Skip to main content
Top

2018 | OriginalPaper | Chapter

12. Biofuels from Microalgae: Biomethane

Authors : Fabiana Passos, Cesar Mota, Andrés Donoso-Bravo, Sergi Astals, David Jeison, Raúl Muñoz

Published in: Energy from Microalgae

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The high cost of axenic microalgae cultivation in photobioreactors limits nowadays the potential uses of microalgal biomass as a feedstock for the production of biodiesel or bioethanol. In this context, microalgae-based wastewater treatment (WWT) has emerged as the leading method of cultivation for supplying microalgae at low cost and low environmental impacts, while achieving sewage treatment. Nonetheless, the year-round dynamics in microalgae population and cell composition when grown in WWTPs restrict the use of this low-quality biomass to biogas production via anaerobic digestion. Although the macromolecular composition of the microalgae produced during wastewater treatment is similar to that of sewage sludge, the recalcitrant nature of microalgae cell walls requires an optimisation of pretreatment technologies for enhancing microalgae biodegradability. In addition, the low C/N ratio, the high water content and the suspended nature of microalgae suggest that microalgal biomass will also benefit from anaerobic co-digestion with carbon-rich substrates, which constitutes a field for further research. Photosynthetic microalgae growth can also support an effective CO2 capture and H2S oxidation from biogas, which would generate a high-quality biomethane complying with most international regulations for injection into natural gas grids or use as autogas. This book chapter will critically review the most recent advances in biogas production from microalgae, with a special focus on pretreatment technologies, co-digestion opportunities, modelling strategies, biogas upgrading and process microbiology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abatzoglou, N., & Boivin, S. (2009). A review of biogas purification processes. Biofuels Bioproducts Biorefining, 3, 42–71.CrossRef Abatzoglou, N., & Boivin, S. (2009). A review of biogas purification processes. Biofuels Bioproducts Biorefining, 3, 42–71.CrossRef
go back to reference Abo-Shady, A. M., Mohamed., Y. A., & Lasheen T. (1993). Chemical composition of the cell wall in some green algae species. Biologia Plantarum, 35(4), 629–632.CrossRef Abo-Shady, A. M., Mohamed., Y. A., & Lasheen T. (1993). Chemical composition of the cell wall in some green algae species. Biologia Plantarum, 35(4), 629–632.CrossRef
go back to reference Accettola, F., Guebitz, G., & Schoeftner, R. (2008). Siloxane removal from biogas by biofiltration: Biodegradation studies. Clean Technologies and Environmental Policy, 10, 211–218.CrossRef Accettola, F., Guebitz, G., & Schoeftner, R. (2008). Siloxane removal from biogas by biofiltration: Biodegradation studies. Clean Technologies and Environmental Policy, 10, 211–218.CrossRef
go back to reference Alzate, M. E., Muñoz, R., Rogalla, F., Fdz-Polanco, F., & Pérez-Elvira, S. I. (2012). Biochemical methane potential of microalgae: Influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresource Technology, 123, 488–494.CrossRef Alzate, M. E., Muñoz, R., Rogalla, F., Fdz-Polanco, F., & Pérez-Elvira, S. I. (2012). Biochemical methane potential of microalgae: Influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresource Technology, 123, 488–494.CrossRef
go back to reference Angelidaki I., & Ahring B. K., 2000. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Science and Technology, 41(3), 189–194. Angelidaki I., & Ahring B. K., 2000. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Science and Technology, 41(3), 189–194.
go back to reference Arnell, M., Astals, S., Åmand, L., Batstone, D. J., Jensen, P. D., & Jeppsson, U. (2016). Modelling anaerobic co-digestion in Benchmark Simulation Model No. 2: Parameter estimation, substrate characterisation and plant-wide integration. Water Research, 98, 138–146.CrossRef Arnell, M., Astals, S., Åmand, L., Batstone, D. J., Jensen, P. D., & Jeppsson, U. (2016). Modelling anaerobic co-digestion in Benchmark Simulation Model No. 2: Parameter estimation, substrate characterisation and plant-wide integration. Water Research, 98, 138–146.CrossRef
go back to reference Astals, S., Batstone, D. J., Mata-Alvarez, J., & Jensen, P. D. (2014). Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresource Technology, 169, 421–427.CrossRef Astals, S., Batstone, D. J., Mata-Alvarez, J., & Jensen, P. D. (2014). Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresource Technology, 169, 421–427.CrossRef
go back to reference Batstone, D. J. (2006). Mathematical modelling of anaerobic reactors treating domestic wastewater: Rational criteria for model use. Review Environment Science Bio/Technology, 5, 57–71.CrossRef Batstone, D. J. (2006). Mathematical modelling of anaerobic reactors treating domestic wastewater: Rational criteria for model use. Review Environment Science Bio/Technology, 5, 57–71.CrossRef
go back to reference Batstone, D. J., & Keller, J. (2002). Industrial applications of the IWA anaerobic digestion. Water Science and Technology, 1, 199–206. Batstone, D. J., & Keller, J. (2002). Industrial applications of the IWA anaerobic digestion. Water Science and Technology, 1, 199–206.
