Skip to main content
Top

2015 | OriginalPaper | Chapter

10. Bioenergy: Biofuels Process Technology

Authors : Ajay Kumar, Joginder Singh, Chinnappan Baskar, Seeram Ramakrishna

Published in: Advances in Bioprocess Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bioenergy is a renewable source of primary energy, and its sustainable use does not emit carbon dioxide. Two main drivers have pushed renewable energy production to the top of global agendas: climate change and energy security. Rising concern over depleting fossil fuel and greenhouse gas limits has resulted in a high level of interest in non-conventional fuel originating from bio-renewable sources including sugars, starches, lignocellulosic materials and algal biomass. Bioenergy crops can be grown for two contrasting markets: power generation (electricity, heat, and combined heat and power) and liquid transport fuels. Although over one billion tons of biomass per year would be potentially available to meet the 30 % replacement of petroleum derived gasoline in 2030, the high cost of biomass could be a serious hindrance if potential lands and feedstocks are not managed and utilized efficiently. Biofuels such as Ethanol, Butanol, Hydrogen gas etc. produced from various lignocellulosic materials such as wood, agricultural and forest residues has the potential to be a valuable substitute for, or complement to, gasoline. Oil-seed crops are also by far the largest group of exploitable renewable biomass resource for liquid fuel such as biodiesel and energy generation. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification. A technology using microbial fuel cells (MFCs) that convert the energy stored in chemical bonds in organic compounds to electrical energy achieved through the catalytic reactions by microorganisms has generated considerable interests among academic researchers in recent years. Currently, real-world applications of MFCs are limited because of their low power density level of several thousand mW/m2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493–1513. Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493–1513.
go back to reference Al-Shorgani, N. K. N., Kalil, M. S., & Yusoff, W. M. W. (2012). Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess and Biosystems Engineering, 35(5), 817–826. Al-Shorgani, N. K. N., Kalil, M. S., & Yusoff, W. M. W. (2012). Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess and Biosystems Engineering, 35(5), 817–826.
go back to reference Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., & Gruber, L. (2007). Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, 118(1), 173–182. Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., & Gruber, L. (2007). Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, 118(1), 173–182.
go back to reference Antoni, D., Zverlov, V. V., & Schwarz, W. H. (2007). Biofuels from microbes. Applied Microbiology and Biotechnology, 77(1), 23–35. Antoni, D., Zverlov, V. V., & Schwarz, W. H. (2007). Biofuels from microbes. Applied Microbiology and Biotechnology, 77(1), 23–35.
go back to reference Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2011). Biodiesel separation and purification: A review. Renewable Energy, 36(2), 437–443. Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2011). Biodiesel separation and purification: A review. Renewable Energy, 36(2), 437–443.
go back to reference Atsumi, S., & Liao, J. C. (2008). Metabolic engineering for advanced biofuels production from Escherichia coli. Current Opinion in Biotechnology, 19(5), 414–419. Atsumi, S., & Liao, J. C. (2008). Metabolic engineering for advanced biofuels production from Escherichia coli. Current Opinion in Biotechnology, 19(5), 414–419.
go back to reference Aworanti, O. A., Agarry, S. E., & Ajani, A. O. (2013). Statistical optimization of process variables for biodiesel production from waste cooking oil using heterogeneous base catalyst. British Biotechnology Journal, 3(2), 116–132. Aworanti, O. A., Agarry, S. E., & Ajani, A. O. (2013). Statistical optimization of process variables for biodiesel production from waste cooking oil using heterogeneous base catalyst. British Biotechnology Journal, 3(2), 116–132.
go back to reference Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86(11), 2273–2282. Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86(11), 2273–2282.
go back to reference Balat, H., & Kırtay, E. (2010). Hydrogen from biomass – Present scenario and future prospects. International Journal of Hydrogen Energy, 35(14), 7416–7426. Balat, H., & Kırtay, E. (2010). Hydrogen from biomass – Present scenario and future prospects. International Journal of Hydrogen Energy, 35(14), 7416–7426.
go back to reference Baskar, C., Baskar, S., & Dhillon, R. S. (2012a). Biomass conversion: The interface of biotechnology, chemistry and materials sceince. London: Springer. ISBN 978-3-642-28417-5. Baskar, C., Baskar, S., & Dhillon, R. S. (2012a). Biomass conversion: The interface of biotechnology, chemistry and materials sceince. London: Springer. ISBN 978-3-642-28417-5.
go back to reference Baskar, C., Baskar, S., & Dhillon, R. S. (2012b). Biomass conversion: The interface of biotechnology, chemistry and materials science. New York, NY: Springer. Baskar, C., Baskar, S., & Dhillon, R. S. (2012b). Biomass conversion: The interface of biotechnology, chemistry and materials science. New York, NY: Springer.
go back to reference Bastos, V. D. (2007). Etanol, alcoolquímica e biorrefinarias. BNDES Setorial, 25, 5–38. Bastos, V. D. (2007). Etanol, alcoolquímica e biorrefinarias. BNDES Setorial, 25, 5–38.
go back to reference BEguin, P., & Aubert, J. P. (1994). The biological degradation of cellulose. FEMS Microbiology Reviews, 13(1), 25–58. BEguin, P., & Aubert, J. P. (1994). The biological degradation of cellulose. FEMS Microbiology Reviews, 13(1), 25–58.
go back to reference Berchmans, H. J., & Hirata, S. (2008). Biodiesel production from crude Jatropha curcus L. Seed oil with a high content of free fatty acids. Bioresource Technology, 99, 1716–1721. Berchmans, H. J., & Hirata, S. (2008). Biodiesel production from crude Jatropha curcus L. Seed oil with a high content of free fatty acids. Bioresource Technology, 99, 1716–1721.
go back to reference Bjerre, A. B., Olesen, A. B., & Fernqvist, T. (1996). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering, 49(5), 568–577. Bjerre, A. B., Olesen, A. B., & Fernqvist, T. (1996). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering, 49(5), 568–577.
go back to reference Bramucci, M. G., Flint, D., Miller, E. S., Nagarajan, V., Sedkova, N., Singh, M., et al. (2008). US20080274526. Bramucci, M. G., Flint, D., Miller, E. S., Nagarajan, V., Sedkova, N., Singh, M., et al. (2008). US20080274526.
go back to reference Brosseau, J. D., & Zajic, J. E. (1982). Hydrogen‐gas production with Citrobacter intermedim and Clostridium pasteurianum. Journal of Chemical Technology and Biotechnology, 32(3), 496–502. Brosseau, J. D., & Zajic, J. E. (1982). Hydrogen‐gas production with Citrobacter intermedim and Clostridium pasteurianum. Journal of Chemical Technology and Biotechnology, 32(3), 496–502.
go back to reference Bryant, M. P. (1979). Microbial methane production—Theoretical aspects. Journal of Animal Science, 48(1), 193–201. Bryant, M. P. (1979). Microbial methane production—Theoretical aspects. Journal of Animal Science, 48(1), 193–201.
