Skip to main content
Top

2017 | OriginalPaper | Chapter

3. Bimagnetic Core/Shell Nanoparticles: Current Status and Future Possibilities

Authors : Tiago M. Freire, Wesley S. Galvão, Rafael M. Freire, P. B. A. Fechine

Published in: Complex Magnetic Nanostructures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we present recent advances in interface properties, and synthetic approaches to and applications of bimagnetic core/shell nanoparticles (NPs). First, a brief overview of magnetic core/shell architectures is presented. Then we introduce the principles behind magnetic and structural properties. In this connection, interface phenomena such as the proximity effect, exchange coupling, and exchange bias are summarized. Furthermore, the effects of crystal morphology and phase composition on these exchange interactions are discussed. Chemical methods to synthesize bimagnetic core/shell NPs, including thermal decomposition, seed-mediated growth, coprecipitation, and hydro/solvothermal approaches, are presented. Once produced, surface properties of the core/shell architecture need to be modulated since each application has special requirements. Moreover, a section devoted to the surface functionalization of NPs is given. Finally, applications of bimagnetic core/shell NPs in hyperthermia, magnetic resonance imaging, permanent magnets, and magnetic recording data, among other areas, are discussed in more depth.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Meiklejohn WH, Bean CP (1956) New magnetic anisotropy. Phys Rev 102(5):1413–1414CrossRef Meiklejohn WH, Bean CP (1956) New magnetic anisotropy. Phys Rev 102(5):1413–1414CrossRef
2.
go back to reference Nogués J et al (2005) Exchange bias in nanostructures. Phys Rep 422(3):65–117CrossRef Nogués J et al (2005) Exchange bias in nanostructures. Phys Rep 422(3):65–117CrossRef
3.
go back to reference Rinaldi-Montes N et al (2016) Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. J Magn Magn Mater 400:236–241CrossRef Rinaldi-Montes N et al (2016) Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. J Magn Magn Mater 400:236–241CrossRef
4.
go back to reference López-Ortega A et al (2015) Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys Rep 553:1–32CrossRef López-Ortega A et al (2015) Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys Rep 553:1–32CrossRef
5.
go back to reference Lavorato GC et al (2015) Magnetic interactions and energy barrier enhancement in core/shell bimagnetic nanoparticles. J Phys Chem C 119(27):15755–15762CrossRef Lavorato GC et al (2015) Magnetic interactions and energy barrier enhancement in core/shell bimagnetic nanoparticles. J Phys Chem C 119(27):15755–15762CrossRef
6.
go back to reference Qian H-S et al (2010) ZnO/ZnFe2O4 magnetic fluorescent bifunctional hollow nanospheres: synthesis, characterization, and their optical/magnetic properties. J Phys Chem C 114(41):17455–17459CrossRef Qian H-S et al (2010) ZnO/ZnFe2O4 magnetic fluorescent bifunctional hollow nanospheres: synthesis, characterization, and their optical/magnetic properties. J Phys Chem C 114(41):17455–17459CrossRef
7.
go back to reference Lee J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459CrossRef Lee J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459CrossRef
8.
go back to reference Lee J-H et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422CrossRef Lee J-H et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422CrossRef
9.
go back to reference Manna PK, Yusuf SM (2014) Two interface effects: exchange bias and magnetic proximity. Phys Rep 535(2):61–99CrossRef Manna PK, Yusuf SM (2014) Two interface effects: exchange bias and magnetic proximity. Phys Rep 535(2):61–99CrossRef
10.
go back to reference Hu X-W et al (2015) Starfish-shaped Co3O4/ZnFe2O4 hollow nanocomposite: synthesis, supercapacity, and magnetic properties. ACS Appl Mater Interfaces 7(18):9972–9981CrossRef Hu X-W et al (2015) Starfish-shaped Co3O4/ZnFe2O4 hollow nanocomposite: synthesis, supercapacity, and magnetic properties. ACS Appl Mater Interfaces 7(18):9972–9981CrossRef
11.
go back to reference Gomes JDA et al (2008) Synthesis of core−shell ferrite nanoparticles for ferrofluids: chemical and magnetic analysis. J Phys Chem C 112(16):6220–6227CrossRef Gomes JDA et al (2008) Synthesis of core−shell ferrite nanoparticles for ferrofluids: chemical and magnetic analysis. J Phys Chem C 112(16):6220–6227CrossRef
12.
go back to reference Li X et al (2011) The enhanced microwave absorption property of CoFe2O4 nanoparticles coated with a Co3Fe7–Co nanoshell by thermal reduction. Nanotechnology 22(4):045707CrossRef Li X et al (2011) The enhanced microwave absorption property of CoFe2O4 nanoparticles coated with a Co3Fe7–Co nanoshell by thermal reduction. Nanotechnology 22(4):045707CrossRef
13.
go back to reference Mourdikoudis S et al (2007) Effect of air xexposure on structural and magnetic features of FeCo nanoparticles. Mod Phys Lett B 21(18):1161–1168CrossRef Mourdikoudis S et al (2007) Effect of air xexposure on structural and magnetic features of FeCo nanoparticles. Mod Phys Lett B 21(18):1161–1168CrossRef
14.
go back to reference Yoon T-J et al (2011) Highly magnetic core–shell nanoparticles with a unique magnetization mechanism. Angew Chem Int Ed 50(20):4663–4666CrossRef Yoon T-J et al (2011) Highly magnetic core–shell nanoparticles with a unique magnetization mechanism. Angew Chem Int Ed 50(20):4663–4666CrossRef
15.
