1996) Grover, L.K.: A fast quantum mechanical algorithm for database search. In: The Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New York (1996)
57.
go back to reference Haedicke, F., Frehse, S., Fey, G., Große, D., Drechsler, R.: metaSMT: focus on your application not on solver integration. In: International Workshop on Design and Implementation of Formal Tools and Systems (2011) Haedicke, F., Frehse, S., Fey, G., Große, D., Drechsler, R.: metaSMT: focus on your application not on solver integration. In: International Workshop on Design and Implementation of Formal Tools and Systems (2011)
58.
go back to reference Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., al kar, D.C., Chwalla, M., Körber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)CrossRef Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., al kar, D.C., Chwalla, M., Körber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)CrossRef
59.
go back to reference Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In: International Conference on Quantum, Nano and Micro Technologies, pp. 26–33. IEEE, New York (2009) Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In: International Conference on Quantum, Nano and Micro Technologies, pp. 26–33. IEEE, New York (2009)
60.
go back to reference Hirayama, T., Nishitani, Y.: Exact minimization of AND-EXOR expressions of practical benchmark functions. J. Circuits Syst. Comput. 18 (3), 465–486 (2009)CrossRef Hirayama, T., Nishitani, Y.: Exact minimization of AND-EXOR expressions of practical benchmark functions. J. Circuits Syst. Comput. 18 (3), 465–486 (2009)CrossRef
61.
go back to reference Jones, N.C.: Logic synthesis for fault-tolerant quantum computers (2013). arXiv preprint arXiv:1310.7290 Jones, N.C.: Logic synthesis for fault-tolerant quantum computers (2013). arXiv preprint arXiv:1310.7290
62.
go back to reference Kane, B.: A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)CrossRef Kane, B.: A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)CrossRef
63.
go back to reference Khan, M.H.A.: Cost reduction in nearest neighbour based synthesis of quantum Boolean circuits. Eng. Lett. 16, 1–5 (2008) Khan, M.H.A.: Cost reduction in nearest neighbour based synthesis of quantum Boolean circuits. Eng. Lett. 16, 1–5 (2008)
65.
go back to reference Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates. Quantum Inf. Comput. 13 (7–8), 607–630 (2013)MathSciNet Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates. Quantum Inf. Comput. 13 (7–8), 607–630 (2013)MathSciNet
66.
go back to reference Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409 (1), 46–52 (2001)CrossRefMATH Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409 (1), 46–52 (2001)CrossRefMATH
67.
go back to reference Knuth, D.E.: The Art of Computer Programming, vol. 4A. Addison-Wesley, Upper Saddle River, NJ (2011) Knuth, D.E.: The Art of Computer Programming, vol. 4A. Addison-Wesley, Upper Saddle River, NJ (2011)
68.
go back to reference Laforest, M., Simon, D., Boileau, J.C., Baugh, J., Ditty, M., Laflamme, R.: Using error correction to determine the noise model. Phys. Rev. A 75, 133–137 (2007)CrossRef Laforest, M., Simon, D., Boileau, J.C., Baugh, J., Ditty, M., Laflamme, R.: Using error correction to determine the noise model. Phys. Rev. A 75, 133–137 (2007)CrossRef
70.
go back to reference Larrabee, T.: Test pattern generation using Boolean satisfiability. Trans. Comput.-Aided Des. Integr. Circuits Syst. 11 (1), 4–15 (1992)CrossRef Larrabee, T.: Test pattern generation using Boolean satisfiability. Trans. Comput.-Aided Des. Integr. Circuits Syst. 11 (1), 4–15 (1992)CrossRef
71.
go back to reference Lindgren, P., Drechsler, R., Becker, B.: Improved minimization methods of pseudo kronecker expressions for multiple output functions. In: International Symposium on Circuits and Systems, vol. 6, pp. 187–190 (1998) Lindgren, P., Drechsler, R., Becker, B.: Improved minimization methods of pseudo kronecker expressions for multiple output functions. In: International Symposium on Circuits and Systems, vol. 6, pp. 187–190 (1998)
72.
go back to reference Marques-Silva, J., Sakallah, K.: GRASP: A search algorithm for propositional satisfiability. Trans. Comput. 48 (5), 506–521 (1999)CrossRefMathSciNet Marques-Silva, J., Sakallah, K.: GRASP: A search algorithm for propositional satisfiability. Trans. Comput. 48 (5), 506–521 (1999)CrossRefMathSciNet
73.
