Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Basic Concepts

Authors : Rajandrea Sethi, Antonio Di Molfetta

Published in: Groundwater Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The largest source of human drinking water is stored and flows in the subsurface. Geological formations saturated in mobile groundwater that can be exploited for human use are called aquifers. This chapter introduces basic notions that set the ground for the understanding and description of subsurface water flow. First, the main properties of water are illustrated, with a particular focus on the forces it establishes with the solid matrix of a porous medium and on how these affect its mobility. Then, broad aquifer classifications are provided, based on their geographical location, their permeability characteristics as a function of the type of porosity (i.e., intergranular, fracture or karst), and their degree of confinement. The latter, which categorizes aquifers as unconfined, leaky or confined, has crucial implications on both their storage capacity and hydrodynamic behavior. The key parameters that characterize an aquifer’s storage capacity are porosity and storativity. While the former is indicative of the total amount of water that can be stored within a porous medium, the latter indicates the fraction that can be released. Both these notions apply to any aquifer type although the mechanism of water release is distinct in unconfined and confined aquifers: in the former, water is released under the effect of gravity alone, and storativity is called specific yield; in the latter, water is released as a result of water expansion that follows a pressure drop. Subsurface water transport, instead, is driven by the existence of a hydraulic gradient (i.e., a drop in hydraulic head, or piezometric level). Under specific hypotheses, groundwater flow can be described by Darcy’s law, which establishes a proportionality relationship between flow rate and hydraulic gradient, and can be used to map an aquifer’s flow field. The relation defined by Darcy’s law is measured by an aquifer-specific parameter called hydraulic conductivity. This parameter is crucial not only in the description of the transport capacity of a porous medium, but also in the calculation of its productivity, which is a function of the hydraulic conductivity and the thickness of an aquifer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Bear, Dynamics of Fluids in Porous Media (Courier Corporation, 1972) J. Bear, Dynamics of Fluids in Porous Media (Courier Corporation, 1972)
2.
go back to reference P. Celico, Prospezioni idrogeologiche (Liguori, Napoli, 1986) P. Celico, Prospezioni idrogeologiche (Liguori, Napoli, 1986)
3.
go back to reference H. Darcy, Les fontaines publiques de la ville de Dijon (Dalmont, 1856) H. Darcy, Les fontaines publiques de la ville de Dijon (Dalmont, 1856)
4.
go back to reference P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology (Wiley, 1998) P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology (Wiley, 1998)
5.
go back to reference J. Ferris, D. Knowles, R. Brown, R. Stallman, Theory of Aquifer Tests. USGS Numbered Series 1536-E (U.S. Government Print. Office, 1962) J. Ferris, D. Knowles, R. Brown, R. Stallman, Theory of Aquifer Tests. USGS Numbered Series 1536-E (U.S. Government Print. Office, 1962)
6.
go back to reference C.W. Fetter, Contaminant Hydrogeology (Macmillan Publishing Company, 1993) C.W. Fetter, Contaminant Hydrogeology (Macmillan Publishing Company, 1993)
7.
go back to reference C.W. Fetter, Applied Hydrogeology (English), 4th edn. (Pearson Education, Long Grove, 2014) C.W. Fetter, Applied Hydrogeology (English), 4th edn. (Pearson Education, Long Grove, 2014)
8.
go back to reference R.C. Heath, Basic Ground-Water Hydrology (tech. rep.), vol. 2220 (U.S. Geological Survey, 1983) R.C. Heath, Basic Ground-Water Hydrology (tech. rep.), vol. 2220 (U.S. Geological Survey, 1983)
9.
go back to reference A. Johnson, Specific Yield: Compilation of Specific Yields for Various Materials. USGS Numbered Series 1662-D (U.S. Government Printing Office, Washington, DC, 1967) A. Johnson, Specific Yield: Compilation of Specific Yields for Various Materials. USGS Numbered Series 1662-D (U.S. Government Printing Office, Washington, DC, 1967)
10.
go back to reference J.W. Mercer, G.F. Pinder, Finite element methods in flow problems, in Finite Element Analysis of Hydrothermal Systems (ed. Oden J.T. et al), Proceedings of 1st Symptoms (University of Alabama Press, Swansea, 1974), pp. 401–414 J.W. Mercer, G.F. Pinder, Finite element methods in flow problems, in Finite Element Analysis of Hydrothermal Systems (ed. Oden J.T. et al), Proceedings of 1st Symptoms (University of Alabama Press, Swansea, 1974), pp. 401–414
11.
go back to reference P. Perrochet, Personal communication, EPFL Lausanne. GEOLEP Laboratoire de geologie, Lausanne (Switzerland), in Feflow Reference Manual H.-J.G. Diersch (WASY GmbH, 1996) P. Perrochet, Personal communication, EPFL Lausanne. GEOLEP Laboratoire de geologie, Lausanne (Switzerland), in Feflow Reference Manual H.-J.G. Diersch (WASY GmbH, 1996)
Metadata
Title
Basic Concepts
Authors
Rajandrea Sethi
Antonio Di Molfetta
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-20516-4_1