Skip to main content
Top
Published in: Machine Vision and Applications 6/2018

06-04-2018 | Special Issue Paper

Biological modeling of human visual system for object recognition using GLoP filters and sparse coding on multi-manifolds

Authors: Limiao Deng, Yanjiang Wang, Baodi Liu, Weifeng Liu, Yujuan Qi

Published in: Machine Vision and Applications | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hierarchical MAX model (HMAX) is a bio-inspired model mimicking the visual information processing of visual cortex. However, the visual processing of lower level, such as retina and lateral geniculate nucleus (LGN), is not concerned, and the properties of higher-level neurons are not sufficiently specified. Given that, we develop an extended HMAX model, denoted as E-HMAX, by the following biologically plausible ways. First, contrast normalization is conducted on the input image to simulate the processing of human retina and LGN. Second, log-polar Gabor (GLoP) filters are used to simulate the properties of V1 simple cells instead of Gabor filters. Then, sparse coding on multi-manifolds is modeled to compute the V4 simple cell response instead of Euclidean distance. Meanwhile, a template learning method based on dictionary learning on multi-manifolds is proposed to select informative templates during template learning stage. Experimental results demonstrate that the proposed model has greatly outperformed the standard HMAX model. It is also comparable to some state-of-the-art approaches such as EBIM and OGHM-HMAX.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, H., Li, H., Wei, Y., Tang, Y., Wang, Q.: Sparse-based neural response for image classification. Neurocomputing 144, 198–2077 (2014)CrossRef Li, H., Li, H., Wei, Y., Tang, Y., Wang, Q.: Sparse-based neural response for image classification. Neurocomputing 144, 198–2077 (2014)CrossRef
2.
go back to reference Yu, J., Tao, D., Rui, Y., Cheng, J.: Pairwise constraints based multiview features fusion for scene classification. Pattern Recognit. 46(2), 483–496 (2013)CrossRefMATH Yu, J., Tao, D., Rui, Y., Cheng, J.: Pairwise constraints based multiview features fusion for scene classification. Pattern Recognit. 46(2), 483–496 (2013)CrossRefMATH
3.
go back to reference Sang, J., Xu, C., Liu, J.: User-aware image tag refinement via ternary semantic analysis. IEEE Trans. Multimed. 14(3), 883–895 (2012)CrossRef Sang, J., Xu, C., Liu, J.: User-aware image tag refinement via ternary semantic analysis. IEEE Trans. Multimed. 14(3), 883–895 (2012)CrossRef
4.
go back to reference Sang, J., Fang, Q., Xu, C.: Exploiting social-mobile information for location visualization. ACM Trans. Intell. Syst. Technol. (TIST) 8(3), 39 (2017) Sang, J., Fang, Q., Xu, C.: Exploiting social-mobile information for location visualization. ACM Trans. Intell. Syst. Technol. (TIST) 8(3), 39 (2017)
5.
go back to reference Tan, M., Hu, Z., Wang, B., Zhao, J., Wang, Y.: Robust object recognition via weakly supervised metric and template learning. Neurocomputing 181, 96–107 (2016)CrossRef Tan, M., Hu, Z., Wang, B., Zhao, J., Wang, Y.: Robust object recognition via weakly supervised metric and template learning. Neurocomputing 181, 96–107 (2016)CrossRef
6.
go back to reference Tan, M., Wang, B., Wu, Z., Wang, J., Pan, G.: Weakly supervised metric learning for traffic sign recognition in a lidar-equipped vehicle. IEEE Trans. Intell. Transp. Syst. 17(5), 1415–1427 (2016)CrossRef Tan, M., Wang, B., Wu, Z., Wang, J., Pan, G.: Weakly supervised metric learning for traffic sign recognition in a lidar-equipped vehicle. IEEE Trans. Intell. Transp. Syst. 17(5), 1415–1427 (2016)CrossRef
7.
go back to reference Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)CrossRefMATH Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)CrossRefMATH
8.