go back to reference Maslov, D.: Reversible logic synthesis benchmarks page. Available at http://webhome.cs.uvic.ca~dmaslov/. Last accessed Jan 2011 Maslov, D.: Reversible logic synthesis benchmarks page. Available at http://​webhome.​cs.​uvic.​ca~dmaslov/​.​ Last accessed Jan 2011
74.
go back to reference Maslov, D.: Reversible logic synthesis. Ph.D. thesis, University of New Brunswick (2003) Maslov, D.: Reversible logic synthesis. Ph.D. thesis, University of New Brunswick (2003)
75.
go back to reference Maslov, D., Dueck, G.: Improved quantum cost for n-bit toffoli gates. Electron. Lett. 39, 1790 (2003)CrossRef Maslov, D., Dueck, G.: Improved quantum cost for n-bit toffoli gates. Electron. Lett. 39, 1790 (2003)CrossRef
76.
go back to reference Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. Trans. Comput.-Aided Des. Integr. Circuits Syst. 23 (11), 1497–1509 (2004)CrossRef Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. Trans. Comput.-Aided Des. Integr. Circuits Syst. 23 (11), 1497–1509 (2004)CrossRef
77.
go back to reference Maslov, D., Miller, D.M.: Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal NCT three-qubit reversible circuits. IET Comput. Digit. Tech. 1 (2), 98–104 (2007)CrossRef Maslov, D., Miller, D.M.: Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal NCT three-qubit reversible circuits. IET Comput. Digit. Tech. 1 (2), 98–104 (2007)CrossRef
78.
go back to reference Maslov, D., Dueck, G., Miller, D.: Simplification of toffoli networks via templates. In: Symposium on Integrated Circuits and Systems Design, pp. 53–58 (2003) Maslov, D., Dueck, G., Miller, D.: Simplification of toffoli networks via templates. In: Symposium on Integrated Circuits and Systems Design, pp. 53–58 (2003)
79.
go back to reference Maslov, D., Miller, D.M., Dueck, G.W.: Fredkin/Toffoli templates for reversible logic synthesis. In: International Conference on Computer Aided Design, pp. 256–261 (2003) Maslov, D., Miller, D.M., Dueck, G.W.: Fredkin/Toffoli templates for reversible logic synthesis. In: International Conference on Computer Aided Design, pp. 256–261 (2003)
80.
go back to reference Maslov, D., Dueck, G.W., Miller, D.M.: Toffoli network synthesis with templates. Trans. Comput.-Aided Des. Integr. Circuits Syst. 24 (6), 807–817 (2005)CrossRef Maslov, D., Dueck, G.W., Miller, D.M.: Toffoli network synthesis with templates. Trans. Comput.-Aided Des. Integr. Circuits Syst. 24 (6), 807–817 (2005)CrossRef
81.
go back to reference Maslov, D., Young, C., Dueck, G.W., Miller, D.M.: Quantum circuit simplification using templates. In: Design Automation and Test in Europe, pp. 1208–1213 (2005) Maslov, D., Young, C., Dueck, G.W., Miller, D.M.: Quantum circuit simplification using templates. In: Design Automation and Test in Europe, pp. 1208–1213 (2005)
82.
go back to reference Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible toffoli networks. Trans. Des. Autom. Electron. Syst. 12 (4), 42 (2007)CrossRef Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible toffoli networks. Trans. Des. Autom. Electron. Syst. 12 (4), 42 (2007)CrossRef
83.
go back to reference Maslov, D., Dueck, G., Miller, D., Negrevergne, C.: Quantum circuit simplification and level compaction. Trans. Comput.-Aided Des. Integr. Circuits Syst. 27 (3), 436–444 (2008)CrossRef Maslov, D., Dueck, G., Miller, D., Negrevergne, C.: Quantum circuit simplification and level compaction. Trans. Comput.-Aided Des. Integr. Circuits Syst. 27 (3), 436–444 (2008)CrossRef
84.
go back to reference Meter, R.V., Oskin, M.: Architectural implications of quantum computing technologies. ACM J. Emerg. Technol. Comput. Syst. 2 (1), 31–63 (2006)CrossRef Meter, R.V., Oskin, M.: Architectural implications of quantum computing technologies. ACM J. Emerg. Technol. Comput. Syst. 2 (1), 31–63 (2006)CrossRef
85.