go back to reference Beltrán, C., Jeison, D., Fermoso, F. G., & Borja, R. (2016). Batch anaerobic co-digestion of waste activated sludge and microalgae (Chlorella sorokiniana) at mesophilic temperature. Journal of Environmental Science and Health—Part A, 51(10), 847–850.CrossRef Beltrán, C., Jeison, D., Fermoso, F. G., & Borja, R. (2016). Batch anaerobic co-digestion of waste activated sludge and microalgae (Chlorella sorokiniana) at mesophilic temperature. Journal of Environmental Science and Health—Part A, 51(10), 847–850.CrossRef
go back to reference Blumreisinger, M., Meindl, D., & Loos, E. (1983). Cell wall composition of chlorococcal algae. Phytochemistry, 22(7), 1603–1604.CrossRef Blumreisinger, M., Meindl, D., & Loos, E. (1983). Cell wall composition of chlorococcal algae. Phytochemistry, 22(7), 1603–1604.CrossRef
go back to reference Bohutskyi, P., Betenbaugh, M. J., & Bouwer, E. J. (2014). The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresource Technology, 155, 366–372.CrossRef Bohutskyi, P., Betenbaugh, M. J., & Bouwer, E. J. (2014). The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresource Technology, 155, 366–372.CrossRef
go back to reference Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315–331.CrossRef Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315–331.CrossRef
go back to reference Capson-Tojo, G., Torres, A., Munoz, R., Bartacek, J., & Jeison, D. (2017). Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N-gaditana for methane production. Renewable Energy, 105, 539–546.CrossRef Capson-Tojo, G., Torres, A., Munoz, R., Bartacek, J., & Jeison, D. (2017). Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N-gaditana for methane production. Renewable Energy, 105, 539–546.CrossRef
go back to reference Cea-Barcia, G., Moreno, G., & Buitron, G. (2015). Anaerobic digestion of mixed microalgae cultivated in secondary effluent under mesophilic and thermophilic conditions. Water Science and Technology, 72(8), 1398–1403.CrossRef Cea-Barcia, G., Moreno, G., & Buitron, G. (2015). Anaerobic digestion of mixed microalgae cultivated in secondary effluent under mesophilic and thermophilic conditions. Water Science and Technology, 72(8), 1398–1403.CrossRef
go back to reference Chen, P. H., & Oswald, W. J. (1998). Thermochemical pretreatment for algal fermentation. Environment International, 24(8), 889–897.CrossRef Chen, P. H., & Oswald, W. J. (1998). Thermochemical pretreatment for algal fermentation. Environment International, 24(8), 889–897.CrossRef
go back to reference Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.CrossRef Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.CrossRef
go back to reference Díaz, I., Pérez, C., Alfaro, N., & Fdz-Polanco, F. (2015). A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresource Technology, 185, 246–253.CrossRef Díaz, I., Pérez, C., Alfaro, N., & Fdz-Polanco, F. (2015). A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresource Technology, 185, 246–253.CrossRef
go back to reference Derenne, S., Largeau, C., Berkaloff, C., Rousseau, B., Wilhelm, C., & Hatcher, P. G. (1992). Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotum. Phytochemistry, 31(6), 1923–1929.CrossRef Derenne, S., Largeau, C., Berkaloff, C., Rousseau, B., Wilhelm, C., & Hatcher, P. G. (1992). Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotum. Phytochemistry, 31(6), 1923–1929.CrossRef
go back to reference Domozych, D. S., Stewart, K. D., & Mattox, K. R. (1980). The comparative aspects of cell wall chemistry in the green algae (Chlorophyta). Journal of Molecular Evolution, 15(1), 1–12, ISSN: 1432-1432.CrossRef Domozych, D. S., Stewart, K. D., & Mattox, K. R. (1980). The comparative aspects of cell wall chemistry in the green algae (Chlorophyta). Journal of Molecular Evolution, 15(1), 1–12, ISSN: 1432-1432.CrossRef
