Skip to main content
Top

02-05-2024 | Original Paper

Bg waves in a piezo–flexo-magnetic layered model with impedance boundary and imperfect interface

Authors: Sonam Singh, A. K. Singh

Published in: Acta Mechanica

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work analyzes the propagation of BG wave in a layered model composed of a piezo-flexo-magnetic (PFM) layer of finite width imperfectly bonded to a PFM half-space with consideration of impedance boundary at the free surface of layer. The flexo-magnetic phenomenon introduces loss which results in attenuation of propagating BG wave. Using suitable surface and interface conditions, a complex frequency equation is obtained, which relates real wave number with a complex form of wave velocity with the help of material, interface, impedance, and flexo-magnetic parameters. The dispersion and attenuation relations of BG waves are derived from separating this frequency relation into real and imaginary parts. These dispersion and attenuation equations relate wave number with phase and damp velocities, respectively. With the help of these relations, the phase/damp velocities are plotted against wave number illustrating the influence of interface imperfection parameter, the flexo-magnetic parameter corresponding to layer and half-space, impedance parameter, & layer width in magnetically short (MS) and magnetically open (MO) conditions. The impact of varying damp velocity on phase velocity and vice-versa is also portrayed in MS and MO cases. Some validation with previously existing literature is also provided.
Literature
1.
go back to reference Maeder, M.D., Damjanovic, D., Setter, N.: Lead free piezoelectric materials. J. Electroceram. 13, 385–392 (2004)CrossRef Maeder, M.D., Damjanovic, D., Setter, N.: Lead free piezoelectric materials. J. Electroceram. 13, 385–392 (2004)CrossRef
2.
go back to reference Dineva, P., Gross, D., Müller, R., Rangelov, T.: Piezoelectric materials. In: Dynamic Fracture of Piezoelectric Materials, pp. 7–32. Springer, Berlin (2014) Dineva, P., Gross, D., Müller, R., Rangelov, T.: Piezoelectric materials. In: Dynamic Fracture of Piezoelectric Materials, pp. 7–32. Springer, Berlin (2014)
3.
go back to reference Yang, J.: Piezoelectric transformer structural modeling—a review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1154–1170 (2007)CrossRef Yang, J.: Piezoelectric transformer structural modeling—a review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1154–1170 (2007)CrossRef
4.
go back to reference Li, L., Wei, P., Guo, X.: Rayleigh wave on the half-space with a gradient piezoelectric layer and imperfect interface. Appl. Math. Model. 40, 8326–8337 (2016)MathSciNetCrossRef Li, L., Wei, P., Guo, X.: Rayleigh wave on the half-space with a gradient piezoelectric layer and imperfect interface. Appl. Math. Model. 40, 8326–8337 (2016)MathSciNetCrossRef
5.
go back to reference Pang, Y., Liu, J.-X.: Reflection and transmission of plane waves at an imperfectly bonded interface between piezoelectric and piezomagnetic media. Eur. J. Mech. A/Solids 30, 731–740 (2011)CrossRef Pang, Y., Liu, J.-X.: Reflection and transmission of plane waves at an imperfectly bonded interface between piezoelectric and piezomagnetic media. Eur. J. Mech. A/Solids 30, 731–740 (2011)CrossRef
6.
go back to reference Pang, Y., Wang, Y.-S., Liu, J.-X., Fang, D.-N.: Reflection and refraction of plane waves at the interface between piezoelectric and piezomagnetic media. Int. J. Eng. Sci. 46, 1098–1110 (2008)MathSciNetCrossRef Pang, Y., Wang, Y.-S., Liu, J.-X., Fang, D.-N.: Reflection and refraction of plane waves at the interface between piezoelectric and piezomagnetic media. Int. J. Eng. Sci. 46, 1098–1110 (2008)MathSciNetCrossRef
7.
go back to reference Guo, X., Wei, P.: Effects of initial stress on the reflection and transmission waves at the interface between two piezoelectric half spaces. Int. J. Solids Struct. 51, 3735–3751 (2014)CrossRef Guo, X., Wei, P.: Effects of initial stress on the reflection and transmission waves at the interface between two piezoelectric half spaces. Int. J. Solids Struct. 51, 3735–3751 (2014)CrossRef
8.