go back to reference Miller, D.M., Dueck, G.W.: Spectral techniques for reversible logic synthesis. In: International Symposium on Representations and Methodology of Future Computing Technology, pp. 56–62 (2003) Miller, D.M., Dueck, G.W.: Spectral techniques for reversible logic synthesis. In: International Symposium on Representations and Methodology of Future Computing Technology, pp. 56–62 (2003)
86.
go back to reference Miller, D.M., Sasanian, Z.: Lowering the quantum gate cost of reversible circuits. In: International Midwest Symposium on Circuits and Systems, pp. 260–263. IEEE, New York (2010) Miller, D.M., Sasanian, Z.: Lowering the quantum gate cost of reversible circuits. In: International Midwest Symposium on Circuits and Systems, pp. 260–263. IEEE, New York (2010)
87.
go back to reference Miller, D., Thornton, M.: QMDD: a decision diagram structure for reversible and quantum circuits. In: International Symposium on Multiple-Valued Logic, pp. 30–30 (2006) Miller, D., Thornton, M.: QMDD: a decision diagram structure for reversible and quantum circuits. In: International Symposium on Multiple-Valued Logic, pp. 30–30 (2006)
88.
go back to reference Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference, pp. 318–323 (2003) Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference, pp. 318–323 (2003)
89.
go back to reference Miller, D.M., Wille, R., Dueck, G.W.: Synthesizing reversible circuits for irreversible functions. In: Euromicro Conference on Digital System Design, Architectures, Methods and Tools, pp. 749–756. IEEE, New York (2009) Miller, D.M., Wille, R., Dueck, G.W.: Synthesizing reversible circuits for irreversible functions. In: Euromicro Conference on Digital System Design, Architectures, Methods and Tools, pp. 749–756. IEEE, New York (2009)
90.
go back to reference Miller, D.M., Wille, R., Drechsler, R.: Reducing reversible circuit cost by adding lines. In: International Symposium on Multiple-Valued Logic, pp. 217–222. IEEE, New York (2010) Miller, D.M., Wille, R., Drechsler, R.: Reducing reversible circuit cost by adding lines. In: International Symposium on Multiple-Valued Logic, pp. 217–222. IEEE, New York (2010)
91.
go back to reference Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffolli gates. In: International Symposium on Multiple-Valued Logic, pp. 217–222. IEEE, New York (2011) Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffolli gates. In: International Symposium on Multiple-Valued Logic, pp. 217–222. IEEE, New York (2011)
92.
go back to reference Miller, D.M., Soeken, M., Drechsler, R.: Mapping NCV circuits to optimized Clifford + T circuits. In: Reversible Computation, pp. 163–175. Springer, New York (2014) Miller, D.M., Soeken, M., Drechsler, R.: Mapping NCV circuits to optimized Clifford + T circuits. In: Reversible Computation, pp. 163–175. Springer, New York (2014)
93.
go back to reference Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive-sums-of-products. In: International Workshop on Applications of the Reed-Muller Expansion in Circuit Design, pp. 242–250 (2001) Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive-sums-of-products. In: International Workshop on Applications of the Reed-Muller Expansion in Circuit Design, pp. 242–250 (2001)
94.
go back to reference Mishchenko, A., Steinbach, B., Perkowski, M.A.: An algorithm for bi-decomposition of logic functions. In: Design Automation Conference, pp. 103–108 (2001) Mishchenko, A., Steinbach, B., Perkowski, M.A.: An algorithm for bi-decomposition of logic functions. In: Design Automation Conference, pp. 103–108 (2001)
95.
go back to reference Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Design Automation Conference, pp. 530–535 (2001) Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Design Automation Conference, pp. 530–535 (2001)
97.
go back to reference Nakahara, M., Ohmi, T.: Quantum computing: from linear algebra to physical realizations. CRC Press, West Palm Beach, FL (2008)CrossRefMATH Nakahara, M., Ohmi, T.: Quantum computing: from linear algebra to physical realizations. CRC Press, West Palm Beach, FL (2008)CrossRefMATH
98.
go back to reference Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
99.
go back to reference Niemann, P., Wille, R., Drechsler, R.: On the Q in QMDDs: efficient representation of quantum functionality in the QMDD data-structure. In: Reversible Computation, pp. 125–140. Springer, New York (2013) Niemann, P., Wille, R., Drechsler, R.: On the Q in QMDDs: efficient representation of quantum functionality in the QMDD data-structure. In: Reversible Computation, pp. 125–140. Springer, New York (2013)
100.
