Skip to main content
Top

2024 | OriginalPaper | Chapter

Benefits of Chemical Prestressing Over Mechanical Prestressing of FRP Rods

Authors : Vita Mikutaite, Ted Donchev, Diana Petkova, Hasan Haroglu

Published in: Modern Building Materials, Structures and Techniques

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a comparison of mechanical and chemical prestressing of fibre reinforced polymer (FRP) rods. Prestressing can be a solution to improve serviceability performance of FRP. However, current research is mainly focused on costly carbon fibre reinforcement rod (CFRP) chemical prestressing, whereas glass fibre reinforcement rod (GFRP) with established durability tests and proven serviceability limit for 100 years could be a potential economical option. Split wedge anchors for mechanical prestressing prevents notching of the FRP tendon and proved to be more effective. Chemical prestressing was investigated as a preferred option whereas anchors for FRP still require further development. In this case, expansion in concrete with special additives helps to generate tension in concrete reinforcement and prestress steel or FRP rebar. Expansive high-performance concrete (HPC) during chemical prestressing can provide similar expansion as mechanical anchors. Tensile properties of expansive mortar can be highly influenced by restraint. Higher cracking strain capacity, non-linearity and substantial plastic deformation can be achieved. The restrained expansive concrete undergoes much larger plastic deformation before cracking as well as residual deformation after failure because of bonding with rebar. Chemical prestress results of internal steel and CFRP can help to define a method of prestressing GFRP. Literature review proved that chemical prestressing with CFRP achieved 70% self-prestress. This development creates possibilities for more common GFRP rods and non-corrosive pretensioned reinforcement, avoiding complex pretension methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kiani N, et al (2020) Characterization of GFRP bars and couplers for prestressed concrete. The Composites and Advanced materials Expo (CAMX-2020) Kiani N, et al (2020) Characterization of GFRP bars and couplers for prestressed concrete. The Composites and Advanced materials Expo (CAMX-2020)
2.
go back to reference Zdanowicz K et al (2019) Bond behaviour of chemically prestressed textile reinforced concrete. International Association for Bridge and Structural Engineering, PortugalCrossRef Zdanowicz K et al (2019) Bond behaviour of chemically prestressed textile reinforced concrete. International Association for Bridge and Structural Engineering, PortugalCrossRef
3.
go back to reference Pavlović A et al (2019) Pretensioned BFRP reinforced concrete beams: Flexural behaviour and estimation of initial prestress losses. MATEC Web Conf 289:9001CrossRef Pavlović A et al (2019) Pretensioned BFRP reinforced concrete beams: Flexural behaviour and estimation of initial prestress losses. MATEC Web Conf 289:9001CrossRef
4.
go back to reference Weber A (2017) Gaps between short term and long-term design for internal FRP reinforcement. In: Conference on advanced composites in construction, ACIC 2017, Sheffield, England Weber A (2017) Gaps between short term and long-term design for internal FRP reinforcement. In: Conference on advanced composites in construction, ACIC 2017, Sheffield, England
6.
go back to reference ACI PRC 440.4–04 (2011) Prestressing concrete structures with FRP tendons. American Concrete Institute, USA ACI PRC 440.4–04 (2011) Prestressing concrete structures with FRP tendons. American Concrete Institute, USA
7.
go back to reference Weiher H (2011) UHPC-anchor plates for PT, ground anchors and micro piles. In: Fib symposium, Prague Weiher H (2011) UHPC-anchor plates for PT, ground anchors and micro piles. In: Fib symposium, Prague
8.
go back to reference Campbell TI et al (2000) Design and evaluation of a wedge-type anchor for fibre reinforced polymer tendons. Can J Civ Eng 27(5):985–992CrossRef Campbell TI et al (2000) Design and evaluation of a wedge-type anchor for fibre reinforced polymer tendons. Can J Civ Eng 27(5):985–992CrossRef
9.
go back to reference Schmidt JW et al (2011) Numerical simulation and experimental validation of an integrated sleeve-wedge anchorage for CFRP rods. American Society of Civil Engineers (ASCE) Schmidt JW et al (2011) Numerical simulation and experimental validation of an integrated sleeve-wedge anchorage for CFRP rods. American Society of Civil Engineers (ASCE)
10.
go back to reference Zdanowicz K, Kotynia R, Marx S (2019) Prestressing concrete members with fibre-reinforced polymer reinforcement: state of research. Struct Concr J FIB 20(3):872–885CrossRef Zdanowicz K, Kotynia R, Marx S (2019) Prestressing concrete members with fibre-reinforced polymer reinforcement: state of research. Struct Concr J FIB 20(3):872–885CrossRef
11.
go back to reference Terrasi GP et al (2011) Numerical optimization of a concrete: reusable pretensioning anchorage system for CFRP tendons. American Society of Civil Engineers (ASCE) Terrasi GP et al (2011) Numerical optimization of a concrete: reusable pretensioning anchorage system for CFRP tendons. American Society of Civil Engineers (ASCE)
