Skip to main content
Top

2024 | OriginalPaper | Chapter

9. Biological Pathway Identification

Author : Qingfeng Chen

Published in: Association Analysis Techniques and Applications in Bioinformatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Genome-wide association study (GWAS) has become an essential method to reveal the genetic mechanism of complex diseases. In the past decade, the research on GWAS methods has gradually advanced from the initial single-locus, single-trait analysis to multi-locus, multi-trait association analysis, but the results can only explain a small portion of the genetic power. Therefore, the methodological study of GWAS is of great importance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li Muzi. A gene mutation makes humans more susceptible to cancer [N]. China Science News, 2002-5-20(10). Li Muzi. A gene mutation makes humans more susceptible to cancer [N]. China Science News, 2002-5-20(10).
2.
go back to reference SUNG B, PRASAD S, YADAV V R, et al. Cancer cell signaling pathways targeted by spice-derived nutraceuticals [J]. Nutrition and Cancer, 2012, 64(2):173–197.CrossRef SUNG B, PRASAD S, YADAV V R, et al. Cancer cell signaling pathways targeted by spice-derived nutraceuticals [J]. Nutrition and Cancer, 2012, 64(2):173–197.CrossRef
3.
go back to reference GANINI C, AMELIO I, BERTOLO R, et al. Global mapping of cancers: The Cancer Genome Atlas and beyond[J]. Molecular Oncology, 2021, 15(11):2823–2840.CrossRef GANINI C, AMELIO I, BERTOLO R, et al. Global mapping of cancers: The Cancer Genome Atlas and beyond[J]. Molecular Oncology, 2021, 15(11):2823–2840.CrossRef
4.
go back to reference FORBES S A, TANG G, BINDAL N, et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer[J]. Nucleic Acids Research, 2010, 38(suppl_1):D652–D657. FORBES S A, TANG G, BINDAL N, et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer[J]. Nucleic Acids Research, 2010, 38(suppl_1):D652–D657.
5.
go back to reference STARK C, BREITKREUTZ B, REGULY T, et al. BioGRID: a general repository for interaction datasets[J]. Nucleic Acids Research, 2006, 34(suppl_1):D535–D539. STARK C, BREITKREUTZ B, REGULY T, et al. BioGRID: a general repository for interaction datasets[J]. Nucleic Acids Research, 2006, 34(suppl_1):D535–D539.
6.
go back to reference KANEHISA M, GOTO S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1):27–30.CrossRef KANEHISA M, GOTO S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1):27–30.CrossRef
7.
go back to reference SCHAEFER C F, ANTHONY K, KRUPA S, et al. PID: the pathway interaction database[J]. Nucleic Acids Research 2009, 37(suppl_1):D674–D679. SCHAEFER C F, ANTHONY K, KRUPA S, et al. PID: the pathway interaction database[J]. Nucleic Acids Research 2009, 37(suppl_1):D674–D679.
8.
go back to reference HONDO F, WERCELENS P, SILVA W D, et al. Data provenance management for bioinformatics workflows using NoSQL database systems in a cloud computing environment[C] //2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017:1929–1934. HONDO F, WERCELENS P, SILVA W D, et al. Data provenance management for bioinformatics workflows using NoSQL database systems in a cloud computing environment[C] //2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017:1929–1934.
9.
go back to reference YU JSSOIR G, BRIGGS W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nature genetics, 2006, 38(2):203–208. YU JSSOIR G, BRIGGS W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nature genetics, 2006, 38(2):203–208.
10.
go back to reference KANG H M, ZAITLEN N A, WADE C M, et al. Efficient control of population structure in model organism association mapping[J]. Genetics, 2008, 178(3):1709–1723.CrossRef KANG H M, ZAITLEN N A, WADE C M, et al. Efficient control of population structure in model organism association mapping[J]. Genetics, 2008, 178(3):1709–1723.CrossRef
11.
go back to reference KANG H M, SUL J H, SERVICE S K, et al. Variance component model to account for sample structure in genome-wide association studies[J]. Nature genetics, 2010, 42(4):348–354.CrossRef KANG H M, SUL J H, SERVICE S K, et al. Variance component model to account for sample structure in genome-wide association studies[J]. Nature genetics, 2010, 42(4):348–354.CrossRef
12.
