Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

Biomedical Applications of Nanosilicate Composites

Authors : Ashwini Kumar, Awanish Kumar

Published in: Biomedical Composites

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biomedical composites or biocomposites refer to the artificially synthesized heterogeneous materials that are composed of two or more ingredients with different chemical and physical nature where one component is a biopolymer. These composites are shown to have various biomedical applications ranging from bone tissue engineering, dental restorations, wound healing, and drug delivery. Though various inorganic materials such as hydroxyapatite and β-tricalcium phosphate have been tested and used clinically for bone regeneration and restoration, they have their own advantages and drawbacks. Nanosilicates are one of the most abundant natural inorganic mineral components present in the earth’s crust, in the form of mineral clay, which have recently gained importance in modern-day biomedical research. Montmorillonite, Kaolinite, and Halloysite are the three common natural nanoclays being used in various biomedical research. Laponite® is the most used synthetic nanosilicate used for various biomedical research. Though mineral clays have been used directly and extensively in traditional medicines for various ailments, their nanosilicate forms separately have shown promising results in bone tissue engineering, dental restoration, drug delivery applications, and wound healing research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Iftekhar A (2009) Biomedical composites. In: Kutz M (ed) Biomedical engineering and design handbook, 2nd edn. McGraw Hill Professional, pp 339–355. ISBN 9780071704724 Iftekhar A (2009) Biomedical composites. In: Kutz M (ed) Biomedical engineering and design handbook, 2nd edn. McGraw Hill Professional, pp 339–355. ISBN 9780071704724
2.
go back to reference Swain SK, Pattanayak AJ, Sahoo AP (2018) Functional biopolymer composites. In: Thakur VK, Thakur MK (eds) Functional biopolymers. Springer, pp 159–182 Swain SK, Pattanayak AJ, Sahoo AP (2018) Functional biopolymer composites. In: Thakur VK, Thakur MK (eds) Functional biopolymers. Springer, pp 159–182
3.
go back to reference Mouzakis DE (2013) Biomedical polymer composites and applications. In: Thomas S (ed) Polymer composite, 1st ed, vol 3. Wiley, pp 483–514. ISBN 9783527329809 Mouzakis DE (2013) Biomedical polymer composites and applications. In: Thomas S (ed) Polymer composite, 1st ed, vol 3. Wiley, pp 483–514. ISBN 9783527329809
4.
go back to reference Paras LP, Fernandez JAS, Vidaltamayo R (2019) Nanoclays for biomedical applications. In: Martinez LMT (ed) Handbook of ecomaterials. Springer. ISBN 978-3-319-68254-9 Paras LP, Fernandez JAS, Vidaltamayo R (2019) Nanoclays for biomedical applications. In: Martinez LMT (ed) Handbook of ecomaterials. Springer. ISBN 978-3-319-68254-9
6.
go back to reference Moraes JDD, Bertolino SRA, Cuffini SL, Ducart DF, Bretzke PE, Leonardi GR (2017) Clay minerals: properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes-a review. Int J Pharm 534(1–2):213–219CrossRef Moraes JDD, Bertolino SRA, Cuffini SL, Ducart DF, Bretzke PE, Leonardi GR (2017) Clay minerals: properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes-a review. Int J Pharm 534(1–2):213–219CrossRef
7.
go back to reference Massaro M, Colletti CG, Lazzara G, Riela S (2018) The use of some clay minerals as natural resources for drug carrier applications. J Funct Biomater 9(4):58CrossRef Massaro M, Colletti CG, Lazzara G, Riela S (2018) The use of some clay minerals as natural resources for drug carrier applications. J Funct Biomater 9(4):58CrossRef
8.
go back to reference Kotal M, Bhowmik AK (2015) Polymer nanocomposites from modified clays: Recent advances and challenges. Prog Polym Sci 51:127–187CrossRef Kotal M, Bhowmik AK (2015) Polymer nanocomposites from modified clays: Recent advances and challenges. Prog Polym Sci 51:127–187CrossRef
9.