go back to reference Bryant, D. L., & Blaschek, H. P. (1988). Buffering as a means for increasing growth and butanol production by Clostridium acetobutylicum. Journal of Industrial Microbiology, 3(1), 49–55. Bryant, D. L., & Blaschek, H. P. (1988). Buffering as a means for increasing growth and butanol production by Clostridium acetobutylicum. Journal of Industrial Microbiology, 3(1), 49–55.
go back to reference Campos, E. J., Qureshi, N., & Blaschek, H. P. (2002). Production of acetone butanol ethanol from degermed corn using Clostridium beijerinckii BA101. Applied Biochemistry and Biotechnology, 98–100, 553–561. Campos, E. J., Qureshi, N., & Blaschek, H. P. (2002). Production of acetone butanol ethanol from degermed corn using Clostridium beijerinckii BA101. Applied Biochemistry and Biotechnology, 98–100, 553–561.
go back to reference Canakci, M., & Sanli, H. (2008). Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology & Biotechnology, 35(5), 431–441. Canakci, M., & Sanli, H. (2008). Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology & Biotechnology, 35(5), 431–441.
go back to reference Cardona, C. A., & Sánchez, Ó. J. (2007). Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology, 98(12), 2415–2457. Cardona, C. A., & Sánchez, Ó. J. (2007). Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology, 98(12), 2415–2457.
go back to reference Claassen, P. A. M., Budde, M. A. W., & López-Contreras, A. M. (2000). Acetone, butanol and ethanol production from domestic organic waste by solventogenic clostridia. Journal of Molecular Microbiology and Biotechnology, 2, 39–44. Claassen, P. A. M., Budde, M. A. W., & López-Contreras, A. M. (2000). Acetone, butanol and ethanol production from domestic organic waste by solventogenic clostridia. Journal of Molecular Microbiology and Biotechnology, 2, 39–44.
go back to reference Claassen, P. A. M., Van Lier, J. B., Contreras, A. L., Van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., et al. (1999). Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52(6), 741–755. Claassen, P. A. M., Van Lier, J. B., Contreras, A. L., Van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., et al. (1999). Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52(6), 741–755.
go back to reference Decker, S. R., Sheehan, J., Dayton, D. C., Bozell, J. J., Adney, W. S., Hames, B., et al. (2007). Biomass conversion. In J. A. Kent (Ed.), Kent and Riegel’s handbook of industrial chemistry and biotechnology (pp. 1449–1548). New York, NY: Springer. Decker, S. R., Sheehan, J., Dayton, D. C., Bozell, J. J., Adney, W. S., Hames, B., et al. (2007). Biomass conversion. In J. A. Kent (Ed.), Kent and Riegel’s handbook of industrial chemistry and biotechnology (pp. 1449–1548). New York, NY: Springer.
go back to reference Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science, 31(5), 466–487. Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science, 31(5), 466–487.
go back to reference Demirbas, A. (2009a). Biohydrogen for future engine fuel demands. London: Springer. Demirbas, A. (2009a). Biohydrogen for future engine fuel demands. London: Springer.
go back to reference Demirbas, A. (2009b). Biorenewable liquid fuels. Biofuels: Securing the planet’s future energy needs (pp. 103–230). New York, NY: Springer. Demirbas, A. (2009b). Biorenewable liquid fuels. Biofuels: Securing the planet’s future energy needs (pp. 103–230). New York, NY: Springer.
go back to reference Doran, P. M. (1995). Bioprocess engineering principles. Waltham, MA: Academic. Doran, P. M. (1995). Bioprocess engineering principles. Waltham, MA: Academic.
go back to reference Drapcho, C. M., Nhuan, N. P., & Walker, T. H. (2008). Biofuels engineering process technology (pp. 334–335). New York, NY: McGraw-Hill. Drapcho, C. M., Nhuan, N. P., & Walker, T. H. (2008). Biofuels engineering process technology (pp. 334–335). New York, NY: McGraw-Hill.
go back to reference Duff, S. J., & Murray, W. D. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresource Technology, 55(1), 1–33. Duff, S. J., & Murray, W. D. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresource Technology, 55(1), 1–33.
go back to reference Dürre, P. (2008). Fermentative butanol production. Annals of the New York Academy of Sciences, 1125(1), 353–362. Dürre, P. (2008). Fermentative butanol production. Annals of the New York Academy of Sciences, 1125(1), 353–362.
go back to reference Dürre, P. (2011). Fermentative production of butanol – The academic perspective. Current Opinion in Biotechnology, 22(3), 331–336. Dürre, P. (2011). Fermentative production of butanol – The academic perspective. Current Opinion in Biotechnology, 22(3), 331–336.
go back to reference Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., & Penner, M. H. (1997). Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresource Technology, 59(2), 129–136. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., & Penner, M. H. (1997). Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresource Technology, 59(2), 129–136.
go back to reference Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2003). Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World Journal of Microbiology and Biotechnology, 19(6), 595–603. Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2003). Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World Journal of Microbiology and Biotechnology, 19(6), 595–603.
go back to reference Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2004a). Acetone butanol ethanol (ABE) production from concentrated substrate: Reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Applied Microbiology and Biotechnology, 63(6), 653–658. Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2004a). Acetone butanol ethanol (ABE) production from concentrated substrate: Reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Applied Microbiology and Biotechnology, 63(6), 653–658.
go back to reference Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2004b). Butanol fermentation research: Upstream and downstream manipulations. The Chemical Record, 4(5), 305–314. Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2004b). Butanol fermentation research: Upstream and downstream manipulations. The Chemical Record, 4(5), 305–314.
go back to reference Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007a). Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnology and Bioengineering, 97(6), 1460–1469. Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007a). Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnology and Bioengineering, 97(6), 1460–1469.
go back to reference Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007b). Production of acetone-butanol-ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochemistry, 42, 34–39. Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007b). Production of acetone-butanol-ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochemistry, 42, 34–39.
go back to reference Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2007c). Bioproduction of butanol from biomass: From genes to bioreactors. Current Opinion in Biotechnology, 18(3), 220–227. Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2007c). Bioproduction of butanol from biomass: From genes to bioreactors. Current Opinion in Biotechnology, 18(3), 220–227.
go back to reference Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1987). Enzymatic hydrolysis. In L. T. Fan, M. M. Gharpuray, & Y. H. Lee (Eds.), Cellulose hydrolysis (pp. 21–119). Berlin: Springer. Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1987). Enzymatic hydrolysis. In L. T. Fan, M. M. Gharpuray, & Y. H. Lee (Eds.), Cellulose hydrolysis (pp. 21–119). Berlin: Springer.
go back to reference Festel, G. W. (2008). Biofuels – Economic aspects. Chemical Engineering & Technology, 31(5), 715–720. Festel, G. W. (2008). Biofuels – Economic aspects. Chemical Engineering & Technology, 31(5), 715–720.
go back to reference Figueira, M. M., Volesky, B., Ciminelli, V. S. T., & Roddick, F. A. (2000). Biosorption of metals in brown seaweed biomass. Water Research, 34(1), 196–204. Figueira, M. M., Volesky, B., Ciminelli, V. S. T., & Roddick, F. A. (2000). Biosorption of metals in brown seaweed biomass. Water Research, 34(1), 196–204.
go back to reference Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Selection and optimization of microbial hosts for biofuels production. Metabolic Engineering, 10(6), 295–304. Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Selection and optimization of microbial hosts for biofuels production. Metabolic Engineering, 10(6), 295–304.