go back to reference Somaskandan K et al (2008) Surface protected and modified iron based core-shell nanoparticles for biological applications. New J Chem 32(2):201–209CrossRef Somaskandan K et al (2008) Surface protected and modified iron based core-shell nanoparticles for biological applications. New J Chem 32(2):201–209CrossRef
16.
go back to reference Song Q, Zhang ZJ (2012) Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J Am Chem Soc 134(24):10182–10190CrossRef Song Q, Zhang ZJ (2012) Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J Am Chem Soc 134(24):10182–10190CrossRef
17.
go back to reference Casavola M et al (2009) Exchange-coupled bimagnetic cobalt/iron oxide branched nanocrystal heterostructures. Nano Lett 9(1):366–376CrossRef Casavola M et al (2009) Exchange-coupled bimagnetic cobalt/iron oxide branched nanocrystal heterostructures. Nano Lett 9(1):366–376CrossRef
18.
go back to reference Chaubey GS et al (2008) Synthesis and characterization of bimagnetic bricklike nanoparticles. Chem Mater 20(2):475–478CrossRef Chaubey GS et al (2008) Synthesis and characterization of bimagnetic bricklike nanoparticles. Chem Mater 20(2):475–478CrossRef
19.
go back to reference Lima E et al (2012) Bimagnetic CoO core/CoFe2O4 shell nanoparticles: synthesis and magnetic properties. Chem Mater 24(3):512–516CrossRef Lima E et al (2012) Bimagnetic CoO core/CoFe2O4 shell nanoparticles: synthesis and magnetic properties. Chem Mater 24(3):512–516CrossRef
20.
go back to reference Juhin A et al (2014) Direct evidence for an interdiffused intermediate layer in bi-magnetic core-shell nanoparticles. Nanoscale 6(20):11911–11920CrossRef Juhin A et al (2014) Direct evidence for an interdiffused intermediate layer in bi-magnetic core-shell nanoparticles. Nanoscale 6(20):11911–11920CrossRef
21.
go back to reference Estrader M et al (2013) Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nat Commun 4:2960CrossRef Estrader M et al (2013) Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nat Commun 4:2960CrossRef
22.
go back to reference Zaim A, Kerouad M, El Amraoui Y (2009) Magnetic properties of a ferrimagnetic core/shell nanocube Ising model: a Monte Carlo simulation study. J Magn Magn Mater 321(8):1077–1083CrossRef Zaim A, Kerouad M, El Amraoui Y (2009) Magnetic properties of a ferrimagnetic core/shell nanocube Ising model: a Monte Carlo simulation study. J Magn Magn Mater 321(8):1077–1083CrossRef
23.
go back to reference Yu MH et al (2003) Towards a magnetic core–shell nanostructure: a novel composite made by a citrate–nitrate auto-ignition process. Mater Sci Eng: B 103(3):262–270CrossRef Yu MH et al (2003) Towards a magnetic core–shell nanostructure: a novel composite made by a citrate–nitrate auto-ignition process. Mater Sci Eng: B 103(3):262–270CrossRef
24.
go back to reference Salazar-Alvarez G et al (2007) Synthesis and size-dependent exchange bias in inverted core−shell MnO|Mn3O4 nanoparticles. J Am Chem Soc 129(29):9102–9108CrossRef Salazar-Alvarez G et al (2007) Synthesis and size-dependent exchange bias in inverted core−shell MnO|Mn3O4 nanoparticles. J Am Chem Soc 129(29):9102–9108CrossRef
25.
go back to reference Skumryev V et al (2003) Beating the superparamagnetic limit with exchange bias. Nature 423(6942):850–853CrossRef Skumryev V et al (2003) Beating the superparamagnetic limit with exchange bias. Nature 423(6942):850–853CrossRef
26.
go back to reference Lottini E et al (2016) Strongly exchange coupled core|shell nanoparticles with high magnetic anisotropy: a strategy towards rare earth-free permanent magnets. Chem Mater 28(12):4214–4222CrossRef Lottini E et al (2016) Strongly exchange coupled core|shell nanoparticles with high magnetic anisotropy: a strategy towards rare earth-free permanent magnets. Chem Mater 28(12):4214–4222CrossRef
27.
go back to reference Leite GCP et al (2012) Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite. J Magn Magn Mater 324(18):2711–2716CrossRef Leite GCP et al (2012) Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite. J Magn Magn Mater 324(18):2711–2716CrossRef
28.
go back to reference Nandwana V et al (2009) Bimagnetic nanoparticles with enhanced exchange coupling and energy products. J Appl Phys 105(1):014303CrossRef Nandwana V et al (2009) Bimagnetic nanoparticles with enhanced exchange coupling and energy products. J Appl Phys 105(1):014303CrossRef
29.
go back to reference Liu Y et al (2013) PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: potential theranostic applications and in vivo toxicity studies. Nanomed Nanotechnol Biol Med 9(7):1077–1088CrossRef Liu Y et al (2013) PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: potential theranostic applications and in vivo toxicity studies. Nanomed Nanotechnol Biol Med 9(7):1077–1088CrossRef
30.
go back to reference Manna PK et al (2011) The magnetic proximity effect in a ferrimagnetic Fe3O4 core/ferrimagnetic γ-Mn2O3 shell nanoparticle system. J Phys Condens Matter 23(50):506004CrossRef Manna PK et al (2011) The magnetic proximity effect in a ferrimagnetic Fe3O4 core/ferrimagnetic γ-Mn2O3 shell nanoparticle system. J Phys Condens Matter 23(50):506004CrossRef
31.