go back to reference Viseras C, Aguzzi C, Cerezo P, Lopez-Galindo A (2007) Uses of clay minerals in semisolid health care and therapeutic products. App Clay Sci 36(1–3):37–50CrossRef Viseras C, Aguzzi C, Cerezo P, Lopez-Galindo A (2007) Uses of clay minerals in semisolid health care and therapeutic products. App Clay Sci 36(1–3):37–50CrossRef
10.
go back to reference Khurana IS, Kaur S, Kaur H, Khurana RK (2015) Multifaceted role of clay minerals in pharmaceuticals. Future Sci OA 1(3):FSO6 Khurana IS, Kaur S, Kaur H, Khurana RK (2015) Multifaceted role of clay minerals in pharmaceuticals. Future Sci OA 1(3):FSO6
11.
go back to reference Cross LM, Carrow JK, Ding X, Singh KA, Gaharwar AK (2019) Sustained and prolonged delivery of protein therapeutics from two-dimensional nanosilicates. ACS Appl Mater Interfaces 11(7):6741–6750CrossRef Cross LM, Carrow JK, Ding X, Singh KA, Gaharwar AK (2019) Sustained and prolonged delivery of protein therapeutics from two-dimensional nanosilicates. ACS Appl Mater Interfaces 11(7):6741–6750CrossRef
12.
go back to reference Howel DW, Peak CW, Bayless KJ, Gaharwar AK (2018) 2D nanosilicates loaded with proangiogenic factors stimulate endothelial sprouting Adv Biosys 1800092 Howel DW, Peak CW, Bayless KJ, Gaharwar AK (2018) 2D nanosilicates loaded with proangiogenic factors stimulate endothelial sprouting Adv Biosys 1800092
13.
go back to reference Carrow JK, Di Luca A, Dolatshahi-Pirouz A, Moroni L, Gaharwar AK (2019) 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. Regen Biomater 6(1):29–37CrossRef Carrow JK, Di Luca A, Dolatshahi-Pirouz A, Moroni L, Gaharwar AK (2019) 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. Regen Biomater 6(1):29–37CrossRef
14.
go back to reference Awad ME, López-Galindo A, Setti M, El-Rahmany MM, Iborra CV (2017) Kaolinite in pharmaceutics and biomedicine. Int J Pharm 533(1):34–48CrossRef Awad ME, López-Galindo A, Setti M, El-Rahmany MM, Iborra CV (2017) Kaolinite in pharmaceutics and biomedicine. Int J Pharm 533(1):34–48CrossRef
15.
go back to reference Jayrajsinh S, Shankar G, Agrawal YK, Bakre L (2017) Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. J Drug Deliv Sci Tech 39:200–209CrossRef Jayrajsinh S, Shankar G, Agrawal YK, Bakre L (2017) Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. J Drug Deliv Sci Tech 39:200–209CrossRef
16.
go back to reference Viseras C, Carazo E, Borrego-Sánchez A et al (2019) Clay minerals in skin drug delivery. Clays Clay Miner 67:59–71CrossRef Viseras C, Carazo E, Borrego-Sánchez A et al (2019) Clay minerals in skin drug delivery. Clays Clay Miner 67:59–71CrossRef
17.
go back to reference Mitchell NJ, Kumi J, Aleser M, Elmore SE, Rychlik KA, Zychowski KE et al (2014) Short-term safety and efficacy of calcium montmorillonite clay (UPSN) in children. Am J Trop Med Hyg 91(4):777–785CrossRef Mitchell NJ, Kumi J, Aleser M, Elmore SE, Rychlik KA, Zychowski KE et al (2014) Short-term safety and efficacy of calcium montmorillonite clay (UPSN) in children. Am J Trop Med Hyg 91(4):777–785CrossRef
18.