go back to reference Galbe, M., & Zacchi, G. (2002). A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology, 59(6), 618–628. Galbe, M., & Zacchi, G. (2002). A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology, 59(6), 618–628.
go back to reference García, V., Päkkilä, J., Ojamo, H., Muurinen, E., & Keiski, R. L. (2011). Challenges in biobutanol production: How to improve the efficiency? Renewable and Sustainable Energy Reviews, 15(2), 964–980. García, V., Päkkilä, J., Ojamo, H., Muurinen, E., & Keiski, R. L. (2011). Challenges in biobutanol production: How to improve the efficiency? Renewable and Sustainable Energy Reviews, 15(2), 964–980.
go back to reference GHeshlaghi, R. E. Z. A., Scharer, J. M., Moo-Young, M., & Chou, C. P. (2009). Metabolic pathways of clostridia for producing butanol. Biotechnology Advances, 27(6), 764–781. GHeshlaghi, R. E. Z. A., Scharer, J. M., Moo-Young, M., & Chou, C. P. (2009). Metabolic pathways of clostridia for producing butanol. Biotechnology Advances, 27(6), 764–781.
go back to reference Ghirardi, M. L., Kosourov, S., Maness, P., Smolinski, S., & Seibert, M. (2010). Algal hydrogen production. Encyclopedia of Industrial Biotechnology. New York: Wiley. Ghirardi, M. L., Kosourov, S., Maness, P., Smolinski, S., & Seibert, M. (2010). Algal hydrogen production. Encyclopedia of Industrial Biotechnology. New York: Wiley.
go back to reference Godin, C., & Engasser, J. M. (1990). Two-stage continuous fermentation of Clostridium acetobutylicum: Effects of pH and dilution rate. Applied Microbiology and Biotechnology, 33(3), 269–273. Godin, C., & Engasser, J. M. (1990). Two-stage continuous fermentation of Clostridium acetobutylicum: Effects of pH and dilution rate. Applied Microbiology and Biotechnology, 33(3), 269–273.
go back to reference Gottschalk, G. (1986). Bacterial fermentations. In G. Gottschalk (Ed.), Bacterial metabolism (pp. 208–282). New York, NY: Springer. Gottschalk, G. (1986). Bacterial fermentations. In G. Gottschalk (Ed.), Bacterial metabolism (pp. 208–282). New York, NY: Springer.
go back to reference Green, E. M. (2011). Fermentative production of butanol – The industrial perspective. Current Opinion in Biotechnology, 22(3), 337–343. Green, E. M. (2011). Fermentative production of butanol – The industrial perspective. Current Opinion in Biotechnology, 22(3), 337–343.
go back to reference Grimmler, C., Janssen, H., Krauβe, D., Fischer, R. J., Bahl, H., Dürre, P., et al. (2011). Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. Journal of Molecular Microbiology and Biotechnology, 20(1), 1. Grimmler, C., Janssen, H., Krauβe, D., Fischer, R. J., Bahl, H., Dürre, P., et al. (2011). Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. Journal of Molecular Microbiology and Biotechnology, 20(1), 1.
go back to reference Grobben, N. C., Eggink, G., Cuperus, F. P., & Huizing, H. J. (1993). Production of acetone, butanol and ethanol (ABE) from potato wastes; fermentation with integrated membrane extraction. Applied Microbiology and Biotechnology, 39, 494–498. Grobben, N. C., Eggink, G., Cuperus, F. P., & Huizing, H. J. (1993). Production of acetone, butanol and ethanol (ABE) from potato wastes; fermentation with integrated membrane extraction. Applied Microbiology and Biotechnology, 39, 494–498.
go back to reference Grupe, H., & Gottschalk, G. (1992). Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Applied and Environmental Microbiologyl, 58(12), 3896–3902. Grupe, H., & Gottschalk, G. (1992). Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Applied and Environmental Microbiologyl, 58(12), 3896–3902.
go back to reference Gutierrez, N. A., Maddox, I. S., Schuster, K. C., Swoboda, H., & Gapes, J. R. (1998). Strain comparison and medium preparation for the acetone-butanol-ethanol (ABE) fermentation process using a substrate of potato. Bioresource Technology, 66, 263–265. Gutierrez, N. A., Maddox, I. S., Schuster, K. C., Swoboda, H., & Gapes, J. R. (1998). Strain comparison and medium preparation for the acetone-butanol-ethanol (ABE) fermentation process using a substrate of potato. Bioresource Technology, 66, 263–265.
go back to reference Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74(5), 937–953. Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74(5), 937–953.
go back to reference Hallenbeck, P. C., & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27(11), 1185–1193. Hallenbeck, P. C., & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27(11), 1185–1193.
go back to reference Heitmann, S., Krings, J., Kreis, P., Lennert, A., Pitner, W. R., Górak, A., et al. (2012). Recovery of n-butanol using ionic liquid-based pervaporation membranes. Separation and Purification Technology, 97, 108–114. Heitmann, S., Krings, J., Kreis, P., Lennert, A., Pitner, W. R., Górak, A., et al. (2012). Recovery of n-butanol using ionic liquid-based pervaporation membranes. Separation and Purification Technology, 97, 108–114.
go back to reference Holm, J., Lassi, U., Romar, H., Lahti, R., Kärkkäinen, J., & Lajunen, M. (2012). Pretreatment of fibre sludge in ionic liquids followed by enzyme and acid catalysed hydrolysis. Catalysis Today, 196(1), 11–15. Holm, J., Lassi, U., Romar, H., Lahti, R., Kärkkäinen, J., & Lajunen, M. (2012). Pretreatment of fibre sludge in ionic liquids followed by enzyme and acid catalysed hydrolysis. Catalysis Today, 196(1), 11–15.
go back to reference Hossain, A. B. M. S., Nasrulhaq, B. A., Salleh, A., & Chandran, S. (2010). Biodiesel production from waste soybean oil biomass as renewable energy and environmental recycled process. African Journal of Biotechnology, 9(27), 4233–4240. Hossain, A. B. M. S., Nasrulhaq, B. A., Salleh, A., & Chandran, S. (2010). Biodiesel production from waste soybean oil biomass as renewable energy and environmental recycled process. African Journal of Biotechnology, 9(27), 4233–4240.
go back to reference Huang, H., Liu, H., & Gan, Y. R. (2010). Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnology Advances, 28(5), 651–657. Huang, H., Liu, H., & Gan, Y. R. (2010). Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnology Advances, 28(5), 651–657.
go back to reference Huesemann, M. H., Kuo, L. J., Urquhart, L., Gill, G. A., & Roesijadi, G. (2012). Acetone-butanol fermentation of marine macroalgae. Bioresource Technology, 108, 305–309. Huesemann, M. H., Kuo, L. J., Urquhart, L., Gill, G. A., & Roesijadi, G. (2012). Acetone-butanol fermentation of marine macroalgae. Bioresource Technology, 108, 305–309.
go back to reference Jesse, T. W., Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2002). Production of butanol from starch-based waste packing peanuts and agricultural waste. Journal of Industrial Microbiology and Biotechnology, 29(3), 117–123. Jesse, T. W., Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2002). Production of butanol from starch-based waste packing peanuts and agricultural waste. Journal of Industrial Microbiology and Biotechnology, 29(3), 117–123.