go back to reference LIPPERT C, LISTGARTEN J, LIU Y, et al. FaST linear mixed models for genome-wide association studies[J]. Nature methods, 2011, 8(10):833–835.CrossRef LIPPERT C, LISTGARTEN J, LIU Y, et al. FaST linear mixed models for genome-wide association studies[J]. Nature methods, 2011, 8(10):833–835.CrossRef
13.
go back to reference ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies[J]. Nature genetics, 2012, 44(7):821–824.CrossRef ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies[J]. Nature genetics, 2012, 44(7):821–824.CrossRef
14.
go back to reference YANG J, LEE S H, GODDARD M E, et al. GCTA: a tool for genome-wide complex trait analysis[J]. The American Journal of Human Genetics, 2011, 88(1):76–82.CrossRef YANG J, LEE S H, GODDARD M E, et al. GCTA: a tool for genome-wide complex trait analysis[J]. The American Journal of Human Genetics, 2011, 88(1):76–82.CrossRef
15.
go back to reference OSBORNE M R, PRESNELL B, and TURLACH B A. On the lasso and its dual[J]. Journal of Computational and Graphical statistics, 2000, 9(2): 319–337.MathSciNetCrossRef OSBORNE M R, PRESNELL B, and TURLACH B A. On the lasso and its dual[J]. Journal of Computational and Graphical statistics, 2000, 9(2): 319–337.MathSciNetCrossRef
16.
go back to reference Zou H, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the royal statistical society: series B (statistical methodology), 2005, 67(2): 301–320.MathSciNetCrossRef Zou H, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the royal statistical society: series B (statistical methodology), 2005, 67(2): 301–320.MathSciNetCrossRef
17.
go back to reference ALGAMAL Z Y, and LEE M H. High dimensional logistic regression model using adjusted elastic net penalty[J]. Pakistan Journal of Statistics and Operation Research (2015): 667–676. ALGAMAL Z Y, and LEE M H. High dimensional logistic regression model using adjusted elastic net penalty[J]. Pakistan Journal of Statistics and Operation Research (2015): 667–676.
18.
go back to reference Zou H. The adaptive lasso and its oracle properties[J]. Journal of the American statistical association, 2006, 101(476): 1418–1429.MathSciNetCrossRef Zou H. The adaptive lasso and its oracle properties[J]. Journal of the American statistical association, 2006, 101(476): 1418–1429.MathSciNetCrossRef
19.
go back to reference Casella G, Ghosh M, Gill J, et al. Penalized regression, standard errors, and Bayesian lassos[J]. Bayesian analysis, 2010, 5(2): 369–411.MathSciNetCrossRef Casella G, Ghosh M, Gill J, et al. Penalized regression, standard errors, and Bayesian lassos[J]. Bayesian analysis, 2010, 5(2): 369–411.MathSciNetCrossRef
20.
go back to reference Wu T T, Chen Y F, Hastie T, et al. Genome-wide association analysis by lasso penalized logistic regression[J]. Bioinformatics, 2009, 25(6): 714–721.CrossRef Wu T T, Chen Y F, Hastie T, et al. Genome-wide association analysis by lasso penalized logistic regression[J]. Bioinformatics, 2009, 25(6): 714–721.CrossRef
21.
go back to reference Cho S, Kim H, Oh S, et al. Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis[C]//BMC proceedings. BioMed Central, 2009, 3(7): 1–6. Cho S, Kim H, Oh S, et al. Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis[C]//BMC proceedings. BioMed Central, 2009, 3(7): 1–6.