go back to reference Darinskii, A., Shuvalov, A., Poncelet, O., Kutsenko, A.: Bulk longitudinal wave reflection/transmission in periodic piezoelectric structures with metallized interfaces. Ultrasonics 63, 118–125 (2015)CrossRef Darinskii, A., Shuvalov, A., Poncelet, O., Kutsenko, A.: Bulk longitudinal wave reflection/transmission in periodic piezoelectric structures with metallized interfaces. Ultrasonics 63, 118–125 (2015)CrossRef
9.
go back to reference Guo, X., Wei, P., Li, L., Tang, Q.: Influences of mechanically and dielectrically imperfect interfaces on the reflection and transmission waves between two piezoelectric half spaces. Int. J. Solids Struct. 63, 184–205 (2015)CrossRef Guo, X., Wei, P., Li, L., Tang, Q.: Influences of mechanically and dielectrically imperfect interfaces on the reflection and transmission waves between two piezoelectric half spaces. Int. J. Solids Struct. 63, 184–205 (2015)CrossRef
10.
go back to reference Zhou, Z.-G., Wu, L.-Z., Wang, B.: The behavior of a crack in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. Arch. Appl. Mech. 74, 526–535 (2005)CrossRef Zhou, Z.-G., Wu, L.-Z., Wang, B.: The behavior of a crack in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. Arch. Appl. Mech. 74, 526–535 (2005)CrossRef
11.
go back to reference Liu, J.-X., Fang, D.-N., Wei, W.-Y., Zhao, X.-F.: Love waves in layered piezoelectric/piezomagnetic structures. J. Sound Vib. 315, 146–156 (2008)CrossRef Liu, J.-X., Fang, D.-N., Wei, W.-Y., Zhao, X.-F.: Love waves in layered piezoelectric/piezomagnetic structures. J. Sound Vib. 315, 146–156 (2008)CrossRef
12.
go back to reference Du, J., Xian, K., Wang, J.: SH surface acoustic wave propagation in a cylindrically layered piezomagnetic/piezoelectric structure. Ultrasonics 49, 131–138 (2009)CrossRef Du, J., Xian, K., Wang, J.: SH surface acoustic wave propagation in a cylindrically layered piezomagnetic/piezoelectric structure. Ultrasonics 49, 131–138 (2009)CrossRef
13.
go back to reference Pang, Y., Wang, Y.-S., Liu, J.-X., Fang, D.-N.: A study of the band structures of elastic wave propagating in piezoelectric/piezomagnetic layered periodic structures. Smart Mater. Struct. 19, 055012 (2010)CrossRef Pang, Y., Wang, Y.-S., Liu, J.-X., Fang, D.-N.: A study of the band structures of elastic wave propagating in piezoelectric/piezomagnetic layered periodic structures. Smart Mater. Struct. 19, 055012 (2010)CrossRef
14.
go back to reference Liu, L., Zhao, J., Pan, Y., Bonello, B., Zhong, Z.: Theoretical study of SH-wave propagation in periodically-layered piezomagnetic structure. Int. J. Mech. Sci. 85, 45–54 (2014)CrossRef Liu, L., Zhao, J., Pan, Y., Bonello, B., Zhong, Z.: Theoretical study of SH-wave propagation in periodically-layered piezomagnetic structure. Int. J. Mech. Sci. 85, 45–54 (2014)CrossRef
15.
go back to reference Nguyen, T., Abdelmoula, R., Li, J., Roussigne, Y., Stashkevich, A.: Wave propagating in multilayers composed of piezo electric and piezo magnetic layers. Compos. B Eng. 93, 289–301 (2016)CrossRef Nguyen, T., Abdelmoula, R., Li, J., Roussigne, Y., Stashkevich, A.: Wave propagating in multilayers composed of piezo electric and piezo magnetic layers. Compos. B Eng. 93, 289–301 (2016)CrossRef
16.
go back to reference Chen, A.-L., Yan, D.-J., Wang, Y.-S., Zhang, C.: In-plane elastic wave propagation in nanoscale periodic piezoelectric/piezomagnetic laminates. Int. J. Mech. Sci. 153, 416–429 (2019)CrossRef Chen, A.-L., Yan, D.-J., Wang, Y.-S., Zhang, C.: In-plane elastic wave propagation in nanoscale periodic piezoelectric/piezomagnetic laminates. Int. J. Mech. Sci. 153, 416–429 (2019)CrossRef
17.