go back to reference Donoso-Bravo, A., Mailier, J., Martin, C., Rodríguez, J., Aceves-Lara, C. A., & Vande Wouwer, A. (2011). Model selection, identification and validation in anaerobic digestion: A review. Water Research, 45, 5347–5364.CrossRef Donoso-Bravo, A., Mailier, J., Martin, C., Rodríguez, J., Aceves-Lara, C. A., & Vande Wouwer, A. (2011). Model selection, identification and validation in anaerobic digestion: A review. Water Research, 45, 5347–5364.CrossRef
go back to reference Donoso-Bravo, A., Pérez-Elvira, S. I., & Fdz-Polanco, F. (2010). Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chemical Engineering Journal, 160, 607–614.CrossRef Donoso-Bravo, A., Pérez-Elvira, S. I., & Fdz-Polanco, F. (2010). Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chemical Engineering Journal, 160, 607–614.CrossRef
go back to reference Ehimen, E. A., Sun, Z. F., Carrington, C. G., Birch, E. J., & Eaton-Rye, J. J. (2011). Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Applied Energy, 88(10), 3454–3463.CrossRef Ehimen, E. A., Sun, Z. F., Carrington, C. G., Birch, E. J., & Eaton-Rye, J. J. (2011). Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Applied Energy, 88(10), 3454–3463.CrossRef
go back to reference Fernandez-Rodriguez, M. J., Rincon, B., Fermoso, F. G., Jimenez, A. M., & Borja, R. (2014). Assessment of two-phase olive mill solid waste and microalgae co-digestion to improve methane production and process kinetics. Bioresource Technology, 157, 263–269.CrossRef Fernandez-Rodriguez, M. J., Rincon, B., Fermoso, F. G., Jimenez, A. M., & Borja, R. (2014). Assessment of two-phase olive mill solid waste and microalgae co-digestion to improve methane production and process kinetics. Bioresource Technology, 157, 263–269.CrossRef
go back to reference Gabriel, D., Deshusses, M. A., & Gamisans, X. (2013). Desulfurization of biogas in biotrickling filter. In: John Wiley & Sons (Ed.), Air pollution prevention and control: Bioreactors and bioenergy (1st ed., pp. 513–523). Wiley: Hoboken.CrossRef Gabriel, D., Deshusses, M. A., & Gamisans, X. (2013). Desulfurization of biogas in biotrickling filter. In: John Wiley & Sons (Ed.), Air pollution prevention and control: Bioreactors and bioenergy (1st ed., pp. 513–523). Wiley: Hoboken.CrossRef
go back to reference Gelin, F., Boogers, I., Noordeloos, A. A. M., Damsté J. S. S., Riegman, R., & De Leeuw J. W. (1997). Resistant biomacromolecules in marine microalgae of the classes eustigmatophyceae and chlorophyceae: Geochemical implications. Organic Geochemistry, 26(11–12), 659–675.CrossRef Gelin, F., Boogers, I., Noordeloos, A. A. M., Damsté J. S. S., Riegman, R., & De Leeuw J. W. (1997). Resistant biomacromolecules in marine microalgae of the classes eustigmatophyceae and chlorophyceae: Geochemical implications. Organic Geochemistry, 26(11–12), 659–675.CrossRef
go back to reference Giménez, J. B., Aguado, D., Bouzas, A., Ferrer, J., & Seco, A. (2017). Use of rumen microorganisms to boost the anaerobic biodegradability of microalgae. Algal Research, 24, 309–316.CrossRef Giménez, J. B., Aguado, D., Bouzas, A., Ferrer, J., & Seco, A. (2017). Use of rumen microorganisms to boost the anaerobic biodegradability of microalgae. Algal Research, 24, 309–316.CrossRef
go back to reference Golueke, C. G., Oswald, W. J., & Gotaas, H. B. (1957). Anaerobic digestion of Algae. Applied Microbiology, 5(1), 47–55. Golueke, C. G., Oswald, W. J., & Gotaas, H. B. (1957). Anaerobic digestion of Algae. Applied Microbiology, 5(1), 47–55.