go back to reference Patra, P., Fussell, D.S.: On efficient adiabatic design of MOS circuits. In: Information, Physics, and Computation. Citeseer (1996) Patra, P., Fussell, D.S.: On efficient adiabatic design of MOS circuits. In: Information, Physics, and Computation. Citeseer (1996)
102.
go back to reference Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based formal verification. Int. J. Softw. Tools Technol. Transf. 7 (2), 156–173 (2005)CrossRef Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based formal verification. Int. J. Softw. Tools Technol. Transf. 7 (2), 156–173 (2005)CrossRef
103.
go back to reference Rahman, M.M., Dueck, G.W.: An algorithm to find quantum templates. In: Congress on Evolutionary Computation, pp. 1–7. IEEE, New York (2012) Rahman, M.M., Dueck, G.W.: An algorithm to find quantum templates. In: Congress on Evolutionary Computation, pp. 1–7. IEEE, New York (2012)
104.
go back to reference Rahman, M.M., Dueck, G.W.: Properties of quantum templates. In: Reversible Computation, pp. 125–137. Springer, New York (2013) Rahman, M.M., Dueck, G.W.: Properties of quantum templates. In: Reversible Computation, pp. 125–137. Springer, New York (2013)
105.
go back to reference Rahman, M.M., Dueck, G.W., Horton, J.: Exact template matching using graphs. Tech. rep., Technical Report TR13–224, Faculty of Computer Science, University of New Brunswick (2013) Rahman, M.M., Dueck, G.W., Horton, J.: Exact template matching using graphs. Tech. rep., Technical Report TR13–224, Faculty of Computer Science, University of New Brunswick (2013)
106.
go back to reference Rahman, M.M., Dueck, G.W., Horton, J.D.: An algorithm for quantum template matching. ACM J. Emerg. Technol. Comput. Syst. 11 (3), 31 (2014)CrossRef Rahman, M.M., Dueck, G.W., Horton, J.D.: An algorithm for quantum template matching. ACM J. Emerg. Technol. Comput. Syst. 11 (3), 31 (2014)CrossRef
107.
go back to reference Saeedi, M., Markov, I.: Synthesis and optimization of reversible circuits-a survey. ACM Comput. Surv. 45 (2), 21 (2013)CrossRefMATH Saeedi, M., Markov, I.: Synthesis and optimization of reversible circuits-a survey. ACM Comput. Surv. 45 (2), 21 (2013)CrossRefMATH
108.
go back to reference Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. J. Emerg. Technol. 6 (4), 13 (2010) Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. J. Emerg. Technol. 6 (4), 13 (2010)
109.
go back to reference Sarkar, M., Ghosal, P., Mohanty, S.P.: Reversible circuit synthesis using ACO and SA based quine-McCluskey method. In: Midwest Symposium on Circuits and Systems, pp. 416–419 (2013) Sarkar, M., Ghosal, P., Mohanty, S.P.: Reversible circuit synthesis using ACO and SA based quine-McCluskey method. In: Midwest Symposium on Circuits and Systems, pp. 416–419 (2013)
110.
go back to reference Sasanian, Z.: Technology mapping and optimization for reversible and quantum. Ph.D. thesis, University of Victoria (2012) Sasanian, Z.: Technology mapping and optimization for reversible and quantum. Ph.D. thesis, University of Victoria (2012)
111.
go back to reference Sasanian, Z., Miller, D.M.: NCV realization of MCT gates with mixed controls. In: Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 567–571. IEEE, New York (2011) Sasanian, Z., Miller, D.M.: NCV realization of MCT gates with mixed controls. In: Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 567–571. IEEE, New York (2011)
112.
go back to reference Sasanian, Z., Miller, D.M.: Reversible and quantum circuit optimization: a functional approach. In: Reversible Computation, pp. 112–124. Springer, New York (2013) Sasanian, Z., Miller, D.M.: Reversible and quantum circuit optimization: a functional approach. In: Reversible Computation, pp. 112–124. Springer, New York (2013)
113.
