Skip to main content
Top

2024 | OriginalPaper | Chapter

Bioleaching of Post-consumer LiCoO2 Batteries Using Aspergillus Niger

Authors : Sadia Ilyas, Rajiv Ranjan Srivastava, Hyunjung Kim

Published in: Rare Metal Technology 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Soaring demands for rechargeable Li-ion batteries in portable electronics and electric vehicles drive the unprecedented increase in post-consumer waste generation. Additionally, to fill the gaps between supply and demand for the critical elements in electrode materials, the recycling of waste batteries has become essential. Traditional recycling using high-energy smelting and high-reagent leaching processes generates harmful waste, hence, a new biotechnological process is being searched as a green alternative. Therefore, this study discloses a bioleaching option of LiCoO2 cathode powder using fungi, Aspergillus niger as the source of metabolic excreted organic acids lixiviant. The results of one-step bioleaching yielded 96% (w/w) lithium, whereas this efficiency was ~ 94% (w/w) with two-step bioleaching of cathode powder fed at a pulp density of 5% (w/v). The efficiency of cobalt in both types of fungal bioleaching was below 1% (w/w). Thus, the study demonstrates the potential of Aspergillus niger in lithium extraction from cathode powder of the battery waste, and the results will further be utilized to improve the design of bioleaching protocols for environmentally friendly recovery of both metals from LiCoO2 powder.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhao S, You F (2019) Comparative life-cycle assessment of Li-ion batteries through process-based and integrated hybrid approaches. ACS Sustain Chem Eng 7:5082–5094CrossRef Zhao S, You F (2019) Comparative life-cycle assessment of Li-ion batteries through process-based and integrated hybrid approaches. ACS Sustain Chem Eng 7:5082–5094CrossRef
3.
go back to reference Munir H, Srivastava RR, Kim H, Ilyas S, Khosa MK, Yameen B (2020) Leaching of exhausted LNCM cathode batteries in ascorbic acid lixiviant: a green recycling approach, reaction kinetics and process mechanism. J Chem Technol Biotechnol 95:2286–2294CrossRef Munir H, Srivastava RR, Kim H, Ilyas S, Khosa MK, Yameen B (2020) Leaching of exhausted LNCM cathode batteries in ascorbic acid lixiviant: a green recycling approach, reaction kinetics and process mechanism. J Chem Technol Biotechnol 95:2286–2294CrossRef
4.
go back to reference Shaw-Stewart J, Alvarez-Reguera A, Greszta A, Marco J, Masood M, Sommerville R, Kendrick E (2019) Aqueous solution discharge of cylindrical lithium-ion cells. Sustain Mater Techno 22:e00110 Shaw-Stewart J, Alvarez-Reguera A, Greszta A, Marco J, Masood M, Sommerville R, Kendrick E (2019) Aqueous solution discharge of cylindrical lithium-ion cells. Sustain Mater Techno 22:e00110
5.
go back to reference Chen Q, Lai X, Gu H, Tang X, Gao F, Han X, Zheng Y (2022) Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China. J Clean Prod 369:133342CrossRef Chen Q, Lai X, Gu H, Tang X, Gao F, Han X, Zheng Y (2022) Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China. J Clean Prod 369:133342CrossRef
6.
go back to reference Fahimi A, Ducoli S, Federici S, Ye G, Mousa E, Frontera P, Bontempi E (2022) Evaluation of the sustainability of technologies to recycle spent lithium-ion batteries, based on embodied energy and carbon footprint. J Clean Prod 338:130493CrossRef Fahimi A, Ducoli S, Federici S, Ye G, Mousa E, Frontera P, Bontempi E (2022) Evaluation of the sustainability of technologies to recycle spent lithium-ion batteries, based on embodied energy and carbon footprint. J Clean Prod 338:130493CrossRef
7.
go back to reference Zhao R, Yang Z, Bloom I, Pan L (2021) Significance of a solid electrolyte interphase on separation of anode and cathode materials from spent Li-ion batteries by froth flotation. ACS Sustain Chem Eng 9:531–540CrossRef Zhao R, Yang Z, Bloom I, Pan L (2021) Significance of a solid electrolyte interphase on separation of anode and cathode materials from spent Li-ion batteries by froth flotation. ACS Sustain Chem Eng 9:531–540CrossRef
8.
go back to reference Chabhadiya K, Srivastava RR, Pathak P (2021) Two-step leaching process and kinetics for an eco-friendly recycling of critical metals from spent Li-ion batteries. J Environ Chem Eng 9(3):105232CrossRef Chabhadiya K, Srivastava RR, Pathak P (2021) Two-step leaching process and kinetics for an eco-friendly recycling of critical metals from spent Li-ion batteries. J Environ Chem Eng 9(3):105232CrossRef
9.
go back to reference Agrawal A, Pathak P, Mishra D, Sahu KK (2012) Solvent mediated interactions for the selective recovery of cadmium from Ni-Cd battery waste. J Mol Liq 173:77–84CrossRef Agrawal A, Pathak P, Mishra D, Sahu KK (2012) Solvent mediated interactions for the selective recovery of cadmium from Ni-Cd battery waste. J Mol Liq 173:77–84CrossRef
10.
go back to reference Ilyas S, Srivastava RR, Singh VK, Chi R, Kim H (2022) Recovery of critical metals from spent Li-ion batteries: sequential leaching, precipitation, and cobalt–nickel separation using Cyphos IL104. Waste Manag 154:175–186CrossRefPubMed Ilyas S, Srivastava RR, Singh VK, Chi R, Kim H (2022) Recovery of critical metals from spent Li-ion batteries: sequential leaching, precipitation, and cobalt–nickel separation using Cyphos IL104. Waste Manag 154:175–186CrossRefPubMed
