Skip to main content
Top

2022 | OriginalPaper | Chapter

6. Biomedical Monitoring in Underwater Environments

Authors : Tobias Cibis, Stefan Gradl, Alistair McEwan

Published in: Engineering and Medicine in Extreme Environments

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The underwater world with its unique environmental conditions not only causes challenges to human physiology but also imposes strict limitations on the operability of sensing devices for biomedical signal collection. The measurement of physiological parameters underwater is gaining interest in order to improve diver’s safety and enable biomedical research. However, the emergent challenges for underwater monitoring technology require innovative concepts in sensing devices. This chapter presents the concepts and applications of multiple approaches to achieve electrophysiological monitoring in underwater settings. A focus will be on the challenges imposed by the underwater environment, a current-based sensing technology for electrophysiological signal sensing, and data science techniques for biomedical analysis and assessment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The resistivity of water highly depends on the number of conductive ions inside the liquid. Seawater has a resistivity of Z sw = 0.2 Ω∕m. Drinking water’s resistivity ranges from Z dw = 2–200 Ω∕m, and deionized water has the resistivity of Z iw = 180 k Ω∕m [3, 4].
 
Literature
1.
go back to reference Schuster, A., Castagna, O., Schmid, B., Cibis, T., & Sieber, A. (2017) Underwater monitoring system for body temperature and ECG recordings. Underwater Technology, 34(3), 135–139CrossRef Schuster, A., Castagna, O., Schmid, B., Cibis, T., & Sieber, A. (2017) Underwater monitoring system for body temperature and ECG recordings. Underwater Technology, 34(3), 135–139CrossRef
2.
go back to reference Cibis T, et al. (2017) Diving into research of biomedical engineering in scuba diving. IEEE reviews in biomedical engineering 10: 323–333CrossRef Cibis T, et al. (2017) Diving into research of biomedical engineering in scuba diving. IEEE reviews in biomedical engineering 10: 323–333CrossRef
3.
go back to reference Saad, R., Nawawi, M. N. M.,& Mohamad, E. T. (2012) Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT). Electronic Journal of Geotechnical Engineering, 17, 369–376 Saad, R., Nawawi, M. N. M.,& Mohamad, E. T. (2012) Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT). Electronic Journal of Geotechnical Engineering, 17, 369–376
4.
go back to reference Hodlur, G. K., Dhakate, R., & Andrade, R. (2006) Correlation of vertical electrical sounding and borehole-log data for delineation of saltwater and freshwater aquifers. Geophysics, 71(1), G11-G20.CrossRef Hodlur, G. K., Dhakate, R., & Andrade, R. (2006) Correlation of vertical electrical sounding and borehole-log data for delineation of saltwater and freshwater aquifers. Geophysics, 71(1), G11-G20.CrossRef
5.
go back to reference von Tscharner V, Maurer C,and Nigg BM (2014) Correlations and coherence of monopolar EMG-currents of the medial gastrocnemius muscle in proximal and distal compartments, Frontiers in PHYSIOLOGY von Tscharner V, Maurer C,and Nigg BM (2014) Correlations and coherence of monopolar EMG-currents of the medial gastrocnemius muscle in proximal and distal compartments, Frontiers in PHYSIOLOGY
6.
go back to reference von Tscharner V, et al. (2013) Comparison of Electromyographic Signals from Monopolar Current and Potential Amplifiers Derived from a Penniform Muscle, the Gastrocnemius Medialis. J. Electromyogr. Kinesiol. 23, 1044–1051CrossRef von Tscharner V, et al. (2013) Comparison of Electromyographic Signals from Monopolar Current and Potential Amplifiers Derived from a Penniform Muscle, the Gastrocnemius Medialis. J. Electromyogr. Kinesiol. 23, 1044–1051CrossRef
7.
go back to reference Whitting JW, von Tscharner V, (2014) Monopolar Electromyographic Signals Recorded by a Current Amplifier in Air and under Water without Insulation. J. Electromyogr. Kinesiol. 24, 848–854CrossRef Whitting JW, von Tscharner V, (2014) Monopolar Electromyographic Signals Recorded by a Current Amplifier in Air and under Water without Insulation. J. Electromyogr. Kinesiol. 24, 848–854CrossRef
8.
go back to reference Sieber, A., L’Abbate, A., Kuch, B., Wagner, M., Benassi, A., Passera, M., & Bedini, R. (2010) Advanced instrumentation for research in diving and hyperbaric medicine. Undersea & Hyperbaric Medicine, 37(5), 259. Sieber, A., L’Abbate, A., Kuch, B., Wagner, M., Benassi, A., Passera, M., & Bedini, R. (2010) Advanced instrumentation for research in diving and hyperbaric medicine. Undersea & Hyperbaric Medicine, 37(5), 259.