go back to reference Ezzin, H., Wang, B., Qian, Z.: Propagation behavior of ultrasonic love waves in functionally graded piezoelectric–piezomagnetic materials with exponential variation. Mech. Mater. 148, 103492 (2020)CrossRef Ezzin, H., Wang, B., Qian, Z.: Propagation behavior of ultrasonic love waves in functionally graded piezoelectric–piezomagnetic materials with exponential variation. Mech. Mater. 148, 103492 (2020)CrossRef
18.
go back to reference Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Blinc, R.: Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B 79, 165433 (2009)CrossRef Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Blinc, R.: Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B 79, 165433 (2009)CrossRef
19.
go back to reference Lukashev, P., Sabirianov, R.F.: Flexomagnetic effect in frustrated triangular magnetic structures. Phys. Rev. B 82, 094417 (2010)CrossRef Lukashev, P., Sabirianov, R.F.: Flexomagnetic effect in frustrated triangular magnetic structures. Phys. Rev. B 82, 094417 (2010)CrossRef
20.
go back to reference Eliseev, E.A., Morozovska, A.N., Khist, V.V., Polinger, V.: Effective flexoelectric and flexomagnetic response of ferroics. In: Solid State Physics, vol. 70, pp. 237–289. Elsevier, Amsterdam (2019) Eliseev, E.A., Morozovska, A.N., Khist, V.V., Polinger, V.: Effective flexoelectric and flexomagnetic response of ferroics. In: Solid State Physics, vol. 70, pp. 237–289. Elsevier, Amsterdam (2019)
21.
go back to reference Malikan, M., Krasheninnikov, M., Eremeyev, V.A.: Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field. Int. J. Eng. Sci. 148, 103210 (2020)MathSciNetCrossRef Malikan, M., Krasheninnikov, M., Eremeyev, V.A.: Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field. Int. J. Eng. Sci. 148, 103210 (2020)MathSciNetCrossRef
22.
go back to reference Malikan, M., Eremeyev, V.A.: On nonlinear bending study of a piezo-flexomagnetic nanobeam based on an analytical-numerical solution. Nanomaterials 10, 1762 (2020)CrossRef Malikan, M., Eremeyev, V.A.: On nonlinear bending study of a piezo-flexomagnetic nanobeam based on an analytical-numerical solution. Nanomaterials 10, 1762 (2020)CrossRef
23.
go back to reference Sidhardh, S., Ray, M.: Flexomagnetic response of nanostructures. J. Appl. Phys. 124, 244101 (2018)CrossRef Sidhardh, S., Ray, M.: Flexomagnetic response of nanostructures. J. Appl. Phys. 124, 244101 (2018)CrossRef
24.
go back to reference Borkar, H., Gaikwad, V.M., Choudhary, R., Tomar, M., Gupta, V., Kumar, A.: Flexomagnetic effects on inhomogeneously strained multiferroics composites. J. Magn. Magn. Mater. 553, 169274 (2022)CrossRef Borkar, H., Gaikwad, V.M., Choudhary, R., Tomar, M., Gupta, V., Kumar, A.: Flexomagnetic effects on inhomogeneously strained multiferroics composites. J. Magn. Magn. Mater. 553, 169274 (2022)CrossRef
25.
go back to reference Bleustein, J.L.: A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13, 412–413 (1968)CrossRef Bleustein, J.L.: A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13, 412–413 (1968)CrossRef
26.
go back to reference Gulyaev, Y.V.: Review of shear surface acoustic waves in solids. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 935–938 (1998)CrossRef Gulyaev, Y.V.: Review of shear surface acoustic waves in solids. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 935–938 (1998)CrossRef
27.
go back to reference Zhang, C., Caron, J.J., Vetelino, J.F.: The Bleustein–Gulyaev wave for liquid sensing applications. Sens. Actuators, B Chem. 76, 64–68 (2001)CrossRef Zhang, C., Caron, J.J., Vetelino, J.F.: The Bleustein–Gulyaev wave for liquid sensing applications. Sens. Actuators, B Chem. 76, 64–68 (2001)CrossRef
28.