go back to reference John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 102(1), 186–193. John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 102(1), 186–193.
go back to reference Jones, D. T., Van der Westhuizen, A., Long, S., Allcock, E. R., Reid, S. J., & Woods, D. R. (1982). Solvent production and morphological changes in Clostridium acetobutylicum. Applied and Environmental Microbiology, 43(6), 1434–1439. Jones, D. T., Van der Westhuizen, A., Long, S., Allcock, E. R., Reid, S. J., & Woods, D. R. (1982). Solvent production and morphological changes in Clostridium acetobutylicum. Applied and Environmental Microbiology, 43(6), 1434–1439.
go back to reference Jones, D. T., & Woods, D. R. (1986). Acetone-butanol fermentation revisited. Microbiological Reviews, 50(4), 484. Jones, D. T., & Woods, D. R. (1986). Acetone-butanol fermentation revisited. Microbiological Reviews, 50(4), 484.
go back to reference Junelles, A. M., Janati-Idrissi, R., Petitdemange, H., & Gay, R. (1988). Iron effect on acetone-butanol fermentation. Current Microbiology, 17(5), 299–303. Junelles, A. M., Janati-Idrissi, R., Petitdemange, H., & Gay, R. (1988). Iron effect on acetone-butanol fermentation. Current Microbiology, 17(5), 299–303.
go back to reference Jurgens, G., Survase, S., Berezina, O., et al. (2012). Butanol production from lignocellulosics. Biotechnology Letters, 34(8), 1415–1434. Jurgens, G., Survase, S., Berezina, O., et al. (2012). Butanol production from lignocellulosics. Biotechnology Letters, 34(8), 1415–1434.
go back to reference Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569–582. Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569–582.
go back to reference Kataoka, N., Miya, A., & Kiriyama, K. (1997). Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Science and Technology, 36(6), 41–47. Kataoka, N., Miya, A., & Kiriyama, K. (1997). Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Science and Technology, 36(6), 41–47.
go back to reference Keating, J. D., Panganiban, C., & Mansfield, S. D. (2006). Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering, 93(6), 1196–1206. Keating, J. D., Panganiban, C., & Mansfield, S. D. (2006). Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering, 93(6), 1196–1206.
go back to reference Kim, B. H., Bellows, P., Datta, R., & Zeikus, J. G. (1984). Control of carbon and electron flow in Clostridium acetobutylicum fermentations: Utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields. Applied and Environmental Microbiology, 48(4), 764–770. Kim, B. H., Bellows, P., Datta, R., & Zeikus, J. G. (1984). Control of carbon and electron flow in Clostridium acetobutylicum fermentations: Utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields. Applied and Environmental Microbiology, 48(4), 764–770.
go back to reference Kobayashi, G., Eto, K., Tashiro, Y., Okubo, K., Sonomoto, K., & Ishizaki, A. (2005). Utilization of excess sludge by acetone–butanol–ethanol fermentation employing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Journal of Bioscience and Bioengineering, 99(5), 517–519. Kobayashi, G., Eto, K., Tashiro, Y., Okubo, K., Sonomoto, K., & Ishizaki, A. (2005). Utilization of excess sludge by acetone–butanol–ethanol fermentation employing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Journal of Bioscience and Bioengineering, 99(5), 517–519.
go back to reference Konieczny, A., Mondal, K., Wiltowski, T., & Dydo, P. (2008). Catalyst development for thermocatalytic decomposition of methane to hydrogen. International Journal of Hydrogen Energy, 33, 264e72. Konieczny, A., Mondal, K., Wiltowski, T., & Dydo, P. (2008). Catalyst development for thermocatalytic decomposition of methane to hydrogen. International Journal of Hydrogen Energy, 33, 264e72.
go back to reference Koukiekolo, R., Cho, H. Y., Kosugi, A., Inui, M., Yukawa, H., & Doi, R. H. (2005). Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Applied and Environmental Microbiology, 71(7), 3504–3511. Koukiekolo, R., Cho, H. Y., Kosugi, A., Inui, M., Yukawa, H., & Doi, R. H. (2005). Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Applied and Environmental Microbiology, 71(7), 3504–3511.
go back to reference Kraus, T. (2007). Hydrogen fuel – An economically viable future for the transportation industry. Duke Journal of Economics, 19, 39. Kraus, T. (2007). Hydrogen fuel – An economically viable future for the transportation industry. Duke Journal of Economics, 19, 39.
go back to reference Kretzers, I. (2012). Conference report: Euroscicon conference on innovations in renewable energies. Biofuels, 3(4), 375–376. Kretzers, I. (2012). Conference report: Euroscicon conference on innovations in renewable energies. Biofuels, 3(4), 375–376.
go back to reference Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729.
go back to reference Kumar, M., & Gayen, K. (2011). Developments in biobutanol production: New insights. Applied Energy, 88(6), 1999–2012. Kumar, M., & Gayen, K. (2011). Developments in biobutanol production: New insights. Applied Energy, 88(6), 1999–2012.
go back to reference Kumar, M., Goyal, Y., Sarkar, A., & Gayen, K. (2012). Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Applied Energy, 93, 193–204. Kumar, M., Goyal, Y., Sarkar, A., & Gayen, K. (2012). Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Applied Energy, 93, 193–204.
go back to reference Kumar, D., & Murthy, G. S. (2013). Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnology for Biofuels, 6(1), 1–20. Kumar, D., & Murthy, G. S. (2013). Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnology for Biofuels, 6(1), 1–20.
go back to reference Kumar, G. R., & Vatsala, T. M. (1989). Hydrogen production from glucose by Citrobacter freundii. Indian Journal of Experimental Biology, 27(9), 824–825. Kumar, G. R., & Vatsala, T. M. (1989). Hydrogen production from glucose by Citrobacter freundii. Indian Journal of Experimental Biology, 27(9), 824–825.
go back to reference Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., & Jung, K. S. (2008). Fermentative butanol production by Clostridia. Biotechnology and Bioengineering, 101(2), 209–228. Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., & Jung, K. S. (2008). Fermentative butanol production by Clostridia. Biotechnology and Bioengineering, 101(2), 209–228.
go back to reference Lee, S. Y., Park, J. H., & Papoutsakis, E. (2008). WIPO Patent 2008072921. Lee, S. Y., Park, J. H., & Papoutsakis, E. (2008). WIPO Patent 2008072921.
go back to reference Lee, J., Seo, E., Kweon, D. H., Park, K., & Jin, Y. S. (2009). Fermentation of rice bran and defatted rice bran for butanol production using Clostridium beijerinckii NCIMB 8052. Journal of Microbiology and Biotechnology, 19, 482–490. Lee, J., Seo, E., Kweon, D. H., Park, K., & Jin, Y. S. (2009). Fermentation of rice bran and defatted rice bran for butanol production using Clostridium beijerinckii NCIMB 8052. Journal of Microbiology and Biotechnology, 19, 482–490.
go back to reference Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29(2), 173–185. Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29(2), 173–185.