go back to reference Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007)CrossRef Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007)CrossRef
9.
go back to reference Lee, H., Grosse, R., Ng, A.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML (2009) Lee, H., Grosse, R., Ng, A.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML (2009)
10.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS(2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS(2012)
11.
go back to reference Kheradpisheh, S., Ghodrati, M., Ganjtabesh, M., Masquelier, T.: Deep networks resemble human feed-forward vision in invariant object recognition. arXiv preprint arXiv:1508.03929 (2015) Kheradpisheh, S., Ghodrati, M., Ganjtabesh, M., Masquelier, T.: Deep networks resemble human feed-forward vision in invariant object recognition. arXiv preprint arXiv:​1508.​03929 (2015)
12.
go back to reference Ross, G., Jeff, D., Trevor, D., Jitendra, M.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014) Ross, G., Jeff, D., Trevor, D., Jitendra, M.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
13.
go back to reference Yu, J., Zhang, B., Kuang, Z., Lin, D., Fan, J.: iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans. Inf. Forensics Secur. 12(5), 1005–1016 (2017)CrossRef Yu, J., Zhang, B., Kuang, Z., Lin, D., Fan, J.: iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans. Inf. Forensics Secur. 12(5), 1005–1016 (2017)CrossRef
14.
go back to reference Yu, J., Yang, X., Gao, F., Tao, D.: Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans. Cybern. PP(99), 1–11 (2016) Yu, J., Yang, X., Gao, F., Tao, D.: Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans. Cybern. PP(99), 1–11 (2016)
15.
go back to reference Wu, W., Qiao, H., Chen, J., Yin, P., Li, Y.: Biologically inspired model simulating visual pathways and cerebellum function in human-Achieving visuomotor coordination and high precision movement with learning ability. arXiv preprint arXiv:1603.02351 (2016) Wu, W., Qiao, H., Chen, J., Yin, P., Li, Y.: Biologically inspired model simulating visual pathways and cerebellum function in human-Achieving visuomotor coordination and high precision movement with learning ability. arXiv preprint arXiv:​1603.​02351 (2016)
16.
go back to reference Cadieu, C., Kouh, M., Pasupathy, A., Connor, C.E., Riesenhuber, M., Poggio, T.: A model of V4 shape selectivity and invariance. J. Neurophysiol. 98, 1733–1750 (2007)CrossRef Cadieu, C., Kouh, M., Pasupathy, A., Connor, C.E., Riesenhuber, M., Poggio, T.: A model of V4 shape selectivity and invariance. J. Neurophysiol. 98, 1733–1750 (2007)CrossRef
17.
go back to reference Weng, D., Wang, Y., Gong, M., Tao, D., Wei, H.: DERF: distinctive efficient robust features from the biological modeling of the P ganglion cells. IEEE Trans. Image Process. 24(8), 2287–2302 (2015)MathSciNetCrossRef Weng, D., Wang, Y., Gong, M., Tao, D., Wei, H.: DERF: distinctive efficient robust features from the biological modeling of the P ganglion cells. IEEE Trans. Image Process. 24(8), 2287–2302 (2015)MathSciNetCrossRef
18.
go back to reference Grossberg, S., Hong, S.: A neural model of surface perception: lightness, anchoring, and filling-in. Spat. Vis. 19, 263–321 (2006)CrossRef Grossberg, S., Hong, S.: A neural model of surface perception: lightness, anchoring, and filling-in. Spat. Vis. 19, 263–321 (2006)CrossRef
19.
go back to reference Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)CrossRef Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)CrossRef
20.
go back to reference Carlson, E.T., Rasquinha, R.J., Zhang, K., Connor, C.E.: A sparse object coding scheme in area V4. Curr. Biol. 21, 288-29 (2011)CrossRef Carlson, E.T., Rasquinha, R.J., Zhang, K., Connor, C.E.: A sparse object coding scheme in area V4. Curr. Biol. 21, 288-29 (2011)CrossRef
21.