go back to reference Hauser J, Theuerer H, Werthamer N (1966) Proximity effects between superconducting and magnetic films. Phys Rev 142(1):118CrossRef Hauser J, Theuerer H, Werthamer N (1966) Proximity effects between superconducting and magnetic films. Phys Rev 142(1):118CrossRef
32.
go back to reference Zuckermann M (1973) The proximity effect for weak itinerant ferromagnets. Solid State Commun 12(7):745–747CrossRef Zuckermann M (1973) The proximity effect for weak itinerant ferromagnets. Solid State Commun 12(7):745–747CrossRef
33.
go back to reference Lenz K, Zander S, Kuch W (2007) Magnetic proximity effects in antiferromagnet/ferromagnet bilayers: the impact on the Néel temperature. Phys Rev Lett 98(23):237201CrossRef Lenz K, Zander S, Kuch W (2007) Magnetic proximity effects in antiferromagnet/ferromagnet bilayers: the impact on the Néel temperature. Phys Rev Lett 98(23):237201CrossRef
34.
go back to reference Won C et al (2005) Studies of FeMn∕Co/Cu(001) films using photoemission electron microscopy and surface magneto-optic Kerr effect. Phys Rev B 71(2):024406CrossRef Won C et al (2005) Studies of FeMn∕Co/Cu(001) films using photoemission electron microscopy and surface magneto-optic Kerr effect. Phys Rev B 71(2):024406CrossRef
35.
go back to reference Wang B-Y et al (2013) Enhanced perpendicular magnetic anisotropy in Fe/Mn bilayers by incorporating ultrathin ferromagnetic underlayer through magnetic proximity effect. Appl Phys Lett 103(4):042407CrossRef Wang B-Y et al (2013) Enhanced perpendicular magnetic anisotropy in Fe/Mn bilayers by incorporating ultrathin ferromagnetic underlayer through magnetic proximity effect. Appl Phys Lett 103(4):042407CrossRef
36.
go back to reference Valev VK et al (2006) Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface. Phys Rev Lett 96(6):067206CrossRef Valev VK et al (2006) Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface. Phys Rev Lett 96(6):067206CrossRef
37.
go back to reference Xu X et al (2015) Exchange coupled SrFe12O19/Fe-Co core/shell particles with different shell thickness. Electron Mater Lett 11(6):1021–1027CrossRef Xu X et al (2015) Exchange coupled SrFe12O19/Fe-Co core/shell particles with different shell thickness. Electron Mater Lett 11(6):1021–1027CrossRef
38.
go back to reference Heinrich B (2008) Exchange coupling in magnetic multilayers. In: Zabel H, Bader SD (eds) Magnetic heterostructures: advances and perspectives in spinstructures and spintransport. Springer, Berlin, pp 185–250 Heinrich B (2008) Exchange coupling in magnetic multilayers. In: Zabel H, Bader SD (eds) Magnetic heterostructures: advances and perspectives in spinstructures and spintransport. Springer, Berlin, pp 185–250
39.
go back to reference Liu F, Hou Y, Gao S (2014) Exchange-coupled nanocomposites: chemical synthesis, characterization and applications. Chem Soc Rev 43(23):8098–8113CrossRef Liu F, Hou Y, Gao S (2014) Exchange-coupled nanocomposites: chemical synthesis, characterization and applications. Chem Soc Rev 43(23):8098–8113CrossRef
40.
go back to reference Lopez-Ortega A et al (2012) Strongly exchange coupled inverse ferrimagnetic soft/hard, MnxFe3-xO4/FexMn3-xO4, core/shell heterostructured nanoparticles. Nanoscale 4(16):5138–5147CrossRef Lopez-Ortega A et al (2012) Strongly exchange coupled inverse ferrimagnetic soft/hard, MnxFe3-xO4/FexMn3-xO4, core/shell heterostructured nanoparticles. Nanoscale 4(16):5138–5147CrossRef
41.
go back to reference Ali M et al (2007) Exchange bias using a spin glass. Nat Mater 6(1):70–75CrossRef Ali M et al (2007) Exchange bias using a spin glass. Nat Mater 6(1):70–75CrossRef
42.
go back to reference Khurshid H et al (2014) Tuning exchange bias in Fe/γ-Fe2O3 core-shell nanoparticles: impacts of interface and surface spins. Appl Phys Lett 104(7):072407CrossRef Khurshid H et al (2014) Tuning exchange bias in Fe/γ-Fe2O3 core-shell nanoparticles: impacts of interface and surface spins. Appl Phys Lett 104(7):072407CrossRef
43.
go back to reference Huang P-H, Huang H-H, Lai C-H (2007) Coexistence of exchange-bias fields and vertical magnetization shifts in ZnCoO∕NiO system. Appl Phys Lett 90(6):062509CrossRef Huang P-H, Huang H-H, Lai C-H (2007) Coexistence of exchange-bias fields and vertical magnetization shifts in ZnCoO∕NiO system. Appl Phys Lett 90(6):062509CrossRef
44.
go back to reference Inderhees SE et al (2008) Manipulating the magnetic structure of Co core/CoO shell nanoparticles: implications for controlling the exchange bias. Phys Rev Lett 101(11):117202CrossRef Inderhees SE et al (2008) Manipulating the magnetic structure of Co core/CoO shell nanoparticles: implications for controlling the exchange bias. Phys Rev Lett 101(11):117202CrossRef
45.
go back to reference Radu F, Zabel H (2008) Exchange bias effect of ferro-/antiferromagnetic heterostructures. In: Radu F, Zabel H (eds) Magnetic heterostructures. Springer, Berlin, pp 97–184 Radu F, Zabel H (2008) Exchange bias effect of ferro-/antiferromagnetic heterostructures. In: Radu F, Zabel H (eds) Magnetic heterostructures. Springer, Berlin, pp 97–184
46.