go back to reference Awuor AO, Yard E, Daniel JH, Martin C, Bii C, Romoser A et al (2017) Evaluation of the efficacy, acceptability and palatability of calcium montmorillonite clay used to reduce aflatoxin B1 dietary exposure in a crossover study in Kenya. Food Addit Contam Part a Chem Anal Control Expo Risk Assess 34(1):93–102CrossRef Awuor AO, Yard E, Daniel JH, Martin C, Bii C, Romoser A et al (2017) Evaluation of the efficacy, acceptability and palatability of calcium montmorillonite clay used to reduce aflatoxin B1 dietary exposure in a crossover study in Kenya. Food Addit Contam Part a Chem Anal Control Expo Risk Assess 34(1):93–102CrossRef
19.
go back to reference Tomás H, Alves CS, Rodrigues J (2018) Laponite®: a key nanoplatform for biomedical applications? Nanomedicine 14(7):2407–2420CrossRef Tomás H, Alves CS, Rodrigues J (2018) Laponite®: a key nanoplatform for biomedical applications? Nanomedicine 14(7):2407–2420CrossRef
20.
go back to reference Satish S, Tharmavaram M, Rawtani D (2019) Halloysite nanotubes as a nature’s boon for biomedical applications. Nanobiomedicine (Rij) 6:1–16 Satish S, Tharmavaram M, Rawtani D (2019) Halloysite nanotubes as a nature’s boon for biomedical applications. Nanobiomedicine (Rij) 6:1–16
21.
22.
go back to reference Chimene D, Kaunas R, Gaharwar A (2019) Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies. Adv Mater 1902026 Chimene D, Kaunas R, Gaharwar A (2019) Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies. Adv Mater 1902026
23.
go back to reference Naumenko EA, Guryanov ID, Yendluri R, Lvov YM, Fakhrullin RF (2016) Clay nanotube-biopolymer composite scaffolds for tissue engineering. Nanoscale 8(13):7257–7271CrossRef Naumenko EA, Guryanov ID, Yendluri R, Lvov YM, Fakhrullin RF (2016) Clay nanotube-biopolymer composite scaffolds for tissue engineering. Nanoscale 8(13):7257–7271CrossRef
24.
go back to reference Paul A, Manoharan V, Krafft D, Assmann A, Uquillas JA, Shin SR et al (2016) Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B 4(20):3544–3554CrossRef Paul A, Manoharan V, Krafft D, Assmann A, Uquillas JA, Shin SR et al (2016) Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B 4(20):3544–3554CrossRef
25.
go back to reference Carrow JK, Cross LM, Reese RW, Jaiswal MK, Gregory CA, Kaunas R et al (2018) Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates. Proc Natl Acad Sci 115(17):E3905–E3913CrossRef Carrow JK, Cross LM, Reese RW, Jaiswal MK, Gregory CA, Kaunas R et al (2018) Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates. Proc Natl Acad Sci 115(17):E3905–E3913CrossRef
27.
go back to reference Balakrishnan H, Husin MR, Wahit MU, Kadir MRA (2014) Preparation and characterization of organically modified montmorillonite-filled high density polyethylene/hydroxyapatite nanocomposites for biomedical applications. Polym Plast Technol Eng 53:790–800CrossRef Balakrishnan H, Husin MR, Wahit MU, Kadir MRA (2014) Preparation and characterization of organically modified montmorillonite-filled high density polyethylene/hydroxyapatite nanocomposites for biomedical applications. Polym Plast Technol Eng 53:790–800CrossRef
28.
go back to reference Wang Y, Cui W, Chou J, Wen S, Sun Y, Zhang H (2018) Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering. Colloids Surf B Biointerfaces 172:90–97CrossRef Wang Y, Cui W, Chou J, Wen S, Sun Y, Zhang H (2018) Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering. Colloids Surf B Biointerfaces 172:90–97CrossRef
29.
go back to reference Carrow JK, Di Luca A, Pirouz AD, Moroni L, Gaharwar AK (2019) 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. Regener Biomaterials 6(1):29–37CrossRef Carrow JK, Di Luca A, Pirouz AD, Moroni L, Gaharwar AK (2019) 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. Regener Biomaterials 6(1):29–37CrossRef
30.