go back to reference Li, P., Jin, F.: Bleustein–Gulyaev waves in a transversely isotropic piezoelectric layered structure with an imperfectly bonded interface. Smart Mater. Struct. 21, 045009 (2012)CrossRef Li, P., Jin, F.: Bleustein–Gulyaev waves in a transversely isotropic piezoelectric layered structure with an imperfectly bonded interface. Smart Mater. Struct. 21, 045009 (2012)CrossRef
29.
go back to reference Jin, F., Wang, Z., Kishimoto, K.: The propagation behavior of Bleustein–Gulyaev waves in a pre-stressed piezoelectric layered structure. Int. J. Nonlinear Sci. Numer. Simul. 4, 125–138 (2003)CrossRef Jin, F., Wang, Z., Kishimoto, K.: The propagation behavior of Bleustein–Gulyaev waves in a pre-stressed piezoelectric layered structure. Int. J. Nonlinear Sci. Numer. Simul. 4, 125–138 (2003)CrossRef
30.
go back to reference Hickernell, F.S.: Shear horizontal BG surface acoustic waves on piezoelectrics: a historical note. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 809–811 (2005)CrossRef Hickernell, F.S.: Shear horizontal BG surface acoustic waves on piezoelectrics: a historical note. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 809–811 (2005)CrossRef
31.
go back to reference Alshaikh, F.: Electromechanical coupling of Bleustein–Gulyaev wave propagation in rotating prestressed piezoelectric layered materials. Contin. Mech. Thermodyn. 32, 749–759 (2020)MathSciNetCrossRef Alshaikh, F.: Electromechanical coupling of Bleustein–Gulyaev wave propagation in rotating prestressed piezoelectric layered materials. Contin. Mech. Thermodyn. 32, 749–759 (2020)MathSciNetCrossRef
32.
go back to reference Chaki, M.S., Singh, A.K.: The impact of reinforcement and piezoelectricity on SH wave propagation in irregular imperfectly-bonded layered fgpm structures: An analytical approach. Eur. J. Mech. A/Solids 80, 103872 (2020)MathSciNetCrossRef Chaki, M.S., Singh, A.K.: The impact of reinforcement and piezoelectricity on SH wave propagation in irregular imperfectly-bonded layered fgpm structures: An analytical approach. Eur. J. Mech. A/Solids 80, 103872 (2020)MathSciNetCrossRef
33.
go back to reference Murty, G.S.: A theoretical model for the attenuation and dispersion of Stoneley waves at the loosely bonded interface of elastic half spaces. Phys. Earth Planet. Inter. 11, 65–79 (1975)CrossRef Murty, G.S.: A theoretical model for the attenuation and dispersion of Stoneley waves at the loosely bonded interface of elastic half spaces. Phys. Earth Planet. Inter. 11, 65–79 (1975)CrossRef
34.
go back to reference Lavrentyev, A.I., Rokhlin, S.: Ultrasonic spectroscopy of imperfect contact interfaces between a layer and two solids. J. Acoust. Soc. Am. 103, 657–664 (1998)CrossRef Lavrentyev, A.I., Rokhlin, S.: Ultrasonic spectroscopy of imperfect contact interfaces between a layer and two solids. J. Acoust. Soc. Am. 103, 657–664 (1998)CrossRef
35.
go back to reference Huang, Y., Li, X.: Shear waves guided by the imperfect interface of two magnetoelectric materials. Ultrasonics 50, 750–757 (2010)CrossRef Huang, Y., Li, X.: Shear waves guided by the imperfect interface of two magnetoelectric materials. Ultrasonics 50, 750–757 (2010)CrossRef
36.
go back to reference Lipton, R., Vernescu, B.: Composites with imperfect interface. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 452, 329–358 (1996)MathSciNetCrossRef Lipton, R., Vernescu, B.: Composites with imperfect interface. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 452, 329–358 (1996)MathSciNetCrossRef
37.
go back to reference Liu, J., Wang, Y., Wang, B.: Propagation of shear horizontal surface waves in a layered piezoelectric half-space with an imperfect interface. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1875–1879 (2010)CrossRef Liu, J., Wang, Y., Wang, B.: Propagation of shear horizontal surface waves in a layered piezoelectric half-space with an imperfect interface. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1875–1879 (2010)CrossRef
38.