go back to reference González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Impact of micro- algae characteristics on their conversion to biofuel. Part II: Focus on biomethane production. Biofuels, Bioproducts and Biorefining, 6(2), 205–218.CrossRef González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Impact of micro- algae characteristics on their conversion to biofuel. Part II: Focus on biomethane production. Biofuels, Bioproducts and Biorefining, 6(2), 205–218.CrossRef
go back to reference Grobbelaar, J. U. (2004). Algal nutrition. In A. Richmond (Ed.), Handbook of microalgal culture: Biotechnology and applied phycology, Hoboken: Wiley-Blackwell. Grobbelaar, J. U. (2004). Algal nutrition. In A. Richmond (Ed.), Handbook of microalgal culture: Biotechnology and applied phycology, Hoboken: Wiley-Blackwell.
go back to reference Herrmann, C., Kalita, N., Wall, D., Xia, A., & Murphy, J. D. (2016). Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresource Technology, 214, 328–337.CrossRef Herrmann, C., Kalita, N., Wall, D., Xia, A., & Murphy, J. D. (2016). Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresource Technology, 214, 328–337.CrossRef
go back to reference Hidaka, T., Takabe, Y., Tsumori, J., & Minamiyama, M. (2017). Characterization of microalgae cultivated in continuous operation combined with anaerobic co-digestion of sewage sludge and microalgae. Biomass and Bioenergy, 99, 139–146.CrossRef Hidaka, T., Takabe, Y., Tsumori, J., & Minamiyama, M. (2017). Characterization of microalgae cultivated in continuous operation combined with anaerobic co-digestion of sewage sludge and microalgae. Biomass and Bioenergy, 99, 139–146.CrossRef
go back to reference Jankowska, E., Sahu, A. K., & Oleskowicz-Popiel, P. (2017). Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews, 75, 692–709.CrossRef Jankowska, E., Sahu, A. K., & Oleskowicz-Popiel, P. (2017). Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews, 75, 692–709.CrossRef
go back to reference Kadouri, A., Derenne, S., Largeau, C., Casadevall, E., & Berkaloff, C. (1988). Resistant biopolymer in the outer walls of Botryococcus braunii, B race. Phytochemistry, 27(2), 551–557.CrossRef Kadouri, A., Derenne, S., Largeau, C., Casadevall, E., & Berkaloff, C. (1988). Resistant biopolymer in the outer walls of Botryococcus braunii, B race. Phytochemistry, 27(2), 551–557.CrossRef
go back to reference Kinnunen, V., Craggs, R., & Rintala, J. (2014). Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in a laboratory-scale accumulating volume reactor. Water Research, 57, 247–257.CrossRef Kinnunen, V., Craggs, R., & Rintala, J. (2014). Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in a laboratory-scale accumulating volume reactor. Water Research, 57, 247–257.CrossRef
go back to reference Klassen, V., Blifernez-Klassen, O., Wobbe, L., Schlüter, A., Kruse, O., & Mussgnug, J. H. (2016). Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology, 234, 7–26.CrossRef Klassen, V., Blifernez-Klassen, O., Wobbe, L., Schlüter, A., Kruse, O., & Mussgnug, J. H. (2016). Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology, 234, 7–26.CrossRef
go back to reference Lardon, L., Helias, A., Sialve, B., Steyer, J. P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae. Environmental Science and Technology, 43(17), 6475–6481.CrossRef Lardon, L., Helias, A., Sialve, B., Steyer, J. P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae. Environmental Science and Technology, 43(17), 6475–6481.CrossRef
go back to reference Lee, E., Cumberbatch, J., Wang, M., & Zhang, Q. (2017). Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae. Bioresource technology, 228, 9–17.CrossRef Lee, E., Cumberbatch, J., Wang, M., & Zhang, Q. (2017). Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae. Bioresource technology, 228, 9–17.CrossRef
go back to reference Loos, E., & Meindl, D. (1982). Composition of the cell wall of Chlorellafusca. Planta, 156(3), 270–273. Loos, E., & Meindl, D. (1982). Composition of the cell wall of Chlorellafusca. Planta, 156(3), 270–273.