go back to reference Quiroga, Q.R., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005)CrossRef Quiroga, Q.R., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005)CrossRef
22.
go back to reference Hu, X., Zhang, J., Li, J., Zhang, B.: Sparsity-regularized HMAX for visual recognition. PloS one 9(1), e81813 (2014)CrossRef Hu, X., Zhang, J., Li, J., Zhang, B.: Sparsity-regularized HMAX for visual recognition. PloS one 9(1), e81813 (2014)CrossRef
23.
go back to reference Huang, Y., Huang, K., Tao, D., Tan, T., Li, X.: Enhanced biologically inspired model for object recognition. IEEE Trans. Syst. Man Cybern. B (Cybern.) 41(6), 1668–1680 (2011)CrossRef Huang, Y., Huang, K., Tao, D., Tan, T., Li, X.: Enhanced biologically inspired model for object recognition. IEEE Trans. Syst. Man Cybern. B (Cybern.) 41(6), 1668–1680 (2011)CrossRef
24.
go back to reference Liu, W., Zha, Z.J., Wang, Y., Lu, K., Tao, D.: p-Laplacian regularized sparse coding for human activity recognition. IEEE Trans. Ind. Electron. 63(8), 5120–5129 (2016) Liu, W., Zha, Z.J., Wang, Y., Lu, K., Tao, D.: p-Laplacian regularized sparse coding for human activity recognition. IEEE Trans. Ind. Electron. 63(8), 5120–5129 (2016)
25.
go back to reference Yu, J., Rui, Y., Tao, D.: Click prediction for web image reranking using multimodal sparse coding. IEEE Trans. Image Process. 23(5), 2019–2032 (2014)MathSciNetCrossRefMATH Yu, J., Rui, Y., Tao, D.: Click prediction for web image reranking using multimodal sparse coding. IEEE Trans. Image Process. 23(5), 2019–2032 (2014)MathSciNetCrossRefMATH
26.
go back to reference Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290(5500), 2268–2269 (2000)CrossRef Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290(5500), 2268–2269 (2000)CrossRef
27.
go back to reference Weng, J., Ahuja, N., Huang, T.S.: Learning recognition and segmentation of 3-D objects from 2-D. In: Proceedings of IEEE 4th International Conference on Computer Vision, pp. 121–128 (1993) Weng, J., Ahuja, N., Huang, T.S.: Learning recognition and segmentation of 3-D objects from 2-D. In: Proceedings of IEEE 4th International Conference on Computer Vision, pp. 121–128 (1993)
28.
go back to reference Sector, I.T.U.R.: Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios. In: International Telecommunication Union Radiocommunications Sector (ITU-R), BT.601-5 (1995) Sector, I.T.U.R.: Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios. In: International Telecommunication Union Radiocommunications Sector (ITU-R), BT.601-5 (1995)
29.
go back to reference Grossberg, S., Huang, T.R.: ARTSCENE: a neural system for natural scene classification. J. Vis. 9(4), 1–19 (2009)CrossRef Grossberg, S., Huang, T.R.: ARTSCENE: a neural system for natural scene classification. J. Vis. 9(4), 1–19 (2009)CrossRef
30.
go back to reference De Valois, R.L., Yund, E.W., Hepler, N.: The orientation and direction selectivity of cells in macaque visual cortex. Vis. Res. 22, 531–544 (1982)CrossRef De Valois, R.L., Yund, E.W., Hepler, N.: The orientation and direction selectivity of cells in macaque visual cortex. Vis. Res. 22, 531–544 (1982)CrossRef
31.
go back to reference Schwartz, E.L.: Cortical anatomy and size invariance, and spatial frequency analysis. Vis. Res. 18, 24–58 (1981) Schwartz, E.L.: Cortical anatomy and size invariance, and spatial frequency analysis. Vis. Res. 18, 24–58 (1981)
32.