go back to reference Li, X., Weng, J. K., & Chapple, C. (2008). Improvement of biomass through lignin modification. The Plant Journal, 54(4), 569–581. Li, X., Weng, J. K., & Chapple, C. (2008). Improvement of biomass through lignin modification. The Plant Journal, 54(4), 569–581.
go back to reference Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: Current state and prospects. Applied Microbiology and Biotechnology, 69(6), 627–642. Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: Current state and prospects. Applied Microbiology and Biotechnology, 69(6), 627–642.
go back to reference Liu, C. G., Xue, C., Lin, Y. H., & Bai, F. W. (2013). Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnology Advances, 31(2), 257–265. Liu, C. G., Xue, C., Lin, Y. H., & Bai, F. W. (2013). Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnology Advances, 31(2), 257–265.
go back to reference Liu, Z., Ying, Y., Li, F., Ma, C., & Xu, P. (2010). Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. Journal of Industrial Microbiology & Biotechnology, 37(5), 495–501. Liu, Z., Ying, Y., Li, F., Ma, C., & Xu, P. (2010). Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. Journal of Industrial Microbiology & Biotechnology, 37(5), 495–501.
go back to reference Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., et al. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40(17), 5181–5192. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., et al. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40(17), 5181–5192.
go back to reference Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 14(12), 512–518. Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 14(12), 512–518.
go back to reference López-Contreras, A. M., Claassen, P. A. M., Mooibrock, H., & De Vos, W. M. (2000). Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 for production of acetone, butanol and ethanol. Applied Microbiology and Biotechnology, 54, 162–167. López-Contreras, A. M., Claassen, P. A. M., Mooibrock, H., & De Vos, W. M. (2000). Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 for production of acetone, butanol and ethanol. Applied Microbiology and Biotechnology, 54, 162–167.
go back to reference Lynd, L. R. (1996). Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Annual Review of Energy and the Environment, 21(1), 403–465. Lynd, L. R. (1996). Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Annual Review of Energy and the Environment, 21(1), 403–465.
go back to reference Maddox, I. S., & Murray, A. E. (1983). Production of n-butanol by fermentation of wood hydrolysate. Biotechnology Letters, 5, 175–178. Maddox, I. S., & Murray, A. E. (1983). Production of n-butanol by fermentation of wood hydrolysate. Biotechnology Letters, 5, 175–178.
go back to reference Madihah, M. S., Ariff, A. B., Sahaid, K. M., Suraini, A. A., & Karim, M. I. A. (2001). Direct fermentation of gelatinized sago starch to acetone–butanol–ethanol by Clostridium acetobutylicum. World Journal of Microbiology and Biotechnology, 17(6), 567–576. Madihah, M. S., Ariff, A. B., Sahaid, K. M., Suraini, A. A., & Karim, M. I. A. (2001). Direct fermentation of gelatinized sago starch to acetone–butanol–ethanol by Clostridium acetobutylicum. World Journal of Microbiology and Biotechnology, 17(6), 567–576.
go back to reference Marchal, R., Blanchet, D., & Vandecasteele, J. P. (1985). Industrial optimization of acetone-butanol fermentation: A study of the utilization of Jerusalem artichokes. Applied Microbiology and Biotechnology, 23, 92–98. Marchal, R., Blanchet, D., & Vandecasteele, J. P. (1985). Industrial optimization of acetone-butanol fermentation: A study of the utilization of Jerusalem artichokes. Applied Microbiology and Biotechnology, 23, 92–98.
go back to reference Marchal, R., Rebeller, M., & Vandecasteele, J. P. (1984). Direct bioconversion of alkali-pretreated straw using simultaneous enzymatic hydrolysis and acetone butanol production. Biotechnology Letters, 6, 523–528. Marchal, R., Rebeller, M., & Vandecasteele, J. P. (1984). Direct bioconversion of alkali-pretreated straw using simultaneous enzymatic hydrolysis and acetone butanol production. Biotechnology Letters, 6, 523–528.
go back to reference Marchetti, J. M., & Errazu, A. F. (2008). Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid. Fuel, 87(15), 3477–3480. Marchetti, J. M., & Errazu, A. F. (2008). Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid. Fuel, 87(15), 3477–3480.
go back to reference Math, M. C., Kumar, S. P., & Chetty, S. V. (2010). Technologies for biodiesel production from used cooking oil. A review. Energy for Sustainable Development, 14(4), 339–345. Math, M. C., Kumar, S. P., & Chetty, S. V. (2010). Technologies for biodiesel production from used cooking oil. A review. Energy for Sustainable Development, 14(4), 339–345.
go back to reference McMillan, J. D. (1994). Pretreatment of lignocellulosic biomass. In M. E. Himmel, J. O. Baker, & R. P. Overend (Eds.), Enzymatic conversion of biomass for fuels production, ACS symposium series (USA). Washington, DC: American Chemical Society. McMillan, J. D. (1994). Pretreatment of lignocellulosic biomass. In M. E. Himmel, J. O. Baker, & R. P. Overend (Eds.), Enzymatic conversion of biomass for fuels production, ACS symposium series (USA). Washington, DC: American Chemical Society.
go back to reference Melis, A., & Happe, T. (2001). Hydrogen production. Green algae as a source of energy. Plant Physiology, 127(3), 740–748. Melis, A., & Happe, T. (2001). Hydrogen production. Green algae as a source of energy. Plant Physiology, 127(3), 740–748.
go back to reference Mielenz, J. R. (2001). Ethanol production from biomass: Technology and commercialization. Current Opinion in Microbiology, 4(3), 324–329. Mielenz, J. R. (2001). Ethanol production from biomass: Technology and commercialization. Current Opinion in Microbiology, 4(3), 324–329.
go back to reference Mohan, S. V., Srikanth, S., Velvizhi, G., & Babu, M. L. (2013). Microbial fuel cells for sustainable bioenergy generation: Principles and perspective applications. In V. K. Gupta & M. G. Tuohy (Eds.), Biofuel technologies: Recent developments (pp. 335–368). Berlin: Springer. Mohan, S. V., Srikanth, S., Velvizhi, G., & Babu, M. L. (2013). Microbial fuel cells for sustainable bioenergy generation: Principles and perspective applications. In V. K. Gupta & M. G. Tuohy (Eds.), Biofuel technologies: Recent developments (pp. 335–368). Berlin: Springer.
go back to reference Moo-Young, M., & Chisti, Y. (1994). Biochemical engineering in biotechnology. Pure and Applied Chemistry, 66, 117. Moo-Young, M., & Chisti, Y. (1994). Biochemical engineering in biotechnology. Pure and Applied Chemistry, 66, 117.
go back to reference Moreira, A. R., Ulmer, D. C., & Linden, J. C. (1981). Butanol toxicity in the butylic fermentation. Biotechnology & Bioengineering Symposium, 11, 567–579. Moreira, A. R., Ulmer, D. C., & Linden, J. C. (1981). Butanol toxicity in the butylic fermentation. Biotechnology & Bioengineering Symposium, 11, 567–579.
go back to reference Mosier, N., Wyman, C., Dale, B., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. Mosier, N., Wyman, C., Dale, B., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.
