Skip to main content
Top

2018 | OriginalPaper | Chapter

3. Basic Mechanisms of Sound Propagation in Solids for Negative Materials

Author : Woon Siong Gan

Published in: New Acoustics Based on Metamaterials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The three basic forms of sound propagation in solids are diffraction, refraction and scattering. Acoustical metamaterials will enable the control and manipulation of these three mechanisms and hence the manipulation of the direction of sound propagation in solids. A detailed description of this three mechanisms for the case of negative mass density and negative bulk modulus enabling negative acoustical metamaterial are given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Waterman, P.C.: Matrix formulation of electromagnetic scattering. Proc. IEEE 53, 805–812 (1965)CrossRef Waterman, P.C.: Matrix formulation of electromagnetic scattering. Proc. IEEE 53, 805–812 (1965)CrossRef
2.
go back to reference Waterman, P.C.: New formulation of acoustic scattering. J. Acoust. Soc. Am. 45, 1417–1429 (1969)CrossRef Waterman, P.C.: New formulation of acoustic scattering. J. Acoust. Soc. Am. 45, 1417–1429 (1969)CrossRef
3.
go back to reference Martin, P.A.: Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. Cambridge University Press, Cambridge (2006)CrossRef Martin, P.A.: Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. Cambridge University Press, Cambridge (2006)CrossRef
4.
go back to reference Mishchenko, M.I., Trans, L.D., Lacis, A.A.: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, Cambridge (2006) Mishchenko, M.I., Trans, L.D., Lacis, A.A.: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, Cambridge (2006)
5.
go back to reference Ganesh, M., Graham, I.G.: A high-order algorithm for obstacle scattering in three-dimensions. J. Comput. Phys. 198, 211–242 (2004)CrossRef Ganesh, M., Graham, I.G.: A high-order algorithm for obstacle scattering in three-dimensions. J. Comput. Phys. 198, 211–242 (2004)CrossRef
6.
go back to reference Doicu, A., Wriedt, T., Eremin, Y.: Light Scattering by Systems of Particles, Null Field Method with Discrete Sources-theory and Programs. Springer, Berlin (2006)CrossRef Doicu, A., Wriedt, T., Eremin, Y.: Light Scattering by Systems of Particles, Null Field Method with Discrete Sources-theory and Programs. Springer, Berlin (2006)CrossRef
7.
go back to reference Mishchenko, M.I., Trans, L.D., Mackowski, D.W.: T matrix computation of light scattering by non-spherical particles, a review. J. Quant. Spectros. Radiat. Trans. 55, 535–575 (1996)CrossRef Mishchenko, M.I., Trans, L.D., Mackowski, D.W.: T matrix computation of light scattering by non-spherical particles, a review. J. Quant. Spectros. Radiat. Trans. 55, 535–575 (1996)CrossRef
8.
go back to reference Kahnert, F.M.: Numerical methods in electromagnetic scattering theory. J. Quant. Spectros. Radiant Tran. 79–80, 775–824 (2003)CrossRef Kahnert, F.M.: Numerical methods in electromagnetic scattering theory. J. Quant. Spectros. Radiant Tran. 79–80, 775–824 (2003)CrossRef
9.
go back to reference Li, J., Chan, C.T.: Double-negative acoustical metamaterial. Phys. Rev. E 70, 55602 (2004)CrossRef Li, J., Chan, C.T.: Double-negative acoustical metamaterial. Phys. Rev. E 70, 55602 (2004)CrossRef
10.
go back to reference Wu, Y., Lai, Y., Zhang, Z.: Effective medium theory for elastic metamaterials in two dimensions. Phys. Rev. B 76, 205313 (2007) Wu, Y., Lai, Y., Zhang, Z.: Effective medium theory for elastic metamaterials in two dimensions. Phys. Rev. B 76, 205313 (2007)
11.
go back to reference Torrent, D., Sanchez-Dehesa, J.: Multiple scattering formulation of two- dimensional acoustic and electromagnetic metamaterials. New J. Physics 13, 093018 (2011)CrossRef Torrent, D., Sanchez-Dehesa, J.: Multiple scattering formulation of two- dimensional acoustic and electromagnetic metamaterials. New J. Physics 13, 093018 (2011)CrossRef