go back to reference Sasao, T.: AND-EXOR expressions and their optimization. In: Sasao, T. (ed.) Logic Synthesis and Optimization, pp. 287–312. Kluwer Academic Publisher, Dordecht (1993)CrossRef Sasao, T.: AND-EXOR expressions and their optimization. In: Sasao, T. (ed.) Logic Synthesis and Optimization, pp. 287–312. Kluwer Academic Publisher, Dordecht (1993)CrossRef
114.
go back to reference Sasao, T.: An exact minimization of AND-EXOR expressions using BDDs. In: International Workshop on Applications of the Reed-Muller Expansion in Circuit Design, pp. 91–98 (1993) Sasao, T.: An exact minimization of AND-EXOR expressions using BDDs. In: International Workshop on Applications of the Reed-Muller Expansion in Circuit Design, pp. 91–98 (1993)
115.
go back to reference Sasao, T.: An exact minimization of AND-EXOR expressions using reduced covering functions. In: International Symposium on the Synthesis and Simulation Meeting and International Interchange, pp. 374–383 (1993) Sasao, T.: An exact minimization of AND-EXOR expressions using reduced covering functions. In: International Symposium on the Synthesis and Simulation Meeting and International Interchange, pp. 374–383 (1993)
116.
go back to reference Sasao, T.: EXMIN2: a simplification algorithm for exclusive-OR-sum-of-products expressions for multiple-valued-input two-valued-output functions. IEEE Trans. Comput. Aided Des. 12 (5), 621–632 (1993)CrossRef Sasao, T.: EXMIN2: a simplification algorithm for exclusive-OR-sum-of-products expressions for multiple-valued-input two-valued-output functions. IEEE Trans. Comput. Aided Des. 12 (5), 621–632 (1993)CrossRef
117.
go back to reference Sasao, T., Matsuura, M.: DECOMPOS: an integrated system for functional decomposition. In: International Workshop on Logic Synthesis, pp. 471–477 (1998) Sasao, T., Matsuura, M.: DECOMPOS: an integrated system for functional decomposition. In: International Workshop on Logic Synthesis, pp. 471–477 (1998)
118.
go back to reference Scott, N., Dueck, G., Maslov, D.: Improving template matching for minimizing reversible toffoli cascades. In: International Reed-Muller Workshop (2005) Scott, N., Dueck, G., Maslov, D.: Improving template matching for minimizing reversible toffoli cascades. In: International Reed-Muller Workshop (2005)
119.
go back to reference Scott, N., Dueck, G., Maslov, D.: Improving template matching for minimizing reversible toffoli cascades. In: International Symposium on Representations and Methodology of Future Computing Technologies (2005) Scott, N., Dueck, G., Maslov, D.: Improving template matching for minimizing reversible toffoli cascades. In: International Symposium on Representations and Methodology of Future Computing Technologies (2005)
120.
go back to reference Selinger, P.: Quantum circuits of T-depth one. Phys. Rev. A 87 (4), 042302 (2013)CrossRef Selinger, P.: Quantum circuits of T-depth one. Phys. Rev. A 87 (4), 042302 (2013)CrossRef
121.
go back to reference Shannon, C.E.: A symbolic analysis of relay and switching circuits. Trans. Am. Inst. Electr. Eng. 57 (38–80), 713–723 (1938)CrossRef Shannon, C.E.: A symbolic analysis of relay and switching circuits. Trans. Am. Inst. Electr. Eng. 57 (38–80), 713–723 (1938)CrossRef
122.
go back to reference Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. Trans. Comput.-Aided Des. Integr. Circuits Syst. 22 (6), 710–722 (2003)CrossRef Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. Trans. Comput.-Aided Des. Integr. Circuits Syst. 22 (6), 710–722 (2003)CrossRef
123.
go back to reference Shi, J., Fey, G., Drechsler, R., Glowatz, A., Hapke, F., Schloffel, J.: PASSAT: efficient sat-based test pattern generation for industrial circuits. In: Computer Society Annual Symposium on VLSI, pp. 212–217. IEEE, New York (2005) Shi, J., Fey, G., Drechsler, R., Glowatz, A., Hapke, F., Schloffel, J.: PASSAT: efficient sat-based test pattern generation for industrial circuits. In: Computer Society Annual Symposium on VLSI, pp. 212–217. IEEE, New York (2005)
124.