go back to reference Murty, M. V. S., & Chandra, T. S. (1997). Fermentability of hemicelluloses extracted from municipal waste and commercial xylans by Clostridium sp. Applied Microbiology and Biotechnology, 47, 212–217. Murty, M. V. S., & Chandra, T. S. (1997). Fermentability of hemicelluloses extracted from municipal waste and commercial xylans by Clostridium sp. Applied Microbiology and Biotechnology, 47, 212–217.
go back to reference Nath, K., & Das, D. (2004). Improvement of fermentative hydrogen production: Various approaches. Applied Microbiology and Biotechnology, 65(5), 520–529. Nath, K., & Das, D. (2004). Improvement of fermentative hydrogen production: Various approaches. Applied Microbiology and Biotechnology, 65(5), 520–529.
go back to reference Neha, P., Chintan, B., Pallavi, D., & Neha, T. (2013). Use of sunflower and cottonseed oil to prepare biodiesel by catalyst assisted transesterification. Research Journal of Chemical Sciences, 2231, 606X. Neha, P., Chintan, B., Pallavi, D., & Neha, T. (2013). Use of sunflower and cottonseed oil to prepare biodiesel by catalyst assisted transesterification. Research Journal of Chemical Sciences, 2231, 606X.
go back to reference Ng, T. K., Ben-Bassat, A., & Zeikus, J. G. (1981). Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Applied and Environmental Microbiology, 41(6), 1337–1343. Ng, T. K., Ben-Bassat, A., & Zeikus, J. G. (1981). Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Applied and Environmental Microbiology, 41(6), 1337–1343.
go back to reference Nguyen, M. T., Choi, S. P., Lee, J., Lee, J. H., & Sim, S. J. (2009). Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Journal of Microbiology and Biotechnology, 19(2), 161–166. Nguyen, M. T., Choi, S. P., Lee, J., Lee, J. H., & Sim, S. J. (2009). Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Journal of Microbiology and Biotechnology, 19(2), 161–166.
go back to reference Ni, M., Leung, D. Y., Leung, M. K., & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87(5), 461–472. Ni, M., Leung, D. Y., Leung, M. K., & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87(5), 461–472.
go back to reference Niemisto, J., Saavalainen, P., Pongrácz, E., & Keiski, R. L. (2013). Biobutanol as a potential sustainable biofuel-assessment of lignocellulosic and waste-based feedstocks. Journal of Sustainable Development of Energy, Water and Environment Systems, 1(2), 58–77. Niemisto, J., Saavalainen, P., Pongrácz, E., & Keiski, R. L. (2013). Biobutanol as a potential sustainable biofuel-assessment of lignocellulosic and waste-based feedstocks. Journal of Sustainable Development of Energy, Water and Environment Systems, 1(2), 58–77.
go back to reference Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68. Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68.
go back to reference Nimcevic, D., Schuster, M., & Gapes, J. R. (1998). Solvent production by Clostridium beijerinckii NRRL B592 growing on different potato media. Applied Microbiology and Biotechnology, 50, 426–428. Nimcevic, D., Schuster, M., & Gapes, J. R. (1998). Solvent production by Clostridium beijerinckii NRRL B592 growing on different potato media. Applied Microbiology and Biotechnology, 50, 426–428.
go back to reference Oh, Y. K., Kim, S. H., Kim, M. S., & Park, S. (2004). Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnology and Bioengineering, 88(6), 690–698. Oh, Y. K., Kim, S. H., Kim, M. S., & Park, S. (2004). Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnology and Bioengineering, 88(6), 690–698.
go back to reference Olsson, L., & Hahn-Hägerdal, B. (1996). Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology, 18(5), 312–331. Olsson, L., & Hahn-Hägerdal, B. (1996). Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology, 18(5), 312–331.
go back to reference Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology, 74(1), 17–24. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology, 74(1), 17–24.
go back to reference Panesar, P. S., Marwaha, S. S., & Kennedy, J. F. (2006). Zymomonas mobilis: An alternative ethanol producer. Journal of Chemical Technology and Biotechnology, 81(4), 623–635. Panesar, P. S., Marwaha, S. S., & Kennedy, J. F. (2006). Zymomonas mobilis: An alternative ethanol producer. Journal of Chemical Technology and Biotechnology, 81(4), 623–635.
go back to reference Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6), 1533–1543. Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6), 1533–1543.
go back to reference Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. Oak Ridge, TN: Oak Ridge National Lab. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. Oak Ridge, TN: Oak Ridge National Lab.
go back to reference Pfromm, P. H., Amanor-Boadu, V., Nelson, R., Vadlani, P., & Madl, R. (2010). Bio-butanol vs. bio-ethanol: A technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass and Bioenergy, 34(4), 515–524. Pfromm, P. H., Amanor-Boadu, V., Nelson, R., Vadlani, P., & Madl, R. (2010). Bio-butanol vs. bio-ethanol: A technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass and Bioenergy, 34(4), 515–524.
go back to reference Potts, T., Du, J., Paul, M., May, P., Beitle, R., & Hestekin, J. (2012). The production of butanol from Jamaica bay macro algae. Environmental Progress & Sustainable Energy, 31(1), 29–36. Potts, T., Du, J., Paul, M., May, P., Beitle, R., & Hestekin, J. (2012). The production of butanol from Jamaica bay macro algae. Environmental Progress & Sustainable Energy, 31(1), 29–36.
go back to reference Pratas, M. J., Freitas, S. V., Oliveira, M. B., Monteiro, S. C., Lima, Á. S., & Coutinho, J. A. (2011a). Biodiesel density: Experimental measurements and prediction models. Energy & Fuels, 25(5), 2333–2340. Pratas, M. J., Freitas, S. V., Oliveira, M. B., Monteiro, S. C., Lima, Á. S., & Coutinho, J. A. (2011a). Biodiesel density: Experimental measurements and prediction models. Energy & Fuels, 25(5), 2333–2340.
go back to reference Pratas, M. J., Freitas, S., Oliveira, M. B., Monteiro, S. C., Lima, Á. S., & Coutinho, J. A. (2011b). Densities and viscosities of minority fatty acid methyl and ethyl esters present in biodiesel. Journal of Chemical & Engineering Data, 56(5), 2175–2180. Pratas, M. J., Freitas, S., Oliveira, M. B., Monteiro, S. C., Lima, Á. S., & Coutinho, J. A. (2011b). Densities and viscosities of minority fatty acid methyl and ethyl esters present in biodiesel. Journal of Chemical & Engineering Data, 56(5), 2175–2180.
go back to reference Qureshi, N., & Blaschek, H. P. (2000). Economics of butanol fermentation using hyper-butanol producing Clostridium Beijerinckii BA101. Food and Bioproducts Processing, 78(3), 139–144. Qureshi, N., & Blaschek, H. P. (2000). Economics of butanol fermentation using hyper-butanol producing Clostridium Beijerinckii BA101. Food and Bioproducts Processing, 78(3), 139–144.
go back to reference Qureshi, N., Ezeji, T. C., Ebener, J., Dien, B. S., Cotta, M. A., & Blaschek, H. P. (2008a). Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresource Technology, 99(13), 5915–5922. Qureshi, N., Ezeji, T. C., Ebener, J., Dien, B. S., Cotta, M. A., & Blaschek, H. P. (2008a). Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresource Technology, 99(13), 5915–5922.
