Skip to main content
Top
Published in: Wireless Personal Communications 4/2017

17-08-2017

Battery Recovery Based Lifetime Enhancement (BRLE) Algorithm for Wireless Sensor Network

Authors: V. Mahima, A. Chitra

Published in: Wireless Personal Communications | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Increasing the lifetime of the network and utilizing the resources to its maximum limit is the major issue in Wireless Sensor Network (WSN). The wireless sensor nodes in sensor network are powered using rechargeable batteries. However, providing energy to nodes in the remote environment is a major issue in WSN. Hence WSN needs a new energy efficient algorithm to enhance the network lifetime. In a sensor node, the transceiving module consumes more energy when compared to other modules. In this paper, a Battery Recovery based Lifetime Enhancement (BRLE) algorithm is discussed, which considers battery voltage curve for scheduling the transceiving module of the sensor nodes. The Markov model helps in determining the state of the sensor node as CH and CM based on battery recovery process. By scheduling the transceiving module based on the battery terminal voltage, recovery factor and distance between the nodes, the lifetime of the network is enhanced. Experimental results show that the algorithm outperforms the others by 1.38 times increased lifetime and 1.574 times increased throughput. The BRLE decreases the HOT SPOT and energy hole problem, avoiding loss in connectivity with the sink.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tang, Q., Yang, L., Giannakis, G. B., & Qin, T. (2007). Battery power efficiency of PPM and FSK in wireless sensor networks. IEEE Transactions on Wireless Communications, 6(4), 1308–1319.CrossRef Tang, Q., Yang, L., Giannakis, G. B., & Qin, T. (2007). Battery power efficiency of PPM and FSK in wireless sensor networks. IEEE Transactions on Wireless Communications, 6(4), 1308–1319.CrossRef
2.
go back to reference Kanagachidambaresan, G. R., & Chitra, A. (2015). Fail safe fault tolerant mechanism for wireless body sensor network. Wireless Personal Communication, 78(1), 247–260.CrossRef Kanagachidambaresan, G. R., & Chitra, A. (2015). Fail safe fault tolerant mechanism for wireless body sensor network. Wireless Personal Communication, 78(1), 247–260.CrossRef
3.
go back to reference Kanagachidambaresan, G. R., & Chitra, A. (2016). Thermal aware-fail safe fault tolerant mechanism for wireless body sensor network. Wireless Personal Communication, 90(4), 1935–1950.CrossRef Kanagachidambaresan, G. R., & Chitra, A. (2016). Thermal aware-fail safe fault tolerant mechanism for wireless body sensor network. Wireless Personal Communication, 90(4), 1935–1950.CrossRef
4.
go back to reference Li, H., Yi, C., & Li, Y. (2013). Battery friendly packet transmission algorithms for wireless sensor networks. IEEE Sensors Journal, 13(10), 3548–3557.CrossRef Li, H., Yi, C., & Li, Y. (2013). Battery friendly packet transmission algorithms for wireless sensor networks. IEEE Sensors Journal, 13(10), 3548–3557.CrossRef
5.
go back to reference Chau, C. K., Qin, F., Sayed, S., & Wahab, M. H. (2010). Harnessing battery recovery effect in wireless sensor networks : Experiments and analysis. IEEE Journal on Selected Area in Communication, 28(7), 1222–1232. doi:10.1109/JSAC.2010.100926.CrossRef Chau, C. K., Qin, F., Sayed, S., & Wahab, M. H. (2010). Harnessing battery recovery effect in wireless sensor networks : Experiments and analysis. IEEE Journal on Selected Area in Communication, 28(7), 1222–1232. doi:10.​1109/​JSAC.​2010.​100926.CrossRef
6.
go back to reference Leu, S. J., Chiang, T. H., Yu, M.-C., & Su, K. W. (2015). Energy efficient clustering scheme for prolonging the lifetime of wireless sensor network with isolated nodes. IEEE Communication Letters, 19(2), 259–262.CrossRef Leu, S. J., Chiang, T. H., Yu, M.-C., & Su, K. W. (2015). Energy efficient clustering scheme for prolonging the lifetime of wireless sensor network with isolated nodes. IEEE Communication Letters, 19(2), 259–262.CrossRef