go back to reference Radu F, Zabel H (2008) Exchange bias effect of ferro-/antiferromagnetic heterostructures. In: Zabel H, Bader SD (eds) Magnetic heterostructures: advances and perspectives in spinstructures and spintransport. Springer, Berlin, pp 97–184 Radu F, Zabel H (2008) Exchange bias effect of ferro-/antiferromagnetic heterostructures. In: Zabel H, Bader SD (eds) Magnetic heterostructures: advances and perspectives in spinstructures and spintransport. Springer, Berlin, pp 97–184
47.
go back to reference Iglesias O, Labarta A, Batlle X (2008) Exchange bias phenomenology and models of core/shell nanoparticles. J Nanosci Nanotechnol 8(6):2761–2780 Iglesias O, Labarta A, Batlle X (2008) Exchange bias phenomenology and models of core/shell nanoparticles. J Nanosci Nanotechnol 8(6):2761–2780
48.
go back to reference Vasilakaki M, Trohidou KN, Nogués J (2015) Enhanced magnetic properties in antiferromagnetic-core/ferrimagnetic-shell nanoparticles. Sci Rep 5 Vasilakaki M, Trohidou KN, Nogués J (2015) Enhanced magnetic properties in antiferromagnetic-core/ferrimagnetic-shell nanoparticles. Sci Rep 5
49.
go back to reference Gawande MB et al (2015) Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44(21):7540–7590CrossRef Gawande MB et al (2015) Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44(21):7540–7590CrossRef
50.
go back to reference Galvão WS et al (2016) Super-paramagnetic nanoparticles with spinel structure: a review of synthesis and biomedical applications. Solid State Phenom 241:139–176CrossRef Galvão WS et al (2016) Super-paramagnetic nanoparticles with spinel structure: a review of synthesis and biomedical applications. Solid State Phenom 241:139–176CrossRef
51.
go back to reference Singamaneni S et al (2011) Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J Mater Chem 21(42):16819–16845CrossRef Singamaneni S et al (2011) Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J Mater Chem 21(42):16819–16845CrossRef
52.
go back to reference Leszczyński B et al (2016) The influence of oxidation process on exchange bias in egg-shaped FeO/Fe3O4 core/shell nanoparticles. J Magn Magn Mater 416:269–274CrossRef Leszczyński B et al (2016) The influence of oxidation process on exchange bias in egg-shaped FeO/Fe3O4 core/shell nanoparticles. J Magn Magn Mater 416:269–274CrossRef
53.
go back to reference Park J et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895CrossRef Park J et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895CrossRef
54.
go back to reference Ghosh Chaudhuri R, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433CrossRef Ghosh Chaudhuri R, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433CrossRef
55.
go back to reference Lee W-R et al (2005) Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. J Am Chem Soc 127(46):16090–16097CrossRef Lee W-R et al (2005) Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. J Am Chem Soc 127(46):16090–16097CrossRef
56.
go back to reference Sun X et al (2011) Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett 12(1):246–251CrossRef Sun X et al (2011) Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett 12(1):246–251CrossRef
57.
go back to reference Khurshid H et al (2013) Synthesis and magnetic properties of core/shell FeO/Fe3O4 nano-octopods. J Appl Phys 113(17):17B508 Khurshid H et al (2013) Synthesis and magnetic properties of core/shell FeO/Fe3O4 nano-octopods. J Appl Phys 113(17):17B508
58.
go back to reference Baaziz W et al (2013) High exchange bias in Fe3−δO4@ CoO core shell nanoparticles synthesized by a one-pot seed-mediated growth method. J Phys Chem C 117(21):11436–11443CrossRef Baaziz W et al (2013) High exchange bias in Fe3−δO4@ CoO core shell nanoparticles synthesized by a one-pot seed-mediated growth method. J Phys Chem C 117(21):11436–11443CrossRef
59.
go back to reference Kooti M, Matturi L (2011) Microwave-assisted fabrication of γ-Fe2O3 nanoparticles from tris (acetylacetonato) iron (III). Int NanoLett 1:38–42 Kooti M, Matturi L (2011) Microwave-assisted fabrication of γ-Fe2O3 nanoparticles from tris (acetylacetonato) iron (III). Int NanoLett 1:38–42
60.
go back to reference Yelenich O et al (2015) Synthesis and properties MFe2O4 (M=Fe, Co) nanoparticles and core–shell structures. Solid State Sci 46:19–26CrossRef Yelenich O et al (2015) Synthesis and properties MFe2O4 (M=Fe, Co) nanoparticles and core–shell structures. Solid State Sci 46:19–26CrossRef
61.
go back to reference Zhou G et al (2016) synthesized core–shell Fe2O3/Ni2O3 at room temperature by co-precipitation. The core/shell NPs presented an excellently typical bipolar resistance switching memory effects. J Alloys Compd 678:31–35 Zhou G et al (2016) synthesized core–shell Fe2O3/Ni2O3 at room temperature by co-precipitation. The core/shell NPs presented an excellently typical bipolar resistance switching memory effects. J Alloys Compd 678:31–35
62.
go back to reference Kikuchi T et al (2011) Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia. J Magn Magn Mater 323(10):1216–1222CrossRef Kikuchi T et al (2011) Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia. J Magn Magn Mater 323(10):1216–1222CrossRef
63.