go back to reference Melkumyan, A., Mai, Y.-W.: Influence of imperfect bonding on interface waves guided by piezoelectric/piezomagnetic composites. Philos. Mag. 88, 2965–2977 (2008)CrossRef Melkumyan, A., Mai, Y.-W.: Influence of imperfect bonding on interface waves guided by piezoelectric/piezomagnetic composites. Philos. Mag. 88, 2965–2977 (2008)CrossRef
39.
go back to reference Zhou, Y., Lü, C., Chen, W.: Bulk wave propagation in layered piezomagnetic/piezoelectric plates with initial stresses or interface imperfections. Compos. Struct. 94, 2736–2745 (2012)CrossRef Zhou, Y., Lü, C., Chen, W.: Bulk wave propagation in layered piezomagnetic/piezoelectric plates with initial stresses or interface imperfections. Compos. Struct. 94, 2736–2745 (2012)CrossRef
40.
go back to reference Maity, M., Kundu, S., Kumhar, R., Gupta, S.: An electromechanical based model for love-type waves in anisotropic–porous–piezoelectric composite structure with interfacial imperfections. Appl. Math. Comput. 418, 126783 (2022)MathSciNet Maity, M., Kundu, S., Kumhar, R., Gupta, S.: An electromechanical based model for love-type waves in anisotropic–porous–piezoelectric composite structure with interfacial imperfections. Appl. Math. Comput. 418, 126783 (2022)MathSciNet
41.
go back to reference Pal, M.K., Singh, A.K.: Analysis of reflection and transmission phenomenon at distinct bonding interfaces in a rotating pre-stressed functionally graded piezoelectric–orthotropic structure. Appl. Math. Comput. 409, 126398 (2021)MathSciNet Pal, M.K., Singh, A.K.: Analysis of reflection and transmission phenomenon at distinct bonding interfaces in a rotating pre-stressed functionally graded piezoelectric–orthotropic structure. Appl. Math. Comput. 409, 126398 (2021)MathSciNet
42.
go back to reference Cao, X., Jin, F., Jeon, I., Lu, T.J.: Propagation of love waves in a functionally graded piezoelectric material (FGPM) layered composite system. Int. J. Solids Struct. 46, 4123–4132 (2009)CrossRef Cao, X., Jin, F., Jeon, I., Lu, T.J.: Propagation of love waves in a functionally graded piezoelectric material (FGPM) layered composite system. Int. J. Solids Struct. 46, 4123–4132 (2009)CrossRef
43.
go back to reference Cao, X.-S., Jin, F., Mo, X.-Y., Shi, J.-P.: Love waves in piezoelestric layered structure with functionally graded material half space. In: Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA). IEEE 2011, pp. 240–244 (2011) Cao, X.-S., Jin, F., Mo, X.-Y., Shi, J.-P.: Love waves in piezoelestric layered structure with functionally graded material half space. In: Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA). IEEE 2011, pp. 240–244 (2011)
44.
go back to reference Singh, S., Singh, A., Guha, S.: Shear waves in a piezo-fiber-reinforced-poroelastic composite structure with sandwiched functionally graded buffer layer: power series approach. Eur. J. Mech. A/Solids 92, 104470 (2022)MathSciNetCrossRef Singh, S., Singh, A., Guha, S.: Shear waves in a piezo-fiber-reinforced-poroelastic composite structure with sandwiched functionally graded buffer layer: power series approach. Eur. J. Mech. A/Solids 92, 104470 (2022)MathSciNetCrossRef
45.
go back to reference Tiersten, H.: Elastic surface waves guided by thin films. J. Appl. Phys. 40, 770–789 (1969)CrossRef Tiersten, H.: Elastic surface waves guided by thin films. J. Appl. Phys. 40, 770–789 (1969)CrossRef
46.
go back to reference Malischewsky, P.: Surface Waves and Discontinuities. Akademie-Verlag, Berlin (1987) Malischewsky, P.: Surface Waves and Discontinuities. Akademie-Verlag, Berlin (1987)
47.
go back to reference Bövik, P.: A comparison between the Tiersten model and O(H) boundary conditions for elastic surface waves guided by thin layers. J. Appl. Mech. 63, 162–167 (1996)CrossRef Bövik, P.: A comparison between the Tiersten model and O(H) boundary conditions for elastic surface waves guided by thin layers. J. Appl. Mech. 63, 162–167 (1996)CrossRef
48.