12.
go back to reference Fischer O et al (2014) F 2913 Innovative Hybridverankerungen von Zuggliedern aus ultra-hochfesten Betonen und Stahl oder faserverstärkten Kunststoffen. Lehrstuhl für Massivbau Institut für Baustoffe und Konstruktion Technische Universität München Fischer O et al (2014) F 2913 Innovative Hybridverankerungen von Zuggliedern aus ultra-hochfesten Betonen und Stahl oder faserverstärkten Kunststoffen. Lehrstuhl für Massivbau Institut für Baustoffe und Konstruktion Technische Universität München
13.
go back to reference Weiher H, Schulz J (2014) Mechanical anchorage made of UHPC for pre-stressed FRP-bar. Matrics Engineering GmbH, Germany Weiher H, Schulz J (2014) Mechanical anchorage made of UHPC for pre-stressed FRP-bar. Matrics Engineering GmbH, Germany
14.
go back to reference Sahamitmongkol R, Kishi T (2011) Tensile behavior of restrained expansive mortar and concrete. Concr Compos 33(1):131–141CrossRef Sahamitmongkol R, Kishi T (2011) Tensile behavior of restrained expansive mortar and concrete. Concr Compos 33(1):131–141CrossRef
15.
go back to reference Lämmlein TD, Justs J, Terrasi GP, Lura P (2021) Prestressing low clinker structural concrete elements by ultra-high modulus carbon fiber reinforced polymer tendons. Mater Struct 54(1) Lämmlein TD, Justs J, Terrasi GP, Lura P (2021) Prestressing low clinker structural concrete elements by ultra-high modulus carbon fiber reinforced polymer tendons. Mater Struct 54(1)
16.
go back to reference Girard J (2014) How to use CSA cement for rapid production. How to Use CSA Cements for Rapid Production of Concrete Countertops Girard J (2014) How to use CSA cement for rapid production. How to Use CSA Cements for Rapid Production of Concrete Countertops
17.
go back to reference Bescher E (2019) Belitic Calcium Sulfoaluminate Cement: History, Chemistry, Performance, and use in the United States Belitic calcium sulfoaluminate cement. In: 1st International conference on innovation in low-Carbon Cement & Concrete technology. London Bescher E (2019) Belitic Calcium Sulfoaluminate Cement: History, Chemistry, Performance, and use in the United States Belitic calcium sulfoaluminate cement. In: 1st International conference on innovation in low-Carbon Cement & Concrete technology. London
18.
go back to reference Klein A et al (1964) 3,155,526 Calcium Aluminosulfate and expansive cements containing same. Authoring organization 4322077253 Klein A et al (1964) 3,155,526 Calcium Aluminosulfate and expansive cements containing same. Authoring organization 4322077253
19.
go back to reference Weber A, Witt C (2013) Short term and long-term properties of newly developed bent GFRP reinforcing bars A standard for design of FRP R/C structures, basic design values view project creep and deflection of GFRP reinforced members view project short term and long-term properties of newly developed bent GFRP reinforcing Weber A, Witt C (2013) Short term and long-term properties of newly developed bent GFRP reinforcing bars A standard for design of FRP R/C structures, basic design values view project creep and deflection of GFRP reinforced members view project short term and long-term properties of newly developed bent GFRP reinforcing
21.
go back to reference Bescher E et al (2018) Low carbon footprint pavement: history of use, performance and new opportunities for Belitic Calcium Sulfoaluminate. In: 13th international symposium on concrete roads, Berlin Bescher E et al (2018) Low carbon footprint pavement: history of use, performance and new opportunities for Belitic Calcium Sulfoaluminate. In: 13th international symposium on concrete roads, Berlin
22.
go back to reference Mcnerney MT et al (2021) Drying behavior of a quadruple-sized belitic calcium sulfoaluminate airfield concrete slab. American Society of Civil Engineers Mcnerney MT et al (2021) Drying behavior of a quadruple-sized belitic calcium sulfoaluminate airfield concrete slab. American Society of Civil Engineers
23.
go back to reference Wyrzykowski M, Terrasi G, Lura P (2018) Expansive high-performance concrete for chemical-prestress applications. Cem Concr Res 107:275–283CrossRef Wyrzykowski M, Terrasi G, Lura P (2018) Expansive high-performance concrete for chemical-prestress applications. Cem Concr Res 107:275–283CrossRef
24.
go back to reference Wyrzykowski M, Terrasi G, Lura P (2020) Chemical prestressing of high-performance concrete reinforced with CFRP tendons. Compos Struct 239 Wyrzykowski M, Terrasi G, Lura P (2020) Chemical prestressing of high-performance concrete reinforced with CFRP tendons. Compos Struct 239
25.
go back to reference Mikutaite V, Donchev T, Petkova D, Haroglu H (2022) Upgrading structure existing components using multiple UHPC-class materials. In: MATEC web of conferences, vol 361, pp 5002, Leeds, England Mikutaite V, Donchev T, Petkova D, Haroglu H (2022) Upgrading structure existing components using multiple UHPC-class materials. In: MATEC web of conferences, vol 361, pp 5002, Leeds, England
Metadata
Title
Benefits of Chemical Prestressing Over Mechanical Prestressing of FRP Rods
Authors
Vita Mikutaite
Ted Donchev
Diana Petkova
Hasan Haroglu
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-44603-0_39