go back to reference Guyader, N., Chauvin, A., Massot, C., Hérault, J., Marendaz, C.: A biological model of low-level vision suitable for image analysis and cognitive visual perception. Perception 35(1), 56 (2006) Guyader, N., Chauvin, A., Massot, C., Hérault, J., Marendaz, C.: A biological model of low-level vision suitable for image analysis and cognitive visual perception. Perception 35(1), 56 (2006)
33.
go back to reference Benoit, A., Caplier, A., Durette, B., Herault, J.: Using human visual system modeling for bio-inspired low level image processing. Comput. Vis. Image Underst. 114(7), 758–773 (2010)CrossRef Benoit, A., Caplier, A., Durette, B., Herault, J.: Using human visual system modeling for bio-inspired low level image processing. Comput. Vis. Image Underst. 114(7), 758–773 (2010)CrossRef
34.
go back to reference Liu, T., Tao, D.: Classification with noisy labels by importance reweighting. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 447–461 (2016)CrossRef Liu, T., Tao, D.: Classification with noisy labels by importance reweighting. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 447–461 (2016)CrossRef
35.
go back to reference Liu, B., Wang, Y., Zhang, Y., Shen, B.: Learning dictionary on manifolds for image classification. Pattern Recognit. 46(7), 1879–1890 (2013)CrossRef Liu, B., Wang, Y., Zhang, Y., Shen, B.: Learning dictionary on manifolds for image classification. Pattern Recognit. 46(7), 1879–1890 (2013)CrossRef
36.
go back to reference Tao, D., Li, X., Wu, X., Maybank, S.J.: Geometric mean for subspace selection. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 260–274 (2009)CrossRef Tao, D., Li, X., Wu, X., Maybank, S.J.: Geometric mean for subspace selection. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 260–274 (2009)CrossRef
37.
go back to reference Yu, J., Rui, Y., Tao, D.: Click prediction for web image reranking using multimodal sparse coding. IEEE Trans. Image Process. 23(5), 2019–2032 (2014)MathSciNetCrossRefMATH Yu, J., Rui, Y., Tao, D.: Click prediction for web image reranking using multimodal sparse coding. IEEE Trans. Image Process. 23(5), 2019–2032 (2014)MathSciNetCrossRefMATH
38.
go back to reference Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. Adv. Neural Inf. Process. Syst. 19, 801–808 (2006) Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. Adv. Neural Inf. Process. Syst. 19, 801–808 (2006)
39.
go back to reference Chang, C., Lin, C.: LIB-SVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011)CrossRef Chang, C., Lin, C.: LIB-SVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011)CrossRef
40.
go back to reference Park, S.H., Goo, J.M., Jo, C.H.: Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J. Radiol. 5(1), 11–18 (2004)CrossRef Park, S.H., Goo, J.M., Jo, C.H.: Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J. Radiol. 5(1), 11–18 (2004)CrossRef
41.
go back to reference Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)CrossRef Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)CrossRef
42.
go back to reference Lu, Y.F., Zhang, H.Z., Kang, T.K., Choi, I.H., Lim, M.T.: Extended biologically inspired model for object recognition based on oriented Gaussian–Hermite moment. Neurocomputing 139, 189–201 (2014)CrossRef Lu, Y.F., Zhang, H.Z., Kang, T.K., Choi, I.H., Lim, M.T.: Extended biologically inspired model for object recognition based on oriented Gaussian–Hermite moment. Neurocomputing 139, 189–201 (2014)CrossRef
43.
go back to reference Jiang, L.Y.: Study on bio-inspired invariant feature representation of image. M.S. thesis, Dept. Info. Eng., China University of Petroleum, Qingdao (2014) Jiang, L.Y.: Study on bio-inspired invariant feature representation of image. M.S. thesis, Dept. Info. Eng., China University of Petroleum, Qingdao (2014)
44.