go back to reference Shiou-An, W., Chin-Yung, L., Sy-Yen, K., et al.: An XQDD-based verification method for quantum circuits. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 91 (2), 584–594 (2008) Shiou-An, W., Chin-Yung, L., Sy-Yen, K., et al.: An XQDD-based verification method for quantum circuits. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 91 (2), 584–594 (2008)
125.
go back to reference Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Found. Comput. Sci. 124–134 (1994) Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Found. Comput. Sci. 124–134 (1994)
126.
go back to reference Smith, A., Veneris, A., Fahim Ali, M., Viglas, A.: Fault diagnosis and logic debugging using Boolean satisfiability. Trans. Comput.-Aided Des. Integr. Circuits Syst. 24 (10), 1606–1621 (2005)CrossRef Smith, A., Veneris, A., Fahim Ali, M., Viglas, A.: Fault diagnosis and logic debugging using Boolean satisfiability. Trans. Comput.-Aided Des. Integr. Circuits Syst. 24 (10), 1606–1621 (2005)CrossRef
127.
go back to reference Soeken, M., Thomsen, M.K.: White dots do matter: rewriting reversible logic circuits. In: Reversible Computation, pp. 196–208. Springer, New York (2013) Soeken, M., Thomsen, M.K.: White dots do matter: rewriting reversible logic circuits. In: Reversible Computation, pp. 196–208. Springer, New York (2013)
128.
go back to reference Soeken, M., Wille, R., Dueck, G., Drechsler, R.: Window optimization of reversible and quantum circuits. In: International Symposium on Design and Diagnostics of Electronic Circuits and Systems, pp. 341–345 (2010) Soeken, M., Wille, R., Dueck, G., Drechsler, R.: Window optimization of reversible and quantum circuits. In: International Symposium on Design and Diagnostics of Electronic Circuits and Systems, pp. 341–345 (2010)
129.
go back to reference Soeken, M., Frehse, S., Wille, R., Drechsler, R.: Revkit: a toolkit for reversible circuit design. J. Multiple-Valued Log. Soft Comput. 18 (1) (2012). RevKit is available at http://www.revkit.org Soeken, M., Frehse, S., Wille, R., Drechsler, R.: Revkit: a toolkit for reversible circuit design. J. Multiple-Valued Log. Soft Comput. 18 (1) (2012). RevKit is available at http://​www.​revkit.​org
130.
go back to reference Soeken, M., Sasanian, Z., Wille, R., Miller, D.M., Drechsler, R.: Optimizing the mapping of reversible circuits to four-valued quantum gate circuits. In: International Symposium on Multiple-Valued Logic, pp. 173–178. IEEE, New York (2012) Soeken, M., Sasanian, Z., Wille, R., Miller, D.M., Drechsler, R.: Optimizing the mapping of reversible circuits to four-valued quantum gate circuits. In: International Symposium on Multiple-Valued Logic, pp. 173–178. IEEE, New York (2012)
131.
go back to reference Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: Asia and South Pacific Design Automation Conference, pp. 85–92. IEEE, New York (2012) Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: Asia and South Pacific Design Automation Conference, pp. 85–92. IEEE, New York (2012)
132.
go back to reference Soeken, M., Wille, R., Otterstedt, C., Drechsler, R.: A synthesis flow for sequential reversible circuits. In: International Symposium on Multiple-Valued Logic, pp. 299–304. IEEE, New York (2012) Soeken, M., Wille, R., Otterstedt, C., Drechsler, R.: A synthesis flow for sequential reversible circuits. In: International Symposium on Multiple-Valued Logic, pp. 299–304. IEEE, New York (2012)
133.
go back to reference Soeken, M., Miller, D.M., Drechsler, R.: Quantum circuits employing roots of the Pauli matrices. Phys. Rev. A 88, 042322 (2013)CrossRef Soeken, M., Miller, D.M., Drechsler, R.: Quantum circuits employing roots of the Pauli matrices. Phys. Rev. A 88, 042322 (2013)CrossRef
134.
go back to reference Soeken, M., Abdessaied, N., Drechsler, R.: A framework for reversible circuit complexity. In: International Workshop on Boolean Problems, pp. 123–128 (2014) Soeken, M., Abdessaied, N., Drechsler, R.: A framework for reversible circuit complexity. In: International Workshop on Boolean Problems, pp. 123–128 (2014)
135.