22.
go back to reference Xu S. An expectation-maximization algorithm for the Lasso estimation of quantitative trait locus effects[J]. Heredity, 2010, 105(5): 483–494.CrossRef Xu S. An expectation-maximization algorithm for the Lasso estimation of quantitative trait locus effects[J]. Heredity, 2010, 105(5): 483–494.CrossRef
23.
go back to reference Segura V, Vilhjálmsson B J, Platt A, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations[J]. Nature genetics, 2012, 44(7):825–830.CrossRef Segura V, Vilhjálmsson B J, Platt A, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations[J]. Nature genetics, 2012, 44(7):825–830.CrossRef
24.
go back to reference Klasen J R, Barbez E, Meier L, et al. A multi-marker association method for genome-wide association studies without the need for population structure correction[J]. Nature communications, 2016, 7(1):1–8.CrossRef Klasen J R, Barbez E, Meier L, et al. A multi-marker association method for genome-wide association studies without the need for population structure correction[J]. Nature communications, 2016, 7(1):1–8.CrossRef
25.
go back to reference Li J, Das K, Fu G, et al. The Bayesian lasso for genome-wide association studies[J]. Bioinformatics, 2011, 27(4):516–523.CrossRef Li J, Das K, Fu G, et al. The Bayesian lasso for genome-wide association studies[J]. Bioinformatics, 2011, 27(4):516–523.CrossRef
26.
go back to reference Korte A, Vilhjálmsson B J, Segura V, et al. A mixed-model approach for genome-wide association studies of correlated traits in structured populations[J]. Nature genetics, 2012, 44(9):1066–1071.CrossRef Korte A, Vilhjálmsson B J, Segura V, et al. A mixed-model approach for genome-wide association studies of correlated traits in structured populations[J]. Nature genetics, 2012, 44(9):1066–1071.CrossRef
27.
go back to reference Lee S H, Van der Werf J H J. MTG2: an efficient algorithm for multivariate linear mixed model analysis based on genomic information[J]. Bioinformatics, 2016, 32(9):1420–1422.CrossRef Lee S H, Van der Werf J H J. MTG2: an efficient algorithm for multivariate linear mixed model analysis based on genomic information[J]. Bioinformatics, 2016, 32(9):1420–1422.CrossRef
28.
go back to reference Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies[J]. Nature methods, 2014, 11(4):407–409.CrossRef Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies[J]. Nature methods, 2014, 11(4):407–409.CrossRef
29.
go back to reference Lippert C, Casale F P, Rakitsch B, et al. LIMIX: genetic analysis of multiple traits[J]. BioRxiv, 2014:003905. Lippert C, Casale F P, Rakitsch B, et al. LIMIX: genetic analysis of multiple traits[J]. BioRxiv, 2014:003905.
30.
go back to reference Casale F P, Rakitsch B, Lippert C, et al. Efficient set tests for the genetic analysis of correlated traits[J]. Nature methods, 2015, 12(8):755–758.CrossRef Casale F P, Rakitsch B, Lippert C, et al. Efficient set tests for the genetic analysis of correlated traits[J]. Nature methods, 2015, 12(8):755–758.CrossRef
31.
go back to reference Meyer H V, Casale F P, Stegle O, et al. LiMMBo: a simple, scalable approach for linear mixed models in high-dimensional genetic association studies[J]. BioRxiv, 2018:255497. Meyer H V, Casale F P, Stegle O, et al. LiMMBo: a simple, scalable approach for linear mixed models in high-dimensional genetic association studies[J]. BioRxiv, 2018:255497.
32.
go back to reference DRAGHICI, SORIN. Pathway Analysis of High Throughput Experiments[J]. CRC Press, 2014. DRAGHICI, SORIN. Pathway Analysis of High Throughput Experiments[J]. CRC Press, 2014.
33.
go back to reference TARCA A L, DRAGHICI S, KHATRI P, et al. A novel signaling pathway impact analysis[J]. Bioinformatics, 2009, 25(1):75–82.CrossRef TARCA A L, DRAGHICI S, KHATRI P, et al. A novel signaling pathway impact analysis[J]. Bioinformatics, 2009, 25(1):75–82.CrossRef
34.
go back to reference VASKE C J, BENZ S C, SANBORN J, et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM[J]. Bioinformatics, 2010, 26(12):i237–i245.CrossRef VASKE C J, BENZ S C, SANBORN J, et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM[J]. Bioinformatics, 2010, 26(12):i237–i245.CrossRef
35.