go back to reference Baumgartner J et al (2013) Nucleation and growth of magnetite from solution. Nat Mater 12(4):310–314CrossRef Baumgartner J et al (2013) Nucleation and growth of magnetite from solution. Nat Mater 12(4):310–314CrossRef
64.
go back to reference Castro VF, de Queiroz AA (2011) Pontos quânticos magneto ativos: uma nova fronteira para a medicina terapêutica e diagnóstica. Rev Bras Fís Méd 4(3):15–18 Castro VF, de Queiroz AA (2011) Pontos quânticos magneto ativos: uma nova fronteira para a medicina terapêutica e diagnóstica. Rev Bras Fís Méd 4(3):15–18
65.
go back to reference Freire R et al (2013) MZnFe2O4 (M= Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis. J Nanopart Res 15(5):1–12CrossRef Freire R et al (2013) MZnFe2O4 (M= Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis. J Nanopart Res 15(5):1–12CrossRef
66.
go back to reference Sattar A, El-Sayed H, ALsuqia I (2015) Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by the hydrothermal method. J Magn Magn Mater 395:89–96CrossRef Sattar A, El-Sayed H, ALsuqia I (2015) Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by the hydrothermal method. J Magn Magn Mater 395:89–96CrossRef
67.
go back to reference Kruis FE, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J Aerosol Sci 29(5):511–535CrossRef Kruis FE, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J Aerosol Sci 29(5):511–535CrossRef
68.
go back to reference Haberland H et al (1993) Thin film growth by energetic cluster impact (ECI): comparison between experiment and molecular dynamics simulations. Mater Sci Eng: B 19(1):31–36CrossRef Haberland H et al (1993) Thin film growth by energetic cluster impact (ECI): comparison between experiment and molecular dynamics simulations. Mater Sci Eng: B 19(1):31–36CrossRef
69.
go back to reference Kołtunowicz TN et al (2017) Ferromagnetic resonance spectroscopy of CoFeZr-Al2O3 granular films containing “FeCo core–oxide shell” nanoparticles. J Magn Magn Mater 421:98–102CrossRef Kołtunowicz TN et al (2017) Ferromagnetic resonance spectroscopy of CoFeZr-Al2O3 granular films containing “FeCo core–oxide shell” nanoparticles. J Magn Magn Mater 421:98–102CrossRef
70.
go back to reference Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433CrossRef Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433CrossRef
71.
go back to reference Freire RM et al (2013) MZnFe2O4 (M = Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis. J Nanopart Res 15(5):1616CrossRef Freire RM et al (2013) MZnFe2O4 (M = Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis. J Nanopart Res 15(5):1616CrossRef
72.
go back to reference Gonçalves NS et al (2012) Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater Lett 72:36–38CrossRef Gonçalves NS et al (2012) Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater Lett 72:36–38CrossRef
73.
go back to reference Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2:154–160CrossRef Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2:154–160CrossRef
74.
go back to reference Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nanotechnol 6(9):534CrossRef Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nanotechnol 6(9):534CrossRef
75.
go back to reference Ji W et al (2014) Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloys Compd 589:61–66CrossRef Ji W et al (2014) Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloys Compd 589:61–66CrossRef
76.
go back to reference Weibel A et al (2005) The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders. Chem Mater 17(9):2378–2385CrossRef Weibel A et al (2005) The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders. Chem Mater 17(9):2378–2385CrossRef
77.
go back to reference Rietveld H (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22(1):151–152CrossRef Rietveld H (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22(1):151–152CrossRef
78.
go back to reference Fontaíña Troitiño N et al (2014) Exchange bias effect in CoO@Fe3O4 core–shell octahedron-shaped nanoparticles. Chem Mater 26(19):5566–5575CrossRef Fontaíña Troitiño N et al (2014) Exchange bias effect in CoO@Fe3O4 core–shell octahedron-shaped nanoparticles. Chem Mater 26(19):5566–5575CrossRef
79.
go back to reference Gabriel CL et al (2014) Size effects in bimagnetic CoO/CoFe2O4 core/shell nanoparticles. Nanotechnology 25(35):355704CrossRef Gabriel CL et al (2014) Size effects in bimagnetic CoO/CoFe2O4 core/shell nanoparticles. Nanotechnology 25(35):355704CrossRef
80.
go back to reference Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B: Condens Matter 192(1):55–69CrossRef Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B: Condens Matter 192(1):55–69CrossRef
81.
go back to reference Estradé S et al (2012) Distinguishing the core from the shell in MnOx/MnOy and FeOx/MnOx core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis. Micron 43(1):30–36CrossRef Estradé S et al (2012) Distinguishing the core from the shell in MnOx/MnOy and FeOx/MnOx core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis. Micron 43(1):30–36CrossRef
82.
go back to reference Nellist PD, Pennycook SJ (2000) The principles and interpretation of annular dark-field Z-contrast imaging. In: Peter WH (ed) Advances in imaging and electron physics. Elsevier, San Diego, pp 147–203 Nellist PD, Pennycook SJ (2000) The principles and interpretation of annular dark-field Z-contrast imaging. In: Peter WH (ed) Advances in imaging and electron physics. Elsevier, San Diego, pp 147–203
83.
go back to reference Krycka KL et al (2013) Resolving material-specific structures within Fe3O4|γ-Mn2O3 core|shell nanoparticles using anomalous small-angle X-ray scattering. ACS Nano 7(2):921–931CrossRef Krycka KL et al (2013) Resolving material-specific structures within Fe3O4|γ-Mn2O3 core|shell nanoparticles using anomalous small-angle X-ray scattering. ACS Nano 7(2):921–931CrossRef
84.