go back to reference Soeken, M., Tague, L., Dueck, G.W., Drechsler, R.: Ancilla-free synthesis of large reversible functions using binary decision diagrams. J. Symb. Comput. 73, 1–26 (2016)CrossRefMATHMathSciNet Soeken, M., Tague, L., Dueck, G.W., Drechsler, R.: Ancilla-free synthesis of large reversible functions using binary decision diagrams. J. Symb. Comput. 73, 1–26 (2016)CrossRefMATHMathSciNet
136.
go back to reference Soeken, M., Wille, R., Keszocze, O., Miller, D.M., Drechsler, R.: Embedding of large Boolean functions for reversible logic. ACM J. Emerg. Technol. Comput. Syst. 12 (4), 41 (2015)CrossRef Soeken, M., Wille, R., Keszocze, O., Miller, D.M., Drechsler, R.: Embedding of large Boolean functions for reversible logic. ACM J. Emerg. Technol. Comput. Syst. 12 (4), 41 (2015)CrossRef
137.
go back to reference Stergiou, S., Papakonstantinou, G.: Exact minimization of esop expressions with less than eight product terms. J. Circuits Syst. Comput. 13 (01), 1–15 (2004)CrossRef Stergiou, S., Papakonstantinou, G.: Exact minimization of esop expressions with less than eight product terms. J. Circuits Syst. Comput. 13 (01), 1–15 (2004)CrossRef
138.
go back to reference Szyprowski, M., Kerntopf, P.: Low quantum cost realization of generalized Peres and Toffoli gates with multiple-control signals. In: Conference on Nanotechnology, pp. 802–807. IEEE, New York (2013) Szyprowski, M., Kerntopf, P.: Low quantum cost realization of generalized Peres and Toffoli gates with multiple-control signals. In: Conference on Nanotechnology, pp. 802–807. IEEE, New York (2013)
139.
go back to reference Toffoli, T.: Reversible computing. In: de Bakker, W., van Leeuwen, J. (eds.) Automata, Languages and Programming, p. 632. Springer, New York (1980). Technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci. Toffoli, T.: Reversible computing. In: de Bakker, W., van Leeuwen, J. (eds.) Automata, Languages and Programming, p. 632. Springer, New York (1980). Technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.
140.
go back to reference Van Rentergem, Y., De Vos, A., Storme, L.: Implementing an arbitrary reversible logic gate. J. Phys. A Math. Gen. 38 (16), 3555–3577 (2005)CrossRefMATHMathSciNet Van Rentergem, Y., De Vos, A., Storme, L.: Implementing an arbitrary reversible logic gate. J. Phys. A Math. Gen. 38 (16), 3555–3577 (2005)CrossRefMATHMathSciNet
141.
go back to reference Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001)CrossRef Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001)CrossRef
142.
go back to reference Vemuri, N., Kalla, P., Tessier, R.: BDD-based logic synthesis for LUT-based FPGAs. ACM Trans. Des. Autom. Electr. Syst. 7 (4), 501–525 (2002)CrossRef Vemuri, N., Kalla, P., Tessier, R.: BDD-based logic synthesis for LUT-based FPGAs. ACM Trans. Des. Autom. Electr. Syst. 7 (4), 501–525 (2002)CrossRef
143.
go back to reference Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer, Dordrecht/Heidelberg/London/New York (2009)CrossRefMATH Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer, Dordrecht/Heidelberg/London/New York (2009)CrossRefMATH
144.
go back to reference Weinstein, Y.S.: Non-fault tolerant t-gates for the [7,1,3] quantum error correction code. Am. Phys. Soc. 87 (3), 032320, 6 (2013). Weinstein, Y.S.: Non-fault tolerant t-gates for the [7,1,3] quantum error correction code. Am. Phys. Soc. 87 (3), 032320, 6 (2013).
145.
go back to reference Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conference, pp. 270–275. ACM, New York (2009) Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conference, pp. 270–275. ACM, New York (2009)
146.
go back to reference Wille, R., Große, D.: Fast exact Toffoli network synthesis of reversible logic. In: International Conference on Computer Aided Design, pp. 60–64 (2007) Wille, R., Große, D.: Fast exact Toffoli network synthesis of reversible logic. In: International Conference on Computer Aided Design, pp. 60–64 (2007)
147.
go back to reference Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: International Symposium on Multiple-Valued Logic, pp. 220–225. IEEE, New York (2008). RevLib is available at http://www.revlib.org Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: International Symposium on Multiple-Valued Logic, pp. 220–225. IEEE, New York (2008). RevLib is available at http://​www.​revlib.​org
148.