go back to reference SOL E, SCHAEFER C F, BUETOW K H, et al. Identification of Key Processes Underlying Cancer Phenotypes Using Biologic Pathway Analysis[J]. Plos One, 2007, 2(5):e425.CrossRef SOL E, SCHAEFER C F, BUETOW K H, et al. Identification of Key Processes Underlying Cancer Phenotypes Using Biologic Pathway Analysis[J]. Plos One, 2007, 2(5):e425.CrossRef
36.
go back to reference IQBAL S, HALIM Z. Orienting conflicted graph edges using genetic algorithms to discover pathways in protein-protein interaction networks[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 18(5):1970–1985.CrossRef IQBAL S, HALIM Z. Orienting conflicted graph edges using genetic algorithms to discover pathways in protein-protein interaction networks[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 18(5):1970–1985.CrossRef
37.
go back to reference CIRIELLO G, CERAMI E, SANDER C, et al. Mutual exclusivity analysis identifies oncogenic network modules[J]. Genome Research, 2011, 22(2):398–406CrossRef CIRIELLO G, CERAMI E, SANDER C, et al. Mutual exclusivity analysis identifies oncogenic network modules[J]. Genome Research, 2011, 22(2):398–406CrossRef
38.
go back to reference BABUR Ö, GÖNEN M, AKSOY B A, et al. Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations[J]. Genome Biology, 2015, 16(1):1–10.CrossRef BABUR Ö, GÖNEN M, AKSOY B A, et al. Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations[J]. Genome Biology, 2015, 16(1):1–10.CrossRef
39.
go back to reference HOU J P, MA J. DawnRank: discovering personalized driver genes in cancer[J]. Genome medicine, 2014, 6(7):1–16.CrossRef HOU J P, MA J. DawnRank: discovering personalized driver genes in cancer[J]. Genome medicine, 2014, 6(7):1–16.CrossRef
40.
go back to reference ZHAO J F, ZHANG S H, et al. Efficient methods for identifying mutated driver pathways in cancer[J]. Bioinformatics (Oxford, England), 28.22 (2012):2940–2947. ZHAO J F, ZHANG S H, et al. Efficient methods for identifying mutated driver pathways in cancer[J]. Bioinformatics (Oxford, England), 28.22 (2012):2940–2947.
41.
go back to reference ZHANG J H, et al. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data[J]. BMC systems biology, 2013, 7(2):1–12. ZHANG J H, et al. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data[J]. BMC systems biology, 2013, 7(2):1–12.
42.
go back to reference ZHENG C H, YANG W, CHONG Y W, et al. Identification of mutated driver pathways in cancer using a multi-objective optimization model[J]. Computers in Biology and Medicine 2016, 72:22–29.CrossRef ZHENG C H, YANG W, CHONG Y W, et al. Identification of mutated driver pathways in cancer using a multi-objective optimization model[J]. Computers in Biology and Medicine 2016, 72:22–29.CrossRef
43.
go back to reference WU J L, CAI Q R, et al. Identifying mutated driver pathways in cancer by integrating multi-omics data[J]. Computational Biology and Chemistry, 2019, 80:159–167.CrossRef WU J L, CAI Q R, et al. Identifying mutated driver pathways in cancer by integrating multi-omics data[J]. Computational Biology and Chemistry, 2019, 80:159–167.CrossRef
44.
go back to reference LIN J, CHEN H, LI S, et al. Accurate prediction of potential druggable proteins based on genetic algorithm and Bagging-SVM ensemble classifier[J]. Artificial Intelligence in Medicine, 2019, 98:35–47. LIN J, CHEN H, LI S, et al. Accurate prediction of potential druggable proteins based on genetic algorithm and Bagging-SVM ensemble classifier[J]. Artificial Intelligence in Medicine, 2019, 98:35–47.
45.
go back to reference STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341–359.MathSciNetCrossRef STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341–359.MathSciNetCrossRef
46.
go back to reference NERI F, TIRRONEN V. Scale factor local search in differential evolution[J]. Memetic Computing, 2009, 1(2):153–171.CrossRef NERI F, TIRRONEN V. Scale factor local search in differential evolution[J]. Memetic Computing, 2009, 1(2):153–171.CrossRef
47.
go back to reference JI J, XIAO H, YANG C. HFADE-FMD: a hybrid approach of fireworks algorithm and differential evolution strategies for functional module detection in protein-protein interaction networks[J]. Applied Intelligence, 2021, 51(2):1118–1132. JI J, XIAO H, YANG C. HFADE-FMD: a hybrid approach of fireworks algorithm and differential evolution strategies for functional module detection in protein-protein interaction networks[J]. Applied Intelligence, 2021, 51(2):1118–1132.