go back to reference Malischewsky, P.G.: Seismological implications of impedance-like boundary conditions. In: Proceedings of the International Conference Days on Diffraction, IEEE, pp. 137–140 (2011) Malischewsky, P.G.: Seismological implications of impedance-like boundary conditions. In: Proceedings of the International Conference Days on Diffraction, IEEE, pp. 137–140 (2011)
49.
go back to reference Wang, H., Xu, M., Wang, C., Hubing, T.: Impedance boundary conditions in a hybrid fem/mom formulation. IEEE Trans. Electromagn. Compat. 45, 198–206 (2003)CrossRef Wang, H., Xu, M., Wang, C., Hubing, T.: Impedance boundary conditions in a hybrid fem/mom formulation. IEEE Trans. Electromagn. Compat. 45, 198–206 (2003)CrossRef
50.
go back to reference Duruflé, M., Haddar, H., Joly, P.: Higher order generalized impedance boundary conditions in electromagnetic scattering problems. C. R. Phys. 7, 533–542 (2006)CrossRef Duruflé, M., Haddar, H., Joly, P.: Higher order generalized impedance boundary conditions in electromagnetic scattering problems. C. R. Phys. 7, 533–542 (2006)CrossRef
51.
go back to reference Godoy, E., Durán, M., Nédélec, J.-C.: On the existence of surface waves in an elastic half-space with impedance boundary conditions. Wave Motion 49, 585–594 (2012)MathSciNetCrossRef Godoy, E., Durán, M., Nédélec, J.-C.: On the existence of surface waves in an elastic half-space with impedance boundary conditions. Wave Motion 49, 585–594 (2012)MathSciNetCrossRef
52.
go back to reference Lindell, I.V., Sihvola, A.: Boundary Conditions in Electromagnetics. Wiley, New York (2019)CrossRef Lindell, I.V., Sihvola, A.: Boundary Conditions in Electromagnetics. Wiley, New York (2019)CrossRef
53.
go back to reference Yadav, A.K.: Effect of impedance boundary on the reflection of plane waves in fraction-order thermoelasticity in an initially stressed rotating half-space with a magnetic field. Int. J. Thermophys. 42, 1–24 (2021)CrossRef Yadav, A.K.: Effect of impedance boundary on the reflection of plane waves in fraction-order thermoelasticity in an initially stressed rotating half-space with a magnetic field. Int. J. Thermophys. 42, 1–24 (2021)CrossRef
56.
go back to reference Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. Comput. Mater. Continua (CMC) 13, 63 (2009) Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. Comput. Mater. Continua (CMC) 13, 63 (2009)
57.
go back to reference Goyal, S., Sahu, S.A., Mondal, S.: Modelling of love-type wave propagation in piezomagnetic layer over a lossy viscoelastic substrate: Sturm–Liouville problem. Smart Mater. Struct. 28, 057001 (2019)CrossRef Goyal, S., Sahu, S.A., Mondal, S.: Modelling of love-type wave propagation in piezomagnetic layer over a lossy viscoelastic substrate: Sturm–Liouville problem. Smart Mater. Struct. 28, 057001 (2019)CrossRef
58.
go back to reference Ewing, W.M., Jardetzky, W.S., Press, F., Beiser, A.: Elastic waves in layered media. Phys. Today 10, 27 (1957)CrossRef Ewing, W.M., Jardetzky, W.S., Press, F., Beiser, A.: Elastic waves in layered media. Phys. Today 10, 27 (1957)CrossRef
59.
go back to reference Singh, A., Mahto, S., Guha, S.: Analysis of plane wave reflection phenomenon from the surface of a micro-mechanically modeled piezomagnetic fiber-reinforced composite half-space. Waves Random Complex Media, pp. 1–22 (2021) Singh, A., Mahto, S., Guha, S.: Analysis of plane wave reflection phenomenon from the surface of a micro-mechanically modeled piezomagnetic fiber-reinforced composite half-space. Waves Random Complex Media, pp. 1–22 (2021)
Metadata
Title
Bg waves in a piezo–flexo-magnetic layered model with impedance boundary and imperfect interface
Authors
Sonam Singh
A. K. Singh
Publication date
02-05-2024
Publisher
Springer Vienna
Published in
Acta Mechanica
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-024-03916-z

Premium Partners