go back to reference Qureshi, N., Li, X. L., Hughes, S., Saha, B. C., & Cotta, M. A. (2006). Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnology Progress, 22(3), 673–680. Qureshi, N., Li, X. L., Hughes, S., Saha, B. C., & Cotta, M. A. (2006). Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnology Progress, 22(3), 673–680.
go back to reference Qureshi, N., Lolas, A., & Blaschek, H. P. (2001). Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. Journal of Industrial Microbiology and Biotechnology, 26, 290–295. Qureshi, N., Lolas, A., & Blaschek, H. P. (2001). Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. Journal of Industrial Microbiology and Biotechnology, 26, 290–295.
go back to reference Qureshi, N., Saha, B. C., Dien, B., Hector, R. E., & Cotta, M. A. (2010a). Production of butanol (a biofuel) from agricultural residues: Part I—Use of barley straw hydrolysate. Biomass and Bioenergy, 34(4), 559–565. Qureshi, N., Saha, B. C., Dien, B., Hector, R. E., & Cotta, M. A. (2010a). Production of butanol (a biofuel) from agricultural residues: Part I—Use of barley straw hydrolysate. Biomass and Bioenergy, 34(4), 559–565.
go back to reference Qureshi, N., Saha, B. C., Hector, R. E., Hughes, S. R., & Cotta, M. A. (2008b). Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—Batch fermentation. Biomass and Bioenergy, 32(2), 168–175. Qureshi, N., Saha, B. C., Hector, R. E., Hughes, S. R., & Cotta, M. A. (2008b). Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—Batch fermentation. Biomass and Bioenergy, 32(2), 168–175.
go back to reference Qureshi, N., Saha, B. C., Hector, R. E., Dien, B., Hughes, S., Liu, S., et al. (2010b). Production of butanol (a biofuel) from agricultural residues: Part II—Use of corn stover and switchgrass hydrolysates. Biomass and Bioenergy, 34(4), 566–571. Qureshi, N., Saha, B. C., Hector, R. E., Dien, B., Hughes, S., Liu, S., et al. (2010b). Production of butanol (a biofuel) from agricultural residues: Part II—Use of corn stover and switchgrass hydrolysates. Biomass and Bioenergy, 34(4), 566–571.
go back to reference Qureshi, N., Saha, B. C., & Cotta, M. A. (2007). Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess and Biosystems Engineering, 30, 419–427. Qureshi, N., Saha, B. C., & Cotta, M. A. (2007). Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess and Biosystems Engineering, 30, 419–427.
go back to reference Qureshi, N., Saha, B. C., & Cotta, M. A. (2008c). Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part II—Fedbatch fermentation. Biomass and Bioenergy, 32, 176–183. Qureshi, N., Saha, B. C., & Cotta, M. A. (2008c). Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part II—Fedbatch fermentation. Biomass and Bioenergy, 32, 176–183.
go back to reference Riadi, L., Purwanto, E., Kurniawan, H., & Oktaviana, R. (2014). Effect of bio-based catalyst in biodiesel synthesis. Procedia Chemistry, 9, 172–181. Riadi, L., Purwanto, E., Kurniawan, H., & Oktaviana, R. (2014). Effect of bio-based catalyst in biodiesel synthesis. Procedia Chemistry, 9, 172–181.
go back to reference Rinaldi, R., & Schüth, F. (2009). Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem, 2(12), 1096–1107. Rinaldi, R., & Schüth, F. (2009). Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem, 2(12), 1096–1107.
go back to reference Saddler, J. N., Ernest, K. C., Mes-Hartree, M., Levitin, N., & Brownell, H. H. (1983). Utilization of enzymatically hydrolyzed wood hemicelluloses by microorganisms for production of liquid fuels. Applied and Environmental Microbiology, 45(1), 153–160. Saddler, J. N., Ernest, K. C., Mes-Hartree, M., Levitin, N., & Brownell, H. H. (1983). Utilization of enzymatically hydrolyzed wood hemicelluloses by microorganisms for production of liquid fuels. Applied and Environmental Microbiology, 45(1), 153–160.
go back to reference Shuler, M. L., & Kargi, F. (2002). Bioprocess engineering. Upper Saddle River, NJ: Prentice Hall. Shuler, M. L., & Kargi, F. (2002). Bioprocess engineering. Upper Saddle River, NJ: Prentice Hall.
go back to reference SillersR, C. A., Tracy, B., et al. (2008). Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metabolic Engineering, 10(6), 321–332. SillersR, C. A., Tracy, B., et al. (2008). Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metabolic Engineering, 10(6), 321–332.
go back to reference Singh, S. P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14(1), 200–216. Singh, S. P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14(1), 200–216.
go back to reference Sjolander, N. O., Langlykke, A. F., & Peterson, W. H. (1938). Butyl alcohol fermentation of wood sugar. Industrial and Engineering Chemistry, 30, 1251–1255. Sjolander, N. O., Langlykke, A. F., & Peterson, W. H. (1938). Butyl alcohol fermentation of wood sugar. Industrial and Engineering Chemistry, 30, 1251–1255.
go back to reference Sonderegger, M., Jeppsson, M., Larsson, C., Gorwa‐Grauslund, M. F., Boles, E., Olsson, L., et al. (2004). Fermentation performance of engineered and evolved xylose‐fermenting Saccharomyces cerevisiae strains. Biotechnology and Bioengineering, 87(1), 90–98. Sonderegger, M., Jeppsson, M., Larsson, C., Gorwa‐Grauslund, M. F., Boles, E., Olsson, L., et al. (2004). Fermentation performance of engineered and evolved xylose‐fermenting Saccharomyces cerevisiae strains. Biotechnology and Bioengineering, 87(1), 90–98.
go back to reference Soni, B. K., Das, K., & Ghose, T. K. (1982). Bioconversion of agro-wastes into acetone butanol. Biotechnology Letters, 4, 19–22. Soni, B. K., Das, K., & Ghose, T. K. (1982). Bioconversion of agro-wastes into acetone butanol. Biotechnology Letters, 4, 19–22.
go back to reference Spatari, S., Zhang, Y., & MacLean, H. L. (2005). Life cycle assessment of switchgrass-and corn stover-derived ethanol-fueled automobiles. Environmental Science & Technology, 39(24), 9750–9758. Spatari, S., Zhang, Y., & MacLean, H. L. (2005). Life cycle assessment of switchgrass-and corn stover-derived ethanol-fueled automobiles. Environmental Science & Technology, 39(24), 9750–9758.
go back to reference Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., et al. (2008). Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial Cell Factories, 7(1), 36. Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., et al. (2008). Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial Cell Factories, 7(1), 36.
go back to reference Strauß, C., Vetter, A., & Von Felde, A. (2012). Biogas production and energy crops biogas energy crops. In R. A. Meyers (Ed.), Encyclopedia of sustainability science and technology (pp. 1097–1145). New York, NY: Springer. Strauß, C., Vetter, A., & Von Felde, A. (2012). Biogas production and energy crops biogas energy crops. In R. A. Meyers (Ed.), Encyclopedia of sustainability science and technology (pp. 1097–1145). New York, NY: Springer.