go back to reference Robinson, L., Rolls, E.T.: Invariant visual object recognition: biologically plausible approaches. Biol. Cybern. 109(4–5), 505–535 (2015)MathSciNetCrossRef Robinson, L., Rolls, E.T.: Invariant visual object recognition: biologically plausible approaches. Biol. Cybern. 109(4–5), 505–535 (2015)MathSciNetCrossRef
45.
go back to reference Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 416–431 (2006)CrossRefMATH Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 416–431 (2006)CrossRefMATH
46.
go back to reference Ghodrati, M., Khaligh-Razavi, S.M., Ebrahimpour, R., Rajaer, K., Pooyan, M.: How can selection of biologically inspired features improve the performance of a robust object recognition model. PLoS ONE 7(2), e32357 (2012)CrossRef Ghodrati, M., Khaligh-Razavi, S.M., Ebrahimpour, R., Rajaer, K., Pooyan, M.: How can selection of biologically inspired features improve the performance of a robust object recognition model. PLoS ONE 7(2), e32357 (2012)CrossRef
47.
go back to reference Zhai D., Li B., Chang H., Shan S., Chen X., Gao, W.: Manifold alignment via corresponding projections. In: BMVC (2010) Zhai D., Li B., Chang H., Shan S., Chen X., Gao, W.: Manifold alignment via corresponding projections. In: BMVC (2010)
48.
go back to reference Liu, W., Ma, T., Tao, D., You, J.: HSAE: a Hessian regularized sparse auto-encoders. Neurocomputing 187, 59–65 (2016)CrossRef Liu, W., Ma, T., Tao, D., You, J.: HSAE: a Hessian regularized sparse auto-encoders. Neurocomputing 187, 59–65 (2016)CrossRef
49.
go back to reference Yin, P., Qiao, H., Wu, W., Qi, L., Li, Y., Zhong, S., Zhang, B.: A novel biologically mechanism-based visual cognition model—automatic extraction of semantics, formation of integrated concepts and re-selection features for ambiguity. arXiv preprint arXiv:1603.07886 (2016) Yin, P., Qiao, H., Wu, W., Qi, L., Li, Y., Zhong, S., Zhang, B.: A novel biologically mechanism-based visual cognition model—automatic extraction of semantics, formation of integrated concepts and re-selection features for ambiguity. arXiv preprint arXiv:​1603.​07886 (2016)
51.
go back to reference Bhatt, R., Carpenter, G.A., Grossberg, S.: Texture segregation by visual cortex: perceptual grouping, attention, and learning. Vis. Res. 47, 3173–3211 (2007)CrossRef Bhatt, R., Carpenter, G.A., Grossberg, S.: Texture segregation by visual cortex: perceptual grouping, attention, and learning. Vis. Res. 47, 3173–3211 (2007)CrossRef
52.
go back to reference Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. JOSA A. 4(12), 2379–2394 (1987)CrossRef Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. JOSA A. 4(12), 2379–2394 (1987)CrossRef
53.
go back to reference Kovesi, P.: Image features from phase congruency. Videre: J. Comput. Vis. Res. 1(3), 1–26 (1999) Kovesi, P.: Image features from phase congruency. Videre: J. Comput. Vis. Res. 1(3), 1–26 (1999)
54.
go back to reference Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., Poggio, T.: A theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex. Massachusetts Inst of Tech, Cambridge, MA, Center for Biological and Computational Learning (2005) Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., Poggio, T.: A theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex. Massachusetts Inst of Tech, Cambridge, MA, Center for Biological and Computational Learning (2005)
Metadata
Title
Biological modeling of human visual system for object recognition using GLoP filters and sparse coding on multi-manifolds
Authors
Limiao Deng
Yanjiang Wang
Baodi Liu
Weifeng Liu
Yujuan Qi
Publication date
06-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Machine Vision and Applications / Issue 6/2018
Print ISSN: 0932-8092
Electronic ISSN: 1432-1769
DOI
https://doi.org/10.1007/s00138-018-0928-9

Other articles of this Issue 6/2018

Machine Vision and Applications 6/2018 Go to the issue

Premium Partner