7.
go back to reference Nayak, P., & Devulapalli, A. (2016). A fuzzy logic based clustering algorithm for WSN to extend the network lifetime. IEEE Sensor Journal, 16(1), 137–144.CrossRef Nayak, P., & Devulapalli, A. (2016). A fuzzy logic based clustering algorithm for WSN to extend the network lifetime. IEEE Sensor Journal, 16(1), 137–144.CrossRef
8.
go back to reference Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef
10.
go back to reference Karakus, C., Gurbuz, A., & Tavli, B. (2013). Analysis of energy efficiency of compressive sensing in wireless sensor networks. IEEE Sensors Journal, 13(5), 1999–2008.CrossRef Karakus, C., Gurbuz, A., & Tavli, B. (2013). Analysis of energy efficiency of compressive sensing in wireless sensor networks. IEEE Sensors Journal, 13(5), 1999–2008.CrossRef
11.
go back to reference Li, Y., Bakkaloglu, B., & Chakrabarti, C. (2007). A system level energy model and energy-quality evaluation for integrated transceiver front-end. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15(1), 90–103.CrossRef Li, Y., Bakkaloglu, B., & Chakrabarti, C. (2007). A system level energy model and energy-quality evaluation for integrated transceiver front-end. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15(1), 90–103.CrossRef
12.
go back to reference Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Survey and Tutorials, 15(2), 551–591.CrossRef Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Survey and Tutorials, 15(2), 551–591.CrossRef
13.
14.
go back to reference Lee, J. S., & Cheng, W. L. (2012). Fuzzy logic based clustering approach for wireless sensor networks using energy predication. IEEE Sensors Journal, 12(9), 2891–2896.CrossRef Lee, J. S., & Cheng, W. L. (2012). Fuzzy logic based clustering approach for wireless sensor networks using energy predication. IEEE Sensors Journal, 12(9), 2891–2896.CrossRef
15.
go back to reference Kim, J. Lee, S. & Cho, B. (2009). Discrimination of battery characteristics using discharging/charging voltage pattern recognition, In Proceedings IEEE conference on energy conversion congress and exposition (pp. 1799–1805). Kim, J. Lee, S. & Cho, B. (2009). Discrimination of battery characteristics using discharging/charging voltage pattern recognition, In Proceedings IEEE conference on energy conversion congress and exposition (pp. 1799–1805).
16.
go back to reference Cloth, L. Haverkort, B. R. & Jongerden, M. R. (2007). Computing battery lifetime distributions, In Proceedings 37th annual IEEE international conference on dependable system network (pp. 780–789). Cloth, L. Haverkort, B. R. & Jongerden, M. R. (2007). Computing battery lifetime distributions, In Proceedings 37th annual IEEE international conference on dependable system network (pp. 780–789).
17.
go back to reference Rakhmatov, D., Vrudhula, S., & Wallach, D. (2003). A model for battery lifetime analysis for organizing applications on a pocket computer. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 11(6), 1019–1030.CrossRef Rakhmatov, D., Vrudhula, S., & Wallach, D. (2003). A model for battery lifetime analysis for organizing applications on a pocket computer. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 11(6), 1019–1030.CrossRef
18.
go back to reference Jongerden M. R. & Haverkort, B. R. (2008). Battery modeling, Department of Electrical Engineering and Mathematical Computer Science, Design Analysis Communication System, Technical Report TR-CTIT-08-01, University of Twente, Enschede. Jongerden M. R. & Haverkort, B. R. (2008). Battery modeling, Department of Electrical Engineering and Mathematical Computer Science, Design Analysis Communication System, Technical Report TR-CTIT-08-01, University of Twente, Enschede.