go back to reference Nadernezhad A, Caliscan OS, Topuz F, Afghah F, Erman B, Koc B (2019) Nanocomposite bioinks based on agarose and 2D nanosilicates with tunable flow properties and bioactivity for 3D bioprinting. ACS Appl Bio Mater 2:796–806CrossRef Nadernezhad A, Caliscan OS, Topuz F, Afghah F, Erman B, Koc B (2019) Nanocomposite bioinks based on agarose and 2D nanosilicates with tunable flow properties and bioactivity for 3D bioprinting. ACS Appl Bio Mater 2:796–806CrossRef
32.
go back to reference Gaharwar AK, Cross LM, Peak CW, Gold K, Carrow JK, Brokesh A, Singh KA (2019) 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv Mater 1900332 Gaharwar AK, Cross LM, Peak CW, Gold K, Carrow JK, Brokesh A, Singh KA (2019) 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv Mater 1900332
33.
go back to reference Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J et al (2019) Self-healing hydrogels: the next paradigm shift in tissue engineering? Adv Sci 6:1801664CrossRef Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J et al (2019) Self-healing hydrogels: the next paradigm shift in tissue engineering? Adv Sci 6:1801664CrossRef
34.
go back to reference Bonifacio MA, Gentile P, Ferreira AM, Cometa S, De Giglio E (2017) Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydr Polym 163:280–291CrossRef Bonifacio MA, Gentile P, Ferreira AM, Cometa S, De Giglio E (2017) Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydr Polym 163:280–291CrossRef
35.
go back to reference Ahlfeld T, Cidonio G, Kilian D, Duin S, Akkineni AR, Dawson JI et al (2017) Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication 9(3):034103CrossRef Ahlfeld T, Cidonio G, Kilian D, Duin S, Akkineni AR, Dawson JI et al (2017) Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication 9(3):034103CrossRef
36.
go back to reference Cidonio G, Alcala-Orozco CR, Lim KS, Glinka M, Mutreja I, Kim YH et al (2019) Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Biofabrication 11(3):035027CrossRef Cidonio G, Alcala-Orozco CR, Lim KS, Glinka M, Mutreja I, Kim YH et al (2019) Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Biofabrication 11(3):035027CrossRef
37.
go back to reference Cui ZK, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M (2019) Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun 10:3523CrossRef Cui ZK, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M (2019) Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun 10:3523CrossRef
38.
go back to reference Salernitano E, Migliaresi C (2003) Composite materials for biomedical applications: a review. J Appl Biomater Biomech 1(1):3–18 Salernitano E, Migliaresi C (2003) Composite materials for biomedical applications: a review. J Appl Biomater Biomech 1(1):3–18
39.
go back to reference Atai M, Solhi L, Nodehi A, Mirabedini SM, Kasraei S, Akbari K, Babanzadeh S (2009) PMMA-grafted nanoclay as novel filler for dental adhesives. Dent Mater 25(3):339–347CrossRef Atai M, Solhi L, Nodehi A, Mirabedini SM, Kasraei S, Akbari K, Babanzadeh S (2009) PMMA-grafted nanoclay as novel filler for dental adhesives. Dent Mater 25(3):339–347CrossRef
40.
go back to reference de Menezes LR, da Silva EO (2016) The use of montmorillonite clays as reinforcing fillers for dental adhesives. Mat Res 19(1):236–242CrossRef de Menezes LR, da Silva EO (2016) The use of montmorillonite clays as reinforcing fillers for dental adhesives. Mat Res 19(1):236–242CrossRef
41.
go back to reference Menezes LR, da Silva EO, da Silva Rocha AC, de Oliveira DCRS, Campos PRB (2018) The applicability of organomodified nanoclays as new fillers for mechanical reinforcement of dental composites. J Composite Mat 52(7):963–970CrossRef Menezes LR, da Silva EO, da Silva Rocha AC, de Oliveira DCRS, Campos PRB (2018) The applicability of organomodified nanoclays as new fillers for mechanical reinforcement of dental composites. J Composite Mat 52(7):963–970CrossRef
42.