9.
go back to reference Ohtsu M, Fukuka Y and Ueno A, (2012) Underwater electromyographic measurement using a waterproof insulated electrode, Advanced Biomedical Engineering 1.0, 81–88CrossRef Ohtsu M, Fukuka Y and Ueno A, (2012) Underwater electromyographic measurement using a waterproof insulated electrode, Advanced Biomedical Engineering 1.0, 81–88CrossRef
10.
go back to reference Reyes B, et al., (2014 )Novel electrodes for underwater ECG monitoring, IEEE Transactions on Biomedical Engineering 61.6, 1863–1876 Reyes B, et al., (2014 )Novel electrodes for underwater ECG monitoring, IEEE Transactions on Biomedical Engineering 61.6, 1863–1876
11.
go back to reference Reyes B, et al., (2014) Performance evaluation of carbon black based electrodes for underwater ECG monitoring, Engineering in Medicine and Biology Society (EMBC), 36th Annual International Conference of the IEEE Reyes B, et al., (2014) Performance evaluation of carbon black based electrodes for underwater ECG monitoring, Engineering in Medicine and Biology Society (EMBC), 36th Annual International Conference of the IEEE
12.
go back to reference Noh Y, et al., (2016) Novel Conductive Carbon Black and Polydimethlysiloxane ECG Electrode: A Comparison with Commercial Electrodes in Fresh, Chlorinated, and Salt Water, Annals of Biomedical Engineering, 1–16 Noh Y, et al., (2016) Novel Conductive Carbon Black and Polydimethlysiloxane ECG Electrode: A Comparison with Commercial Electrodes in Fresh, Chlorinated, and Salt Water, Annals of Biomedical Engineering, 1–16
13.
go back to reference Gradl S, Cibis T, et al. (2017) Wearable current-based ECG monitoring system with non-insulated electrodes for underwater application. Applied Sciences 7.12: 1277CrossRef Gradl S, Cibis T, et al. (2017) Wearable current-based ECG monitoring system with non-insulated electrodes for underwater application. Applied Sciences 7.12: 1277CrossRef
14.
go back to reference Keener JP, and Sneyd J, (2009). Mathematical Physiology: Systems Physiology. II. Springer Keener JP, and Sneyd J, (2009). Mathematical Physiology: Systems Physiology. II. Springer
15.
go back to reference Bolz A, and Urbaszek W, (2002) Technik in der Kardiologie; Eine interdisziplinäre Darstellung für Ingenieure und Mediziner (Engineering in Cardiology), S. V. Heidelberg, Hrsg Bolz A, and Urbaszek W, (2002) Technik in der Kardiologie; Eine interdisziplinäre Darstellung für Ingenieure und Mediziner (Engineering in Cardiology), S. V. Heidelberg, Hrsg
16.
go back to reference Liu, Jianxin, et al. (2018) An Energy-Efficient Routing Algorithm for Underwater Wire- less Optical Sensor Network. 2018 10th International Conference on Communication Software and Networks (ICCSN). IEEE. Liu, Jianxin, et al. (2018) An Energy-Efficient Routing Algorithm for Underwater Wire- less Optical Sensor Network. 2018 10th International Conference on Communication Software and Networks (ICCSN). IEEE.
17.
go back to reference Tang, Qiang, et al. (2019) Wireless sensor network MCDS construction algorithms with energy consideration for extreme environments healthcare.” IEEE Access 7: 33130–33144.CrossRef Tang, Qiang, et al. (2019) Wireless sensor network MCDS construction algorithms with energy consideration for extreme environments healthcare.” IEEE Access 7: 33130–33144.CrossRef
18.
go back to reference Lloret, Jaime, et al. (2012) Underwater wireless sensor communications in the 2.4 GHz ISM frequency band.” Sensors 12.4: 4237–4264.CrossRef Lloret, Jaime, et al. (2012) Underwater wireless sensor communications in the 2.4 GHz ISM frequency band.” Sensors 12.4: 4237–4264.CrossRef
19.
go back to reference Lipponen, Jukka A., and Mika P. Tarvainen. (2019) A robust algorithm for heart rate variability time series artefact correction using novel beat classification. Journal of medical engineering & technology 43.3: 173–181.CrossRef Lipponen, Jukka A., and Mika P. Tarvainen. (2019) A robust algorithm for heart rate variability time series artefact correction using novel beat classification. Journal of medical engineering & technology 43.3: 173–181.CrossRef
20.
go back to reference Lundell, Richard V., et al. (2020) Diving in the Arctic: Cold Water Immersions Effects on Heart Rate Variability in Navy Divers. Frontiers in physiology 10: 1600.CrossRef Lundell, Richard V., et al. (2020) Diving in the Arctic: Cold Water Immersions Effects on Heart Rate Variability in Navy Divers. Frontiers in physiology 10: 1600.CrossRef