11.
go back to reference Ilyas S, Srivastava RR, Kim H (2023) Cradle-to-cradle recycling of spent NMC batteries with emphasis on novel Co2+/Ni2+ separation from HCl leached solution and synthesis of new ternary precursor. Process Saf Environ Prot 170:584–595CrossRef Ilyas S, Srivastava RR, Kim H (2023) Cradle-to-cradle recycling of spent NMC batteries with emphasis on novel Co2+/Ni2+ separation from HCl leached solution and synthesis of new ternary precursor. Process Saf Environ Prot 170:584–595CrossRef
12.
go back to reference Pathak P, Chabhadiya K, Singh VK (2021) Sequential leaching of strategic metals from exhausted LNCM-cathode batteries using oxalic and sulfuric acid lixiviants. JOM 73:1386–1394CrossRef Pathak P, Chabhadiya K, Singh VK (2021) Sequential leaching of strategic metals from exhausted LNCM-cathode batteries using oxalic and sulfuric acid lixiviants. JOM 73:1386–1394CrossRef
13.
go back to reference Ilyas S, Srivastava RR, Kim H (2023) Green separation of Co2+ over Ni2+ by split-phosphinate complexation using phosphonium-based ionic liquid as extraction carrier. Environ Chem Lett 21:673–680CrossRef Ilyas S, Srivastava RR, Kim H (2023) Green separation of Co2+ over Ni2+ by split-phosphinate complexation using phosphonium-based ionic liquid as extraction carrier. Environ Chem Lett 21:673–680CrossRef
14.
go back to reference Deng X, Chai L, Yang Z, Tang C, Wang Y, Shi Y (2013) Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 248–249:107–114CrossRefPubMed Deng X, Chai L, Yang Z, Tang C, Wang Y, Shi Y (2013) Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 248–249:107–114CrossRefPubMed
15.
go back to reference Amiri F, Mousavi SM, Yaghmaei S (2011) Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum. Sep Purif Technol 80:566–576CrossRef Amiri F, Mousavi SM, Yaghmaei S (2011) Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum. Sep Purif Technol 80:566–576CrossRef
16.
go back to reference Ijadi Bajestani M, Mousavi SM, Shojaosadati SA (2014) Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization. Sep Purif Technol 132:309–316CrossRef Ijadi Bajestani M, Mousavi SM, Shojaosadati SA (2014) Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization. Sep Purif Technol 132:309–316CrossRef
17.
go back to reference Srivastava RR, Ilyas S, Kim H, Choi S, Trinh HB, Ghauri MA, Ilyas N (2020) Biotechnological recycling of critical metals from waste printed circuit boards. J Chem Technol Biotechnol 95:2796–2810CrossRef Srivastava RR, Ilyas S, Kim H, Choi S, Trinh HB, Ghauri MA, Ilyas N (2020) Biotechnological recycling of critical metals from waste printed circuit boards. J Chem Technol Biotechnol 95:2796–2810CrossRef
18.
go back to reference Ilyas S, Kim M, Lee J (2018) Integration of microbial and chemical processing for a sustainable metallurgy. J Chem Technol Biotechnol 93(2):320–332CrossRef Ilyas S, Kim M, Lee J (2018) Integration of microbial and chemical processing for a sustainable metallurgy. J Chem Technol Biotechnol 93(2):320–332CrossRef
19.
go back to reference Horeh NB, Mousavi SM, Shojaosadati (2016) Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J Power Sources 320:257–266 Horeh NB, Mousavi SM, Shojaosadati (2016) Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J Power Sources 320:257–266
20.
go back to reference Ilyas S, Chi R, Lee JC, Bhatti HN (2012) One step bioleaching of sulphide ore with low concentration of arsenic by Aspergillus niger and Taguchi orthogonal array optimization. Chin J Chem Eng 20(5):923–929CrossRef Ilyas S, Chi R, Lee JC, Bhatti HN (2012) One step bioleaching of sulphide ore with low concentration of arsenic by Aspergillus niger and Taguchi orthogonal array optimization. Chin J Chem Eng 20(5):923–929CrossRef
21.
go back to reference Santhiya D, Ting Y-P (2006) Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. J Biotechnol 121:62–74CrossRefPubMed Santhiya D, Ting Y-P (2006) Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. J Biotechnol 121:62–74CrossRefPubMed
22.
go back to reference Deng X, Chai L, Yang Z, Tang C, Tong H, Yuan P (2012) Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 233–234:25–32CrossRefPubMed Deng X, Chai L, Yang Z, Tang C, Tong H, Yuan P (2012) Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 233–234:25–32CrossRefPubMed
23.
go back to reference Kubicek CP, Schreferl-Kunar G, Wohrer W, Rohr M (1988) Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger. Appl Environ Microbiol 54:633–637CrossRefPubMedPubMedCentral Kubicek CP, Schreferl-Kunar G, Wohrer W, Rohr M (1988) Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger. Appl Environ Microbiol 54:633–637CrossRefPubMedPubMedCentral
24.
go back to reference Ruijter GJG, van de Vondervoort PJI, Visser J (1999) Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology 145:2569–2576CrossRefPubMed Ruijter GJG, van de Vondervoort PJI, Visser J (1999) Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology 145:2569–2576CrossRefPubMed
Metadata
Title
Bioleaching of Post-consumer LiCoO2 Batteries Using Aspergillus Niger
Authors
Sadia Ilyas
Rajiv Ranjan Srivastava
Hyunjung Kim
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50236-1_18

Premium Partners