go back to reference Mahdy, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2015). Protease pretreated Chlorella vulgaris biomass conversion to methane via semi-continuous anaerobic digestion. Fuel, 158, 35–41.CrossRef Mahdy, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2015). Protease pretreated Chlorella vulgaris biomass conversion to methane via semi-continuous anaerobic digestion. Fuel, 158, 35–41.CrossRef
go back to reference Mahdy, A., Fotidis, I. A., Mancini, E., Ballesteros, M., González-Fernández, C., & Angelidaki, I. (2017). Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Bioresource Technology, 225, 272–278.CrossRef Mahdy, A., Fotidis, I. A., Mancini, E., Ballesteros, M., González-Fernández, C., & Angelidaki, I. (2017). Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Bioresource Technology, 225, 272–278.CrossRef
go back to reference Mairet, F., Bernard, O., Cameron, E., Ras, M., Lardon, L., Steyer, J.-P., et al. (2012). Three-reaction model for the anaerobic digestion of microalgae. Biotechnology and Bioengineering, 109, 415–425.CrossRef Mairet, F., Bernard, O., Cameron, E., Ras, M., Lardon, L., Steyer, J.-P., et al. (2012). Three-reaction model for the anaerobic digestion of microalgae. Biotechnology and Bioengineering, 109, 415–425.CrossRef
go back to reference Mairet, F., Bernard, O., Ras, M., Lardon, L., & Steyer, J.-P. (2011). Modeling anaerobic digestion of microalgae using ADM1. Bioresource Technology, 102, 6823–6829.CrossRef Mairet, F., Bernard, O., Ras, M., Lardon, L., & Steyer, J.-P. (2011). Modeling anaerobic digestion of microalgae using ADM1. Bioresource Technology, 102, 6823–6829.CrossRef
go back to reference Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.CrossRef Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.CrossRef
go back to reference Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427.CrossRef Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427.CrossRef
go back to reference Meier, L., Pérez, R., Azócar, L., Rivas, M., & Jeison, D. (2015). Photosynthetic CO2 uptake by microalgae: An attractive tool for biogas upgrading. Biomass and Bioenergy, 73, 102–109.CrossRef Meier, L., Pérez, R., Azócar, L., Rivas, M., & Jeison, D. (2015). Photosynthetic CO2 uptake by microalgae: An attractive tool for biogas upgrading. Biomass and Bioenergy, 73, 102–109.CrossRef
go back to reference Montingelli, M. E., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961–972.CrossRef Montingelli, M. E., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961–972.CrossRef
go back to reference Muñoz, R., Meier, L., Diaz, I., & Jeison, D. (2015). A critical review on the state-of-the-art of physical/chemical and biological technologies for an integral biogas upgrading. Reviews in Environmental Science and Biotechnology, 14, 727–759.CrossRef Muñoz, R., Meier, L., Diaz, I., & Jeison, D. (2015). A critical review on the state-of-the-art of physical/chemical and biological technologies for an integral biogas upgrading. Reviews in Environmental Science and Biotechnology, 14, 727–759.CrossRef
go back to reference Neumann, P., Torres, A., Fermoso, F. G., Borja, R., & Jeison, D. (2015). Anaerobic co-digestion of lipid-spent microalgae with waste activated sludge and glycerol in batch mode. International Biodeterioration and Biodegradation, 100, 85–88.CrossRef Neumann, P., Torres, A., Fermoso, F. G., Borja, R., & Jeison, D. (2015). Anaerobic co-digestion of lipid-spent microalgae with waste activated sludge and glycerol in batch mode. International Biodeterioration and Biodegradation, 100, 85–88.CrossRef
go back to reference Okuda, K. (2002). Structure and phylogeny of cell coverings. Journal of Plant Research, 115, 283–288.CrossRef Okuda, K. (2002). Structure and phylogeny of cell coverings. Journal of Plant Research, 115, 283–288.CrossRef
go back to reference Ometto, F., Quiroga, G., Psenicka, P., Whitton, R., Jefferson, B., & Villa, R. (2014). Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65, 350–361.CrossRef Ometto, F., Quiroga, G., Psenicka, P., Whitton, R., Jefferson, B., & Villa, R. (2014). Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65, 350–361.CrossRef
go back to reference Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1), 35–42.CrossRef Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1), 35–42.CrossRef