19.
go back to reference Ma, C., & Yang, Y. (2006). Battery-aware routing for streaming data transmissions in wireless sensor networks. Mobile Networks and Applications, 11, 757–767.CrossRef Ma, C., & Yang, Y. (2006). Battery-aware routing for streaming data transmissions in wireless sensor networks. Mobile Networks and Applications, 11, 757–767.CrossRef
20.
go back to reference Li, Y., Li, H., Zhang, Y., & Qiao, D. (2010). Packet transmission policies for battery operated wireless sensor networks. Journal of Frontiers Computer Science in China, 4(3), 365–375.CrossRef Li, Y., Li, H., Zhang, Y., & Qiao, D. (2010). Packet transmission policies for battery operated wireless sensor networks. Journal of Frontiers Computer Science in China, 4(3), 365–375.CrossRef
21.
go back to reference Abouzar, P., Michelson, D. G., & Hamdi, M. (2016). RSSI-based distributed self-localization for wireless sensor networks used in precision agriculture. IEEE Transactions on Wireless Communications, 15(10), 6638–6650.CrossRef Abouzar, P., Michelson, D. G., & Hamdi, M. (2016). RSSI-based distributed self-localization for wireless sensor networks used in precision agriculture. IEEE Transactions on Wireless Communications, 15(10), 6638–6650.CrossRef
22.
go back to reference Luo, Q., Peng, Y., Li, J., & Peng, X. (2016). RSSI-based localization through uncertain data mapping for wireless sensor networks. IEEE Sensors Journal, 16(9), 3155–3162.CrossRef Luo, Q., Peng, Y., Li, J., & Peng, X. (2016). RSSI-based localization through uncertain data mapping for wireless sensor networks. IEEE Sensors Journal, 16(9), 3155–3162.CrossRef
23.
go back to reference Yaghoubi, Forough, Abbasfar, Ali-Azam, & Maham, Behrouz. (2014). Energy-efficient RSSI-based localization for wireless sensor networks. IEEE Communications Letters, 18(6), 973–976.CrossRef Yaghoubi, Forough, Abbasfar, Ali-Azam, & Maham, Behrouz. (2014). Energy-efficient RSSI-based localization for wireless sensor networks. IEEE Communications Letters, 18(6), 973–976.CrossRef
24.
go back to reference Nuggehalli, P., Srinivasan, V., & Rao, R. R. (2006). Energy efficient transmission scheduling for delay constrained wireless networks. IEEE Transactions on Wireless Communications, 5(3), 531–539.CrossRef Nuggehalli, P., Srinivasan, V., & Rao, R. R. (2006). Energy efficient transmission scheduling for delay constrained wireless networks. IEEE Transactions on Wireless Communications, 5(3), 531–539.CrossRef
25.
go back to reference Chiasserini, C. F., & Rao, R. R. (2001). Improving battery performance by using traffic shaping techniques. IEEE JSAC Wireless Series, 19(7), 1385–1394. Chiasserini, C. F., & Rao, R. R. (2001). Improving battery performance by using traffic shaping techniques. IEEE JSAC Wireless Series, 19(7), 1385–1394.
26.
go back to reference Ma, C. & Yang, Y. (2005). Battery aware routing in wireless ad hoc networks. Part II. Battery-aware routing. In Proceeding of 19th international tele traffic congress (ITC-19) (pp. 303–312). Ma, C. & Yang, Y. (2005). Battery aware routing in wireless ad hoc networks. Part II. Battery-aware routing. In Proceeding of 19th international tele traffic congress (ITC-19) (pp. 303–312).
27.
go back to reference Rakhmatov, D., & Vrudhula, S. (2003). Energy management for battery-powered embedded systems. ACM transactions embedded. Computing Systems, 2(3), 277–324. Rakhmatov, D., & Vrudhula, S. (2003). Energy management for battery-powered embedded systems. ACM transactions embedded. Computing Systems, 2(3), 277–324.
Metadata
Title
Battery Recovery Based Lifetime Enhancement (BRLE) Algorithm for Wireless Sensor Network
Authors
V. Mahima
A. Chitra
Publication date
17-08-2017
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4854-3

Other articles of this Issue 4/2017

Wireless Personal Communications 4/2017 Go to the issue