go back to reference Liu X et al (2015) Systematic study of exchange coupling in core–shell Fe3−δO4@CoO nanoparticles. Chem Mater 27(11):4073–4081CrossRef Liu X et al (2015) Systematic study of exchange coupling in core–shell Fe3−δO4@CoO nanoparticles. Chem Mater 27(11):4073–4081CrossRef
85.
go back to reference Sathya A et al (2016) CoxFe3–xO4 nanocubes for theranostic applications: effect of cobalt content and particle size. Chem Mater 28(6):1769–1780CrossRef Sathya A et al (2016) CoxFe3–xO4 nanocubes for theranostic applications: effect of cobalt content and particle size. Chem Mater 28(6):1769–1780CrossRef
86.
go back to reference Knappett BR et al (2013) Characterisation of Co@Fe3O4 core@shell nanoparticles using advanced electron microscopy. Nanoscale 5(13):5765–5772CrossRef Knappett BR et al (2013) Characterisation of Co@Fe3O4 core@shell nanoparticles using advanced electron microscopy. Nanoscale 5(13):5765–5772CrossRef
87.
go back to reference Khan U et al (2016) Response of iron oxide on hetero-nanostructures of soft and hard ferrites. Superlattices Microstruct 92:374–379CrossRef Khan U et al (2016) Response of iron oxide on hetero-nanostructures of soft and hard ferrites. Superlattices Microstruct 92:374–379CrossRef
88.
go back to reference Dodrill B (1999) Magnetic media measurements with a VSM. Lake Shore Cryotronics, Westerville, p 575 Dodrill B (1999) Magnetic media measurements with a VSM. Lake Shore Cryotronics, Westerville, p 575
89.
go back to reference Gao Y et al (2016) Exchange bias effect in CuCr2O4/Cr2O3 nanogranular systems. J Alloys Compd 673:126–130CrossRef Gao Y et al (2016) Exchange bias effect in CuCr2O4/Cr2O3 nanogranular systems. J Alloys Compd 673:126–130CrossRef
90.
go back to reference Srivastava S, Gajbhiye NS (2016) Exchange coupled L1 0-FePt/fcc-FePt nanomagnets: synthesis, characterization and magnetic properties. J Magn Magn Mater 401:969–976CrossRef Srivastava S, Gajbhiye NS (2016) Exchange coupled L1 0-FePt/fcc-FePt nanomagnets: synthesis, characterization and magnetic properties. J Magn Magn Mater 401:969–976CrossRef
91.
go back to reference Chikazumi S (1997) Physics of ferromagnetism. Oxford University Press, New York, pp 482–498 Chikazumi S (1997) Physics of ferromagnetism. Oxford University Press, New York, pp 482–498
92.
go back to reference Eisenmenger J, Schuller IK (2003) Magnetic nanostructures: overcoming thermal fluctuations. Nat Mater 2(7):437–438CrossRef Eisenmenger J, Schuller IK (2003) Magnetic nanostructures: overcoming thermal fluctuations. Nat Mater 2(7):437–438CrossRef
93.
go back to reference Pankhurst QA et al (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167CrossRef Pankhurst QA et al (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167CrossRef
94.
go back to reference Bao Y et al (2016) Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J Mater Sci 51(1):513–553CrossRef Bao Y et al (2016) Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J Mater Sci 51(1):513–553CrossRef
95.
go back to reference Frey NA et al (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38(9):2532–2542CrossRef Frey NA et al (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38(9):2532–2542CrossRef
96.
go back to reference Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192(2):203–232CrossRef Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192(2):203–232CrossRef
97.
go back to reference Falk RB, Hooper GD (1961) Elongated iron-cobalt: ferrite, a new, lightweight, permanent magnet material. J Appl Phys 32(3):S190–S191CrossRef Falk RB, Hooper GD (1961) Elongated iron-cobalt: ferrite, a new, lightweight, permanent magnet material. J Appl Phys 32(3):S190–S191CrossRef
98.
go back to reference Balamurugan B et al (2012) Prospects for nanoparticle-based permanent magnets. Scr Mater 67(6):542–547CrossRef Balamurugan B et al (2012) Prospects for nanoparticle-based permanent magnets. Scr Mater 67(6):542–547CrossRef
99.
go back to reference Giner-Casares JJ et al (2016) Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Mater Today 19(1):19–28CrossRef Giner-Casares JJ et al (2016) Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Mater Today 19(1):19–28CrossRef
100.
go back to reference Arruebo M et al (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32CrossRef Arruebo M et al (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32CrossRef
101.
go back to reference Chomoucka J et al (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62(2):144–149CrossRef Chomoucka J et al (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62(2):144–149CrossRef
102.
go back to reference Mamiya H (2013) Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia. J Nanomater 2013:17CrossRef Mamiya H (2013) Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia. J Nanomater 2013:17CrossRef
103.
go back to reference Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324(6):903–915CrossRef Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324(6):903–915CrossRef
104.
go back to reference Knobel M et al (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8(6):2836–2857 Knobel M et al (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8(6):2836–2857
105.
go back to reference Suto M et al (2009) Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater 321(10):1493–1496CrossRef Suto M et al (2009) Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater 321(10):1493–1496CrossRef
106.
go back to reference Hergt R, Andrä W (2007) Magnetic hyperthermia and thermoablation. In: Magnetism in medicine, Wiley, New York, pp 550–570 Hergt R, Andrä W (2007) Magnetic hyperthermia and thermoablation. In: Magnetism in medicine, Wiley, New York, pp 550–570
107.
go back to reference Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRef Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRef
108.