go back to reference Nikolaidis AK, Koulaouzidou EA, Gogos C, Achilias DS (2019) Synthesis and characterization of dental nanocomposite resins filled with different clay nanoparticles. Polymers (Basel) 11(4):pii: E730 Nikolaidis AK, Koulaouzidou EA, Gogos C, Achilias DS (2019) Synthesis and characterization of dental nanocomposite resins filled with different clay nanoparticles. Polymers (Basel) 11(4):pii: E730
43.
go back to reference Fareed MA, Stamboulis A (2014) Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (PG) montmorillonite with poly(acrylic acid). J Mater Sci Mater Med 25(1):91–99CrossRef Fareed MA, Stamboulis A (2014) Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (PG) montmorillonite with poly(acrylic acid). J Mater Sci Mater Med 25(1):91–99CrossRef
44.
go back to reference Lazzara G, Riela S, Fakhrullin RF (2017) Clay-based drug-delivery systems: what does the future hold? Ther Deliv 8(8):633–646CrossRef Lazzara G, Riela S, Fakhrullin RF (2017) Clay-based drug-delivery systems: what does the future hold? Ther Deliv 8(8):633–646CrossRef
45.
go back to reference Zhang Y, Long M, Huang P, Yang H, Chang S, Hu Y, Tang A, Mao L (2016) Emerging integrated nanoclays-facilitated drug delivery system for papillary thyroid cancer therapy. Sci Rep 6:33335CrossRef Zhang Y, Long M, Huang P, Yang H, Chang S, Hu Y, Tang A, Mao L (2016) Emerging integrated nanoclays-facilitated drug delivery system for papillary thyroid cancer therapy. Sci Rep 6:33335CrossRef
46.
go back to reference Jain S, Datta M (2015) Oral extended release of dexamethasone: Montmorillonite–PLGA nanocomposites as a delivery vehicle. App Clay Sci 104:182–188CrossRef Jain S, Datta M (2015) Oral extended release of dexamethasone: Montmorillonite–PLGA nanocomposites as a delivery vehicle. App Clay Sci 104:182–188CrossRef
47.
go back to reference Jain S, Datta M (2016) Montmorillonite-alginate microspheres as a delivery vehicle for oral extended release of Venlafaxine hydrochloride. J Drug Deliv Sci Tech 33:149–156CrossRef Jain S, Datta M (2016) Montmorillonite-alginate microspheres as a delivery vehicle for oral extended release of Venlafaxine hydrochloride. J Drug Deliv Sci Tech 33:149–156CrossRef
48.
go back to reference Tomas H, Alves CS, Rodrigues J (2017) Laponite: a key nanoplatform for biomedical applications? Nanomedicine 14(7):2407–2420CrossRef Tomas H, Alves CS, Rodrigues J (2017) Laponite: a key nanoplatform for biomedical applications? Nanomedicine 14(7):2407–2420CrossRef
49.
go back to reference Becher TB, Mendonca MCP, de Farias MA, Portugal RV, de Jesus MB, Ornelas C (2018) Soft nanohydrogels based on laponite nanodiscs: a versatile drug delivery platform for theranostics and drug cocktails. ACS App Mater Interfaces 10(26):21891–21900CrossRef Becher TB, Mendonca MCP, de Farias MA, Portugal RV, de Jesus MB, Ornelas C (2018) Soft nanohydrogels based on laponite nanodiscs: a versatile drug delivery platform for theranostics and drug cocktails. ACS App Mater Interfaces 10(26):21891–21900CrossRef
50.