go back to reference Park, S., & Li, Y. (2012). Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresource Technology, 111, 42–48.CrossRef Park, S., & Li, Y. (2012). Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresource Technology, 111, 42–48.CrossRef
go back to reference Passos, F., Uggetti, E., Carrère, H., & Ferrer, I. (2014a). Pretreatment of microalgae to improve biogas production: A review. Bioresource Technology, 172, 403–412.CrossRef Passos, F., Uggetti, E., Carrère, H., & Ferrer, I. (2014a). Pretreatment of microalgae to improve biogas production: A review. Bioresource Technology, 172, 403–412.CrossRef
go back to reference Passos, F., Hernández-Mariné, M., García, J., & Ferrer, I. (2014b). Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Research, 49, 351–359.CrossRef Passos, F., Hernández-Mariné, M., García, J., & Ferrer, I. (2014b). Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Research, 49, 351–359.CrossRef
go back to reference Passos, F., & Ferrer, I. (2014). Microalgae conversion to biogas: Thermal pretreatment contribution on net energy production. Environmental Science and Technology, 48(12), 7171–7178.CrossRef Passos, F., & Ferrer, I. (2014). Microalgae conversion to biogas: Thermal pretreatment contribution on net energy production. Environmental Science and Technology, 48(12), 7171–7178.CrossRef
go back to reference Passos, F., Gutiérrez, R., Brockmann, D., Steyer, J. P., García, J., & Ferrer, I. (2015). Microalgae production in wastewater treatment systems, anaerobic digestion and modelling using ADM1. Algal Research, 10, 55–63.CrossRef Passos, F., Gutiérrez, R., Brockmann, D., Steyer, J. P., García, J., & Ferrer, I. (2015). Microalgae production in wastewater treatment systems, anaerobic digestion and modelling using ADM1. Algal Research, 10, 55–63.CrossRef
go back to reference Passos, F., & Ferrer, I. (2015). Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Research, 68, 364–373.CrossRef Passos, F., & Ferrer, I. (2015). Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Research, 68, 364–373.CrossRef
go back to reference Peng, S., & Colosi, L. M. (2016). Anaerobic digestion of algae biomass to produce energy during wastewater treatment. Water Environment Research, 88(1), 29–39.CrossRef Peng, S., & Colosi, L. M. (2016). Anaerobic digestion of algae biomass to produce energy during wastewater treatment. Water Environment Research, 88(1), 29–39.CrossRef
go back to reference Rizwan, M., Lee, J. H., & Gani, R. (2015). Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges. Applied Energy, 150, 69–79.CrossRef Rizwan, M., Lee, J. H., & Gani, R. (2015). Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges. Applied Energy, 150, 69–79.CrossRef
go back to reference Rodriguez, C., Alaswad, A., Mooney, J., Prescott, T., & Olabi, A. G. (2015). Pre-treatment techniques used for anaerobic digestion of algae. Fuel Processing Technology, 138, 765–779.CrossRef Rodriguez, C., Alaswad, A., Mooney, J., Prescott, T., & Olabi, A. G. (2015). Pre-treatment techniques used for anaerobic digestion of algae. Fuel Processing Technology, 138, 765–779.CrossRef
go back to reference Rusten, B., & Sahu, A. K. (2011). Microalgae growth for nutrient recovery from sludge liquor and production of renewable bioenergy. Water Science and Technology, 64, 1195–1201.CrossRef Rusten, B., & Sahu, A. K. (2011). Microalgae growth for nutrient recovery from sludge liquor and production of renewable bioenergy. Water Science and Technology, 64, 1195–1201.CrossRef
go back to reference Sahu, A. K., Siljudalen, J., Trydal, T., & Rusten, B. (2013). Utilisation of wastewater nutrients for microalgae growth for anaerobic co-digestion. Journal of Environmental Management, 122, 113–120.CrossRef Sahu, A. K., Siljudalen, J., Trydal, T., & Rusten, B. (2013). Utilisation of wastewater nutrients for microalgae growth for anaerobic co-digestion. Journal of Environmental Management, 122, 113–120.CrossRef
go back to reference Sanz, J. L., Rojas, P., Morato, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2017). Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. Chemosphere, 168, 1013–1021.CrossRef Sanz, J. L., Rojas, P., Morato, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2017). Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. Chemosphere, 168, 1013–1021.CrossRef