21.
go back to reference Chouchou, F, et al. (2020) Autonomic cardiovascular adaptations to acute head-out water immersion, head-down tilt and supine position. European Journal of Applied Physiology 120.2: 337–347.CrossRef Chouchou, F, et al. (2020) Autonomic cardiovascular adaptations to acute head-out water immersion, head-down tilt and supine position. European Journal of Applied Physiology 120.2: 337–347.CrossRef
22.
go back to reference Schaller, Bernhard, Tumul Chowdhury, and Thomas Rosemann. (2017) The trigeminocardiac reflex: beyond the diving reflex. Frontiers in Neuroscience 11: 673.CrossRef Schaller, Bernhard, Tumul Chowdhury, and Thomas Rosemann. (2017) The trigeminocardiac reflex: beyond the diving reflex. Frontiers in Neuroscience 11: 673.CrossRef
23.
go back to reference Schlader, ZJ., et al. (2018) Face cooling reveals a relative inability to increase cardiac parasympathetic activation during passive heat stress. Experimental physiology 103.5: 701–713.CrossRef Schlader, ZJ., et al. (2018) Face cooling reveals a relative inability to increase cardiac parasympathetic activation during passive heat stress. Experimental physiology 103.5: 701–713.CrossRef
24.
go back to reference Flouris, A. D., and J. M. Scott. (2009) Heart rate variability responses to a psychologically challenging scuba dive. Journal of sports medicine and physical Fitness 49.4: 382. Flouris, A. D., and J. M. Scott. (2009) Heart rate variability responses to a psychologically challenging scuba dive. Journal of sports medicine and physical Fitness 49.4: 382.
25.
go back to reference Ilardo MA, et al. (2018) Physiological and genetic adaptations to diving in sea nomads. Cell 173.3: 569–580.CrossRef Ilardo MA, et al. (2018) Physiological and genetic adaptations to diving in sea nomads. Cell 173.3: 569–580.CrossRef
26.
go back to reference Zarak M, et al. (2020) Galectin-3 and cardiovascular biomarkers re ect adaptation response to scuba diving. International journal of sports medicine 41.05: 285–291.CrossRef Zarak M, et al. (2020) Galectin-3 and cardiovascular biomarkers re ect adaptation response to scuba diving. International journal of sports medicine 41.05: 285–291.CrossRef
27.
go back to reference Perovi A, Uni A, and Dumi J. (2014) Recreational scuba diving: negative or positive effects of oxidative and cardiovascular stress?. Biochemia medica: Biochemia medica 24.2 : 235–247.CrossRef Perovi A, Uni A, and Dumi J. (2014) Recreational scuba diving: negative or positive effects of oxidative and cardiovascular stress?. Biochemia medica: Biochemia medica 24.2 : 235–247.CrossRef
28.
go back to reference Sureda A, et al. (2014) Scuba diving induces nitric oxide synthesis and the expression of inflammatory and regulatory genes of the immune response in neutrophils. Physiological genomics 46.17: 647–654.CrossRef Sureda A, et al. (2014) Scuba diving induces nitric oxide synthesis and the expression of inflammatory and regulatory genes of the immune response in neutrophils. Physiological genomics 46.17: 647–654.CrossRef
29.
go back to reference Groh, B. H., Cibis, T., Schill, R. O., & Eskofier, B. M. (2015) IMU-based pose determination of scuba divers’ bodies and shanks. In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (pp. 1–6). IEEE Groh, B. H., Cibis, T., Schill, R. O., & Eskofier, B. M. (2015) IMU-based pose determination of scuba divers’ bodies and shanks. In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (pp. 1–6). IEEE
30.
go back to reference Vinetti, G., Lopomo, N. F., Taboni, A., Fagoni, N., & Ferretti, G. (2020) The current use of wearable sensors to enhance safety and performance in breath-hold diving: A systematic review. Diving and hyperbaric medicine, 50(1), 54CrossRef Vinetti, G., Lopomo, N. F., Taboni, A., Fagoni, N., & Ferretti, G. (2020) The current use of wearable sensors to enhance safety and performance in breath-hold diving: A systematic review. Diving and hyperbaric medicine, 50(1), 54CrossRef
31.
go back to reference Steinberg, F., & Doppelmayr, M. (2017) Executive functions of divers are selectively impaired at 20-meter water depth. Frontiers in psychology, 8, 1000CrossRef Steinberg, F., & Doppelmayr, M. (2017) Executive functions of divers are selectively impaired at 20-meter water depth. Frontiers in psychology, 8, 1000CrossRef
Metadata
Title
Biomedical Monitoring in Underwater Environments
Authors
Tobias Cibis
Stefan Gradl
Alistair McEwan
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-96921-9_6