go back to reference Cross LM, Carrow JK, Ding X, Singh KA, Gaharwar AK (2019) Sustained and prolonged delivery of protein therapeutics from two-dimensional nanosilicates. ACS App Mater Interfaces 11(7):6741–6750CrossRef Cross LM, Carrow JK, Ding X, Singh KA, Gaharwar AK (2019) Sustained and prolonged delivery of protein therapeutics from two-dimensional nanosilicates. ACS App Mater Interfaces 11(7):6741–6750CrossRef
51.
go back to reference Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromol 11(3):820–826CrossRef Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromol 11(3):820–826CrossRef
52.
go back to reference Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28:1227–1250CrossRef Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28:1227–1250CrossRef
53.
go back to reference Santos AC, Ferreira C, Veiga F, Ribeiro AJ, Panchal A, Lvov Y, Agarwal A (2018) Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold. Adv Colloid Interface Sci 257:58–70CrossRef Santos AC, Ferreira C, Veiga F, Ribeiro AJ, Panchal A, Lvov Y, Agarwal A (2018) Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold. Adv Colloid Interface Sci 257:58–70CrossRef
54.
go back to reference Lvov YM, Shchukin DG, Mohwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2(5):814–820CrossRef Lvov YM, Shchukin DG, Mohwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2(5):814–820CrossRef
55.
go back to reference Villen FG, Faccendini A, Aguzzi C, Cerezo P, Bonferoni MC, Rossi S et al (2019) Montmorillonite-norfloxacin nanocomposites intended for healing of infected wounds. Int J Nanomed 5051–5060 Villen FG, Faccendini A, Aguzzi C, Cerezo P, Bonferoni MC, Rossi S et al (2019) Montmorillonite-norfloxacin nanocomposites intended for healing of infected wounds. Int J Nanomed 5051–5060
56.
go back to reference Pacelli S, Paolicelli P, Moretti G, Petralito S, Giacomo SD, Vitalone A, Casadei MA (2016) Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur Polym J 77:114–123CrossRef Pacelli S, Paolicelli P, Moretti G, Petralito S, Giacomo SD, Vitalone A, Casadei MA (2016) Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur Polym J 77:114–123CrossRef
57.
go back to reference Ambrogi V, Pietrella D, Nocchetti M, Casagrande S, Moretti V, De Marco S, Ricci M (2017) Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J Colloid Interface Sci 491:265–272CrossRef Ambrogi V, Pietrella D, Nocchetti M, Casagrande S, Moretti V, De Marco S, Ricci M (2017) Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J Colloid Interface Sci 491:265–272CrossRef
58.
go back to reference Aguzzi C, Sandri G, Bonferoni C, Cerezo P, Rossi S, Ferrari F et al (2014) Solid state characterization of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposites for wound healing. Colloid Surf B Biointerfaces 113:152–157CrossRef Aguzzi C, Sandri G, Bonferoni C, Cerezo P, Rossi S, Ferrari F et al (2014) Solid state characterization of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposites for wound healing. Colloid Surf B Biointerfaces 113:152–157CrossRef
59.
go back to reference Peng Q, Xu P, Xiao S (2018) Porous laponite/poly(L-lactic acid) membrane with controlled release of TCH and efficient antibacterial performance. Fibers Polym 19(3):477–488CrossRef Peng Q, Xu P, Xiao S (2018) Porous laponite/poly(L-lactic acid) membrane with controlled release of TCH and efficient antibacterial performance. Fibers Polym 19(3):477–488CrossRef
60.
go back to reference Pourshahrestani S, Zeimaran E, Djordjevic I, Kadri NA, Towler MR (2016) Inorganic hemostats: The state-of-the-art and recent advances. Mat Sci Eng C 58:1255–1268CrossRef Pourshahrestani S, Zeimaran E, Djordjevic I, Kadri NA, Towler MR (2016) Inorganic hemostats: The state-of-the-art and recent advances. Mat Sci Eng C 58:1255–1268CrossRef
Metadata
Title
Biomedical Applications of Nanosilicate Composites
Authors
Ashwini Kumar
Awanish Kumar
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4753-3_1

Premium Partners