go back to reference Schwede, S., Kowalczyk, A., Gerber, M., & Span, R. (2013). Anaerobic co-digestion of the marine microalga Nannochloropsis salina with energy crops. Bioresource Technology, 148, 428–435.CrossRef Schwede, S., Kowalczyk, A., Gerber, M., & Span, R. (2013). Anaerobic co-digestion of the marine microalga Nannochloropsis salina with energy crops. Bioresource Technology, 148, 428–435.CrossRef
go back to reference Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., et al. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21(3), 277–286.CrossRef Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., et al. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21(3), 277–286.CrossRef
go back to reference Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409–416.CrossRef Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409–416.CrossRef
go back to reference Simpson, A. J., Zang, X., Kramer, R., & Hatcher, P. G. (2003). New insights on the structure of algaenan from Botryoccocus braunii race A and its hexane insoluble botryals based on multidimensional NMR spectroscopy and electrospray-mass spectrometry techniques. Phytochemistry, 62(5), 96–783.CrossRef Simpson, A. J., Zang, X., Kramer, R., & Hatcher, P. G. (2003). New insights on the structure of algaenan from Botryoccocus braunii race A and its hexane insoluble botryals based on multidimensional NMR spectroscopy and electrospray-mass spectrometry techniques. Phytochemistry, 62(5), 96–783.CrossRef
go back to reference Solé-Bundó, M., Carrère, H., Garfí, M., & Ferrer, I. (2017). Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO). Algal Research, 24, 199–206.CrossRef Solé-Bundó, M., Carrère, H., Garfí, M., & Ferrer, I. (2017). Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO). Algal Research, 24, 199–206.CrossRef
go back to reference Stephens, E., Ross, I. L., King, Z., Mussgnug, J. H., Kruse, O., Posten, C., et al. (2010). An economic and technical evaluation of microalgal biofuels. Nature Biotechnology, 28(2), 126–128.CrossRef Stephens, E., Ross, I. L., King, Z., Mussgnug, J. H., Kruse, O., Posten, C., et al. (2010). An economic and technical evaluation of microalgal biofuels. Nature Biotechnology, 28(2), 126–128.CrossRef
go back to reference Tartakovsky, B., Lebrun, F. M., & Guiot, S. R. (2015). High-rate biomethane production from microalgal biomass in a UASB reactor. Algal Research-Biomass Biofuels and Bioproducts, 7, 86–91. Tartakovsky, B., Lebrun, F. M., & Guiot, S. R. (2015). High-rate biomethane production from microalgal biomass in a UASB reactor. Algal Research-Biomass Biofuels and Bioproducts, 7, 86–91.
go back to reference Thrän, D., Persson, T., Daniel-Gromke, J., Ponitka, J., Seiffert, M., Boldwin, D., & et al. (2014). Biomethane—status and factors affecting market development and trade. IEA. Thrän, D., Persson, T., Daniel-Gromke, J., Ponitka, J., Seiffert, M., Boldwin, D., & et al. (2014). Biomethane—status and factors affecting market development and trade. IEA.
go back to reference Toledo-Cervantes, A., Estrada, J. M., Lebrero, R., & Muñoz, R. (2017). A comparative analysis of biogas upgrading technologies: Photosynthetic versus physical/chemical processes. Algal Research, 25, 237–243.CrossRef Toledo-Cervantes, A., Estrada, J. M., Lebrero, R., & Muñoz, R. (2017). A comparative analysis of biogas upgrading technologies: Photosynthetic versus physical/chemical processes. Algal Research, 25, 237–243.CrossRef
go back to reference Tomei, M. C., Braguglia, C. M., Cento, G., & Mininni, G. (2009). Modeling of anaerobic digestion of sludge. Critical Reviews in Environment Science and Technology, 39, 1003–1051.CrossRef Tomei, M. C., Braguglia, C. M., Cento, G., & Mininni, G. (2009). Modeling of anaerobic digestion of sludge. Critical Reviews in Environment Science and Technology, 39, 1003–1051.CrossRef
go back to reference Torres, A., Fermoso, F.G., Rincón, B., Bartacek, J., Borja, R., & Jeison, D. (2013). Challenges for cost-effective microalgae anaerobic digestion. In R. Chamy & F. Rosenkranz (Eds.) Biodegradation—Engineering and Technology. Intech: Croatia. Torres, A., Fermoso, F.G., Rincón, B., Bartacek, J., Borja, R., & Jeison, D. (2013). Challenges for cost-effective microalgae anaerobic digestion. In R. Chamy & F. Rosenkranz (Eds.) Biodegradation—Engineering and Technology. Intech: Croatia.