go back to reference Kim D-H, Nikles DE, Brazel CS (2010) Synthesis and characterization of multifunctional chitosan-MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials 3(7):4051–4065CrossRef Kim D-H, Nikles DE, Brazel CS (2010) Synthesis and characterization of multifunctional chitosan-MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials 3(7):4051–4065CrossRef
109.
go back to reference Wang X, Gu H, Yang Z (2005) The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater 293(1):334–340CrossRef Wang X, Gu H, Yang Z (2005) The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater 293(1):334–340CrossRef
110.
go back to reference Kallumadil M et al (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321(10):1509–1513CrossRef Kallumadil M et al (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321(10):1509–1513CrossRef
111.
go back to reference Habib AH et al (2008) Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J Appl Phys 103(7):07A307 Habib AH et al (2008) Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J Appl Phys 103(7):07A307
112.
go back to reference Cheon JW, Jang JT (2011) Heat generating nanomaterials. Google patents Cheon JW, Jang JT (2011) Heat generating nanomaterials. Google patents
113.
go back to reference Ivkov R et al (2014) A process for making iron oxide nanoparticle preparations for cancer hyperthermia. Google patents Ivkov R et al (2014) A process for making iron oxide nanoparticle preparations for cancer hyperthermia. Google patents
114.
go back to reference Coey JMD (2002) Permanent magnet applications. J Magn Magn Mater 248(3):441–456CrossRef Coey JMD (2002) Permanent magnet applications. J Magn Magn Mater 248(3):441–456CrossRef
115.
go back to reference Hirotoshi F, Hiroshi I (1992) Effect of intergrain exchange interaction on magnetic properties in isotropic Nd-Fe-B magnets. Jpn J Appl Phys 31(5R):1347 Hirotoshi F, Hiroshi I (1992) Effect of intergrain exchange interaction on magnetic properties in isotropic Nd-Fe-B magnets. Jpn J Appl Phys 31(5R):1347
116.
go back to reference Kronmüller H et al (1996) Micromagnetism and microstructure of hard magnetic materials. J Phys D Appl Phys 29(9):2274CrossRef Kronmüller H et al (1996) Micromagnetism and microstructure of hard magnetic materials. J Phys D Appl Phys 29(9):2274CrossRef
117.
go back to reference Shen J et al (2015) Synthesis and characterization of rare-earth-free magnetic manganese bismuth nanocrystals. RSC Adv 5(8):5567–5570CrossRef Shen J et al (2015) Synthesis and characterization of rare-earth-free magnetic manganese bismuth nanocrystals. RSC Adv 5(8):5567–5570CrossRef
118.
go back to reference Zeng H et al (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420(6914):395–398CrossRef Zeng H et al (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420(6914):395–398CrossRef
119.
go back to reference Skomski R, Coey JMD (1993) Giant energy product in nanostructured two-phase magnets. Phys Rev B 48(21):15812–15816CrossRef Skomski R, Coey JMD (1993) Giant energy product in nanostructured two-phase magnets. Phys Rev B 48(21):15812–15816CrossRef
120.
go back to reference Imran K, Jisang H (2014) Potential rare earth free permanent magnet: interstitial boron doped FeCo. J Phys D Appl Phys 47(41):415002CrossRef Imran K, Jisang H (2014) Potential rare earth free permanent magnet: interstitial boron doped FeCo. J Phys D Appl Phys 47(41):415002CrossRef
121.
go back to reference Sun X et al (2012) Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett 12(1):246–251CrossRef Sun X et al (2012) Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett 12(1):246–251CrossRef
122.
go back to reference López-Ortega A et al (2015) Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem Mater 27(11):4048–4056CrossRef López-Ortega A et al (2015) Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem Mater 27(11):4048–4056CrossRef
123.
go back to reference Bedanta S et al (2013) Magnetic nanoparticles: a subject for both fundamental research and applications. J Nanomater 2013:22 Bedanta S et al (2013) Magnetic nanoparticles: a subject for both fundamental research and applications. J Nanomater 2013:22
124.
go back to reference Pedro T et al (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182CrossRef Pedro T et al (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182CrossRef
125.
go back to reference Pankhurst QA et al (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42(22):224001CrossRef Pankhurst QA et al (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42(22):224001CrossRef
126.
go back to reference Hao R et al (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742CrossRef Hao R et al (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742CrossRef
127.
go back to reference Tran N, Webster TJ (2010) Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20(40):8760–8767CrossRef Tran N, Webster TJ (2010) Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20(40):8760–8767CrossRef
128.
go back to reference Weissleder R et al (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152(1):167–173CrossRef Weissleder R et al (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152(1):167–173CrossRef
129.
go back to reference Yang SP et al (2013) Method for preparing core-shell structure ferrite magnetic nanocomposite used in NMR imaging contrast agent Yang SP et al (2013) Method for preparing core-shell structure ferrite magnetic nanocomposite used in NMR imaging contrast agent
130.
go back to reference Robert D et al (2010) Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells. Biomaterials 31(7):1586–1595CrossRef Robert D et al (2010) Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells. Biomaterials 31(7):1586–1595CrossRef
131.
go back to reference Weissleder R, Lee H, Yoon TJ (2013) Magnetic nanoparticles Weissleder R, Lee H, Yoon TJ (2013) Magnetic nanoparticles
132.
go back to reference Falk RB (1966) Magnetic recording tape with magnetic layer of oxide coated iron-cobalt alloy particles in a binder. US Falk RB (1966) Magnetic recording tape with magnetic layer of oxide coated iron-cobalt alloy particles in a binder. US
133.