go back to reference Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible circuits. In: Design Automation Conference, pp. 647–652. IEEE, New York (2010) Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible circuits. In: Design Automation Conference, pp. 647–652. IEEE, New York (2010)
149.
go back to reference Wille, R., Soeken, M., Przigoda, N., Drechsler, R.: Exact synthesis of Toffoli gate circuits with negative control lines. In: International Symposium on Multiple-Valued Logic, pp. 69–74. IEEE, New York (2012) Wille, R., Soeken, M., Przigoda, N., Drechsler, R.: Exact synthesis of Toffoli gate circuits with negative control lines. In: International Symposium on Multiple-Valued Logic, pp. 69–74. IEEE, New York (2012)
150.
go back to reference Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: Asia and South Pacific Design Automation Conference, pp. 145–150 (2013) Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: Asia and South Pacific Design Automation Conference, pp. 145–150 (2013)
151.
go back to reference Wille, R., Lye, A., Drechsler, R.: Considering nearest neighbor constraints of quantum circuits at the reversible circuit level. Quantum Inf. Process. 13 (2), 185–199 (2014)CrossRefMATH Wille, R., Lye, A., Drechsler, R.: Considering nearest neighbor constraints of quantum circuits at the reversible circuit level. Quantum Inf. Process. 13 (2), 185–199 (2014)CrossRefMATH
152.
go back to reference Wille, R., Soeken, M., Miller, D.M., Drechsler, R.: Trading off circuit lines and gate costs in the synthesis of reversible logic. Integr. VLSI J. 47 (2), 284–294 (2014)CrossRef Wille, R., Soeken, M., Miller, D.M., Drechsler, R.: Trading off circuit lines and gate costs in the synthesis of reversible logic. Integr. VLSI J. 47 (2), 284–294 (2014)CrossRef
153.
go back to reference Yamashita, S., Markov, I.L.: Fast equivalence-checking for quantum circuits. In: IEEE/ACM International Symposium on Nanoscale Architectures, pp. 23–28. IEEE, New York (2010) Yamashita, S., Markov, I.L.: Fast equivalence-checking for quantum circuits. In: IEEE/ACM International Symposium on Nanoscale Architectures, pp. 23–28. IEEE, New York (2010)
154.
go back to reference Yamashita, S., Minato, S.i., Miller, D.M.: Synthesis of semi-classical quantum circuits. J. Multiple-Valued Log. Soft Comput. 18 (1) (2012) Yamashita, S., Minato, S.i., Miller, D.M.: Synthesis of semi-classical quantum circuits. J. Multiple-Valued Log. Soft Comput. 18 (1) (2012)
155.
go back to reference Yanushkevich, S.N., Miller, D.M., Shmerko, V.P., Stankovic, R.S.: Decision Diagram Techniques for Micro-and Nanoelectronic Design Handbook. CRC Press, West Palm Beach, FL (2005)CrossRef Yanushkevich, S.N., Miller, D.M., Shmerko, V.P., Stankovic, R.S.: Decision Diagram Techniques for Micro-and Nanoelectronic Design Handbook. CRC Press, West Palm Beach, FL (2005)CrossRef
156.
go back to reference Zhang, J., Sinha, S., Mishchenko, A., Brayton, R., Chrzanowska-Jeske, M.: Simulation and satisfiability in logic synthesis. In: Proceedings of Workshop on Logic and Synthesis, pp. 161–168 (2005) Zhang, J., Sinha, S., Mishchenko, A., Brayton, R., Chrzanowska-Jeske, M.: Simulation and satisfiability in logic synthesis. In: Proceedings of Workshop on Logic and Synthesis, pp. 161–168 (2005)
157.
go back to reference Zhirnov, V.V., Cavin, R.K., Hutchby, J.A., Bourianoff, G.I.: Limits to binary logic switch scaling-a gedanken model. IEEE 91 (11), 1934–1939 (2003)CrossRef Zhirnov, V.V., Cavin, R.K., Hutchby, J.A., Bourianoff, G.I.: Limits to binary logic switch scaling-a gedanken model. IEEE 91 (11), 1934–1939 (2003)CrossRef
Metadata
Title
Background
Authors
Nabila Abdessaied
Rolf Drechsler
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-31937-7_2