go back to reference Wang, M., Lee, E., Zhang, Q., & Ergas, S. J. (2016a). Anaerobic co-digestion of swine manure and microalgae chlorella sp.: Experimental studies and energy analysis. Bioenergy Research, 9(4), 1204–1215.CrossRef Wang, M., Lee, E., Zhang, Q., & Ergas, S. J. (2016a). Anaerobic co-digestion of swine manure and microalgae chlorella sp.: Experimental studies and energy analysis. Bioenergy Research, 9(4), 1204–1215.CrossRef
go back to reference Wang, M., Lee, E., Dilbeck, M.P., Liebelt, M., & Zhang, Q., Ergas, S. J. (2016b). Thermal pretreatment of microalgae for biomethane production: Experimental studies, kinetics and energy analysis. Journal of Chemical Technology and Biotechnology. https://doi.org/10.1002/jctb.5018. Wang, M., Lee, E., Dilbeck, M.P., Liebelt, M., & Zhang, Q., Ergas, S. J. (2016b). Thermal pretreatment of microalgae for biomethane production: Experimental studies, kinetics and energy analysis. Journal of Chemical Technology and Biotechnology. https://​doi.​org/​10.​1002/​jctb.​5018.
go back to reference Ward, A. J., Lewis, D. M., & Green, B. (2014). Anaerobic digestion of algae biomass: A review. Algal Research-Biomass Biofuels and Bioproducts, 5, 204–214. Ward, A. J., Lewis, D. M., & Green, B. (2014). Anaerobic digestion of algae biomass: A review. Algal Research-Biomass Biofuels and Bioproducts, 5, 204–214.
go back to reference Weyer, K. M., Bush, D. R., Darzins, A., & Willson, B. D. (2010). Theoretical maximum algal oil production. Bioenergy Research, 3(2), 204–213.CrossRef Weyer, K. M., Bush, D. R., Darzins, A., & Willson, B. D. (2010). Theoretical maximum algal oil production. Bioenergy Research, 3(2), 204–213.CrossRef
go back to reference Yen, H. W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98(1), 130–134.CrossRef Yen, H. W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98(1), 130–134.CrossRef
go back to reference Yuan, X., Wang, M., Park, C., Sahu, A. K., & Ergas, S. J. (2012). Microalgae growth using high-strength wastewater followed by anaerobic co-digestion. Water Environment Research, 84(5), 396–404.CrossRef Yuan, X., Wang, M., Park, C., Sahu, A. K., & Ergas, S. J. (2012). Microalgae growth using high-strength wastewater followed by anaerobic co-digestion. Water Environment Research, 84(5), 396–404.CrossRef
go back to reference Zamalloa, C., Boon, N., & Verstraete, W. (2012a). Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Applied Energy, 92, 733–738.CrossRef Zamalloa, C., Boon, N., & Verstraete, W. (2012a). Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Applied Energy, 92, 733–738.CrossRef
go back to reference Zamalloa, C., De Vrieze, J., Boon, N., & Verstraete, W. (2012b). Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Applied Microbiology and Biotechnology, 93(2), 859–869.CrossRef Zamalloa, C., De Vrieze, J., Boon, N., & Verstraete, W. (2012b). Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Applied Microbiology and Biotechnology, 93(2), 859–869.CrossRef
go back to reference Zhen, G., Lu, X., Kobayashi, T., Kumar, G., & Xu, K. (2016). Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation. Chemical Engineering Journal, 299, 332–341.CrossRef Zhen, G., Lu, X., Kobayashi, T., Kumar, G., & Xu, K. (2016). Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation. Chemical Engineering Journal, 299, 332–341.CrossRef
go back to reference Zhong, W., Chi, L., Luo, Y., Zhang, Z., Zhang, Z., & Wu, W. M. (2013). Enhanced methane production from Taihu Lake blue algae by anaerobic co-digestion with corn straw in continuous feed digesters. Bioresource Technology, 134, 264–270.CrossRef Zhong, W., Chi, L., Luo, Y., Zhang, Z., Zhang, Z., & Wu, W. M. (2013). Enhanced methane production from Taihu Lake blue algae by anaerobic co-digestion with corn straw in continuous feed digesters. Bioresource Technology, 134, 264–270.CrossRef
Metadata
Title
Biofuels from Microalgae: Biomethane
Authors
Fabiana Passos
Cesar Mota
Andrés Donoso-Bravo
Sergi Astals
David Jeison
Raúl Muñoz
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-69093-3_12