go back to reference Sujan, S. A., Hirata, S., & Minowa, T. (2009). An approach to produce biodiesel from non-edible Jatropha curcus oil through dual step process: Preesterification and transesterification. Bangladesh Journal of Scientific and Industrial Research, 44(3), 347–352. Sujan, S. A., Hirata, S., & Minowa, T. (2009). An approach to produce biodiesel from non-edible Jatropha curcus oil through dual step process: Preesterification and transesterification. Bangladesh Journal of Scientific and Industrial Research, 44(3), 347–352.
go back to reference Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1–11. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1–11.
go back to reference Swana, J., Yang, Y., Behnam, M., & Thompson, R. (2011). An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Bioresource Technology, 102(2), 2112–2117. Swana, J., Yang, Y., Behnam, M., & Thompson, R. (2011). An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Bioresource Technology, 102(2), 2112–2117.
go back to reference Taguchi, F., Takiguchi, S., & Morimoto, M. (1992). Efficient hydrogen production from starch by a bacterium isolated from termites. Journal of Fermentation and Bioengineering, 73(3), 244–245. Taguchi, F., Takiguchi, S., & Morimoto, M. (1992). Efficient hydrogen production from starch by a bacterium isolated from termites. Journal of Fermentation and Bioengineering, 73(3), 244–245.
go back to reference Tanisho, S., Kuromoto, M., & Kadokura, N. (1998). Effect of CO2 removal on hydrogen production by fermentation. International Journal of Hydrogen Energy, 23(7), 559–563. Tanisho, S., Kuromoto, M., & Kadokura, N. (1998). Effect of CO2 removal on hydrogen production by fermentation. International Journal of Hydrogen Energy, 23(7), 559–563.
go back to reference Tarkow, H., & FEIST, W. C. (1969). A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. Tarkow, H., & FEIST, W. C. (1969). A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia.
go back to reference Thang, V. H., Kanda, K., & Kobayashi, G. (2010). Production of acetone–butanol–ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Applied Biochemistry and Biotechnology, 161, 157–170. Thang, V. H., Kanda, K., & Kobayashi, G. (2010). Production of acetone–butanol–ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Applied Biochemistry and Biotechnology, 161, 157–170.
go back to reference Turner, W. J. (2014). Understanding and improving microbial biofuel tolerance as a result of efflux pump expression through genetic engineering and mathematical modeling (Doctoral dissertation). The University of Vermont Turner, W. J. (2014). Understanding and improving microbial biofuel tolerance as a result of efflux pump expression through genetic engineering and mathematical modeling (Doctoral dissertation). The University of Vermont
go back to reference Van Haandel, A. C., & Lettinga, G. (1994). Anaerobic sewage treatment: A practical guide for regions with a hot climate. New York, NY: John Wiley & Sons. Van Haandel, A. C., & Lettinga, G. (1994). Anaerobic sewage treatment: A practical guide for regions with a hot climate. New York, NY: John Wiley & Sons.
go back to reference Varga, E., Réczey, K., & Zacchi, G. (2004). Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology, 114(1–3), 509–523. Varga, E., Réczey, K., & Zacchi, G. (2004). Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology, 114(1–3), 509–523.
go back to reference Votruba, J., Volesky, B., & Yerushalmi, L. (1985). Mathematical model of a batch acetone-butanol fermentation. Biotechnology and Bioengineering, 28, 247. Votruba, J., Volesky, B., & Yerushalmi, L. (1985). Mathematical model of a batch acetone-butanol fermentation. Biotechnology and Bioengineering, 28, 247.
go back to reference Walfridsson, M., Bao, X., Anderlund, M., Lilius, G., Bülow, L., & Hahn-Hägerdal, B. (1996). Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Applied and Environmental Microbiology, 62(12), 4648–4651. Walfridsson, M., Bao, X., Anderlund, M., Lilius, G., Bülow, L., & Hahn-Hägerdal, B. (1996). Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Applied and Environmental Microbiology, 62(12), 4648–4651.
go back to reference Walter, A., Rosillo-Calle, F., Dolzan, P., Piacente, E., & Borges da Cunha, K. (2008). Perspectives on fuel ethanol consumption and trade. Biomass and Bioenergy, 32(8), 730–748. Walter, A., Rosillo-Calle, F., Dolzan, P., Piacente, E., & Borges da Cunha, K. (2008). Perspectives on fuel ethanol consumption and trade. Biomass and Bioenergy, 32(8), 730–748.
go back to reference Woods, D. R. (1995). The genetic engineering of microbial solvent production. Trends in Biotechnology, 13, 259–264. Woods, D. R. (1995). The genetic engineering of microbial solvent production. Trends in Biotechnology, 13, 259–264.
go back to reference Worldwatch Institute. (2005). Renewables, 2005: Global status report. Washington, DC: Worldwatch Institute. Worldwatch Institute. (2005). Renewables, 2005: Global status report. Washington, DC: Worldwatch Institute.
go back to reference Yoshida, N., Nakasato, M., Ohmura, N., Ando, A., Saiki, H., Ishii, M., & Igarashi, Y. (2006). Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+. Current Microbiology, 53(5), 406–411. Yoshida, N., Nakasato, M., Ohmura, N., Ando, A., Saiki, H., Ishii, M., & Igarashi, Y. (2006). Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+. Current Microbiology, 53(5), 406–411.
go back to reference Yu, E. K. C., Deschatelets, L., & Saddler, J. N. (1984). The bioconversion of wood hydrolyzates to butanol and butanediol. Biotechnology Letters, 6, 327–332. Yu, E. K. C., Deschatelets, L., & Saddler, J. N. (1984). The bioconversion of wood hydrolyzates to butanol and butanediol. Biotechnology Letters, 6, 327–332.
go back to reference Zhang, T., Du, N., & Tan, T. (2011). Biobutanol production from sweet sorghum bagasse. Journal of Biobased Materials and Bioenergy, 5(3), 331–336. Zhang, T., Du, N., & Tan, T. (2011). Biobutanol production from sweet sorghum bagasse. Journal of Biobased Materials and Bioenergy, 5(3), 331–336.
go back to reference Zhang, B., Weng, Y., Xu, H., & Mao, Z. (2012). Enzyme immobilization for biodiesel production. Applied Microbiology and Biotechnology, 93(1), 61–70. Zhang, B., Weng, Y., Xu, H., & Mao, Z. (2012). Enzyme immobilization for biodiesel production. Applied Microbiology and Biotechnology, 93(1), 61–70.
go back to reference Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2(3), 51–68. Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2(3), 51–68.
go back to reference Zinder, S. H. (1994). Syntrophic acetate oxidation and “reversible acetogenesis”. In H. L. Drake (Ed.), Acetogenesis (pp. 386–415). New York, NY: Springer. Zinder, S. H. (1994). Syntrophic acetate oxidation and “reversible acetogenesis”. In H. L. Drake (Ed.), Acetogenesis (pp. 386–415). New York, NY: Springer.
Metadata
Title
Bioenergy: Biofuels Process Technology
Authors
Ajay Kumar
Joginder Singh
Chinnappan Baskar
Seeram Ramakrishna
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-17915-5_10