12.
go back to reference Torrent, D., Hkansson, A., Cervera, F., Sánchez-Dehesa, J.: Homogenization of two-dimensional clusters of rigid rods in air. Phy. Rev. Lett. 96, 204302 (2006) Torrent, D., Hkansson, A., Cervera, F., Sánchez-Dehesa, J.: Homogenization of two-dimensional clusters of rigid rods in air. Phy. Rev. Lett. 96, 204302 (2006)
13.
go back to reference Torrent, D., Sánchez-Dehesa, J.: Effective parameters of clusters of cylinders embedded in a nonviscous fluid or gas. Phys. Rev. B 74, 224305 (2006)CrossRef Torrent, D., Sánchez-Dehesa, J.: Effective parameters of clusters of cylinders embedded in a nonviscous fluid or gas. Phys. Rev. B 74, 224305 (2006)CrossRef
14.
go back to reference Torrent, D., Sánchez-Dehesa, J.: Anisotropic mass density by two-dimensional acoustic metamaterials. New J. Phys. 10, 023004 (2008)CrossRef Torrent, D., Sánchez-Dehesa, J.: Anisotropic mass density by two-dimensional acoustic metamaterials. New J. Phys. 10, 023004 (2008)CrossRef
15.
go back to reference Morse, P.M.C., Ingard, K.U.: Theoretical Acoustics. Princeton University Press, Princeton NJ (1986) Morse, P.M.C., Ingard, K.U.: Theoretical Acoustics. Princeton University Press, Princeton NJ (1986)
16.
go back to reference Torrent, D., Hkansson, A., Cervera, F., Sánchez-Dehesa, J.: Homogenization of two-dimensional clusters of rigid rods in air. Phys. Rev. Lett. 96, 204302 (2006)CrossRef Torrent, D., Hkansson, A., Cervera, F., Sánchez-Dehesa, J.: Homogenization of two-dimensional clusters of rigid rods in air. Phys. Rev. Lett. 96, 204302 (2006)CrossRef
17.
go back to reference Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1964) Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1964)
18.
go back to reference Berryman, J.G.: Long-wavelength propagation in composite elastic media. I. Spherical inclusions. J. Acoust. Soc. Am. 68, 1809 (1980)CrossRef Berryman, J.G.: Long-wavelength propagation in composite elastic media. I. Spherical inclusions. J. Acoust. Soc. Am. 68, 1809 (1980)CrossRef
19.
go back to reference Burov, B.A., Dmitriev, K.V., Sergeev, S.N.: Acoustic double-negative media. Acoust. Phys. 55, 298–310 (2009)CrossRef Burov, B.A., Dmitriev, K.V., Sergeev, S.N.: Acoustic double-negative media. Acoust. Phys. 55, 298–310 (2009)CrossRef
20.
go back to reference Voitovich, N.N., Katsenelenbaum, B.Z., Nauka, A.N.: Generalized Method of Eigenoscillation in Diffraction Theory. Nauka, Moscow (1977). [in Russian] Voitovich, N.N., Katsenelenbaum, B.Z., Nauka, A.N.: Generalized Method of Eigenoscillation in Diffraction Theory. Nauka, Moscow (1977). [in Russian]
21.
go back to reference Barkhatov, et al.: Acoustics in Problems, Nauka, Fizmatlit, Moscow (1996) [in Russian] Barkhatov, et al.: Acoustics in Problems, Nauka, Fizmatlit, Moscow (1996) [in Russian]
22.
go back to reference Burov, V.A., Vecherin, S.N., Rumyantseva, O.D.: Statistical estimation of the spatial spectrum of secondary sources. Akust. Zh. 50, 14 (2004) Burov, V.A., Vecherin, S.N., Rumyantseva, O.D.: Statistical estimation of the spatial spectrum of secondary sources. Akust. Zh. 50, 14 (2004)
23.
go back to reference Bliokh, Y.K., Bliokh, Y.P.: Usp. Fiz. Nauk 174, 439 (2004) Bliokh, Y.K., Bliokh, Y.P.: Usp. Fiz. Nauk 174, 439 (2004)
24.
go back to reference Burov, V.A., Dimitriev, K.V., Sergeev, S.N.: Wave effects in acoustic media with a negative refractive index. Izv. Ross. Akad. Nauk, Ser. Fiz. 72, 1695 (2008) Burov, V.A., Dimitriev, K.V., Sergeev, S.N.: Wave effects in acoustic media with a negative refractive index. Izv. Ross. Akad. Nauk, Ser. Fiz. 72, 1695 (2008)
25.
go back to reference Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)CrossRef Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)CrossRef
Metadata
Title
Basic Mechanisms of Sound Propagation in Solids for Negative Materials
Author
Woon Siong Gan
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6376-3_3

Premium Partners