48.
go back to reference ALATAS B, AKIN E, KARCI A. MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules[J]. Applied Soft Computing, 2008, 8(1):646–656.CrossRef ALATAS B, AKIN E, KARCI A. MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules[J]. Applied Soft Computing, 2008, 8(1):646–656.CrossRef
49.
go back to reference DAO P, KIM Y A, WOJTOWIZ D, et al. BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions[J]. Plos Computational Biology, 2017, 13(10):e1005695.CrossRef DAO P, KIM Y A, WOJTOWIZ D, et al. BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions[J]. Plos Computational Biology, 2017, 13(10):e1005695.CrossRef
50.
go back to reference Shi J, Walker M G. Gene set enrichment analysis (GSEA) for interpreting gene expression profiles[J]. Current Bioinformatics, 2007, 2(2):133–137.CrossRef Shi J, Walker M G. Gene set enrichment analysis (GSEA) for interpreting gene expression profiles[J]. Current Bioinformatics, 2007, 2(2):133–137.CrossRef
51.
go back to reference PERNEGER T V. What’s wrong with Bonferroni adjustments[J]. British Medical Journal, 1998, 316(7139), 1236–1238.CrossRef PERNEGER T V. What’s wrong with Bonferroni adjustments[J]. British Medical Journal, 1998, 316(7139), 1236–1238.CrossRef
52.
go back to reference BENJAMINI Y. Discovering the false discovery rate[J]. Journal of the Royal Statistical Society:series B (statistical methodology), 2010, 72(4):405–416.MathSciNetCrossRef BENJAMINI Y. Discovering the false discovery rate[J]. Journal of the Royal Statistical Society:series B (statistical methodology), 2010, 72(4):405–416.MathSciNetCrossRef
53.
go back to reference Fisher E A, Ginsberg H N. Complexity in the Secretory Pathway: The Assembly and Secretion of Apolipoprotein B-containing Lipoproteins[J]. Journal of Biological Chemistry, 2002, 277(20):17377–17380.CrossRef Fisher E A, Ginsberg H N. Complexity in the Secretory Pathway: The Assembly and Secretion of Apolipoprotein B-containing Lipoproteins[J]. Journal of Biological Chemistry, 2002, 277(20):17377–17380.CrossRef
54.
go back to reference KLEINKAUF R, HOUWAART T, BACKOFEN R, et al. antaRNA-Multi-objective inverse folding of pseudoknot RNA using ant-colony optimization[J]. BMC Bioinformatics, 2015, 16(1):1–7.CrossRef KLEINKAUF R, HOUWAART T, BACKOFEN R, et al. antaRNA-Multi-objective inverse folding of pseudoknot RNA using ant-colony optimization[J]. BMC Bioinformatics, 2015, 16(1):1–7.CrossRef
55.
go back to reference LUSTIG B, BEHRENS J. The Wnt signaling pathway and its role in tumor development[J]. Journal of cancer research and clinical oncology, 2003, 129(4):199–221.CrossRef LUSTIG B, BEHRENS J. The Wnt signaling pathway and its role in tumor development[J]. Journal of cancer research and clinical oncology, 2003, 129(4):199–221.CrossRef
56.
go back to reference Mármol I, Sánchez-de-Diego C, et al. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer[J]. International journal of molecular sciences, 2017, 18(1):197.CrossRef Mármol I, Sánchez-de-Diego C, et al. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer[J]. International journal of molecular sciences, 2017, 18(1):197.CrossRef
57.
go back to reference CHEN X, YAN C C, LUO C, et al. Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity[J]. Scientific reports, 2015, 5(1):1–12. CHEN X, YAN C C, LUO C, et al. Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity[J]. Scientific reports, 2015, 5(1):1–12.
Metadata
Title
Biological Pathway Identification
Author
Qingfeng Chen
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-8251-6_9

Premium Partner