go back to reference Terry WM (2005) Ultimate limits to thermally assisted magnetic recording. J Phys Condens Matter 17(7):R315CrossRef Terry WM (2005) Ultimate limits to thermally assisted magnetic recording. J Phys Condens Matter 17(7):R315CrossRef
134.
go back to reference Richter HJ (2007) The transition from longitudinal to perpendicular recording. J Phys D Appl Phys 40(9):R149CrossRef Richter HJ (2007) The transition from longitudinal to perpendicular recording. J Phys D Appl Phys 40(9):R149CrossRef
135.
go back to reference Hans Jürgen R (1999) Recent advances in the recording physics of thin-film media. J Phys D Appl Phys 32(21):R147CrossRef Hans Jürgen R (1999) Recent advances in the recording physics of thin-film media. J Phys D Appl Phys 32(21):R147CrossRef
136.
go back to reference Mallinson J (1969) Maximum signal-to-noise ratio of a tape recorder. IEEE Trans Magn 5(3):182–186CrossRef Mallinson J (1969) Maximum signal-to-noise ratio of a tape recorder. IEEE Trans Magn 5(3):182–186CrossRef
137.
go back to reference Mallinson JC (1991) A new theory of recording media noise. IEEE Trans Magn 27(4):3519–3531CrossRef Mallinson JC (1991) A new theory of recording media noise. IEEE Trans Magn 27(4):3519–3531CrossRef
138.
go back to reference Victora RH, Shen X (2008) Exchange coupled composite media. In: Proceedings of the IEEE, vol 96(11), pp 1799–1809 Victora RH, Shen X (2008) Exchange coupled composite media. In: Proceedings of the IEEE, vol 96(11), pp 1799–1809
139.
go back to reference Misra DK (2011) FeRh-FePt core shell nanostructure for ultra-high density storage media: US Misra DK (2011) FeRh-FePt core shell nanostructure for ultra-high density storage media: US
140.
go back to reference Hattori Y (2011) Magnetic particle and method of preparing the same, and magnetic recording medium: US Hattori Y (2011) Magnetic particle and method of preparing the same, and magnetic recording medium: US
141.
go back to reference Shukla N et al (2013) Method of producing self-assembled cubic FePt nanoparticles and apparatus using same: US Shukla N et al (2013) Method of producing self-assembled cubic FePt nanoparticles and apparatus using same: US
142.
go back to reference Luo J et al (2016) Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res Lett 11(1):1–14CrossRef Luo J et al (2016) Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res Lett 11(1):1–14CrossRef
143.
go back to reference Cheng Y et al (2010) Preparation, magnetic and microwave absorption properties of La0.5Sr0.5MnO3/La(OH)3 composites. Mater Res Bull 45(6):663–667CrossRef Cheng Y et al (2010) Preparation, magnetic and microwave absorption properties of La0.5Sr0.5MnO3/La(OH)3 composites. Mater Res Bull 45(6):663–667CrossRef
144.
go back to reference Gairola SP et al (2010) Enhanced microwave absorption properties in polyaniline and nano-ferrite composites in X-band. Synth Met 160:2315–2318CrossRef Gairola SP et al (2010) Enhanced microwave absorption properties in polyaniline and nano-ferrite composites in X-band. Synth Met 160:2315–2318CrossRef
145.
go back to reference Li Y et al (2015) Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic-dielectric synergy. J Mater Chem C 3(36):9276–9282CrossRef Li Y et al (2015) Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic-dielectric synergy. J Mater Chem C 3(36):9276–9282CrossRef
146.
go back to reference Chang H-Y, Cheng S-Y, Sheu C-I (2008) Microwave sintering of ferroelectric PZT thick films. Mater Lett 62(21–22):3620–3622CrossRef Chang H-Y, Cheng S-Y, Sheu C-I (2008) Microwave sintering of ferroelectric PZT thick films. Mater Lett 62(21–22):3620–3622CrossRef
147.
go back to reference Fan M, He ZF, Pang H (2013) Microwave absorption enhancement of CIP/PANI composites. Synth Met 166:1–6CrossRef Fan M, He ZF, Pang H (2013) Microwave absorption enhancement of CIP/PANI composites. Synth Met 166:1–6CrossRef
148.
go back to reference Zhu C-L et al (2010) Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J Phys Chem C 114(39):16229–16235CrossRef Zhu C-L et al (2010) Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J Phys Chem C 114(39):16229–16235CrossRef
149.
go back to reference Kim SW, Park JH, Kim YB (2010) Magnetic composite powders, preparing method thereof and electromagnetic noise suppressing films comprising same: US Kim SW, Park JH, Kim YB (2010) Magnetic composite powders, preparing method thereof and electromagnetic noise suppressing films comprising same: US
150.
go back to reference Hennig I et al (2013) Microwave absorbing composition: US Hennig I et al (2013) Microwave absorbing composition: US
151.
go back to reference Imaoka N et al (2008) Magnetic material for high frequency wave, and method for production thereof Imaoka N et al (2008) Magnetic material for high frequency wave, and method for production thereof
152.
go back to reference Sayan C et al (2013) Magnetic entropy change in core/shell and hollow nanoparticles. J Phys Condens Matter 25(42):426003CrossRef Sayan C et al (2013) Magnetic entropy change in core/shell and hollow nanoparticles. J Phys Condens Matter 25(42):426003CrossRef
Metadata
Title
Bimagnetic Core/Shell Nanoparticles: Current Status and Future Possibilities
Authors
Tiago M. Freire
Wesley S. Galvão
Rafael M. Freire
P. B. A. Fechine
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-52087-2_3

Premium Partners