Skip to main content
Top

2019 | OriginalPaper | Chapter

Biomimetic Model Membranes as Drug Screening Platform

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biomimetic model membranes were inspired by natural cell membrane and are rapidly progressing in the field for varied applications, especially for drug screening studies. Biomimetic lipid membranes such as lipid monolayer, lipid vesicles, and supported lipid membranes have been constructed to investigate the cell membrane and membrane protein interaction with various drugs. Also, biomimetic lipid membranes provide an experimental platform to understand disease at the molecular level, which is also an important step for developing new therapeutic agents. This chapter covers biomimetic model membrane types utilized to screen drug–membrane and drug–receptor interactions, characterization techniques, and an overview of recent work in the field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. K. Seydel, M. A. Velasco, E. A. Coats, H. P. Cordes, B. Kunz, M. Wiese, The importance of drug-membrane interaction in drug research and development. Quantative Structure-Activity Relatioships, 11(2), 205–210 (1992) J. K. Seydel, M. A. Velasco, E. A. Coats, H. P. Cordes, B. Kunz, M. Wiese, The importance of drug-membrane interaction in drug research and development. Quantative Structure-Activity Relatioships, 11(2), 205–210 (1992)
2.
go back to reference A. S. Chiranjeevi Peetla, V. Labhasetwar, Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol. Pharm. 6, 1264–1276 (2009)CrossRef A. S. Chiranjeevi Peetla, V. Labhasetwar, Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol. Pharm. 6, 1264–1276 (2009)CrossRef
3.
go back to reference R. Pignatello, T. Musumeci, L. Basile, C. Carbone, G. Puglisi, Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development. J. Pharm. Bioallied Sci. 3(1), 4–14 (2011)CrossRef R. Pignatello, T. Musumeci, L. Basile, C. Carbone, G. Puglisi, Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development. J. Pharm. Bioallied Sci. 3(1), 4–14 (2011)CrossRef
4.
go back to reference C. Bernsdorff, R. Reszka, R. Winter, Interaction of the anticancer agent Taxol (TM) (paclitaxel) with phospholipid bilayers. J. Biomed. Mater. Res. 46(2), 141–149 (1999)CrossRef C. Bernsdorff, R. Reszka, R. Winter, Interaction of the anticancer agent Taxol (TM) (paclitaxel) with phospholipid bilayers. J. Biomed. Mater. Res. 46(2), 141–149 (1999)CrossRef
5.
go back to reference L. Panicker, V. Sugandhi, K.P. Mishra, Interaction of keratolytic drug, salicylic acid with dipalmitoyl phosphatidylethanolamine vesicles. Phase Transit. 81(4), 361–378 (2008)CrossRef L. Panicker, V. Sugandhi, K.P. Mishra, Interaction of keratolytic drug, salicylic acid with dipalmitoyl phosphatidylethanolamine vesicles. Phase Transit. 81(4), 361–378 (2008)CrossRef
6.
go back to reference A. Preetha, N. Huilgol, R. Banerjee, Effect of fluidizing agents on paclitaxel penetration in cervical cancerous monolayer membranes. J. Membr. Biol. 219(1–3), 83–91 (2007)CrossRef A. Preetha, N. Huilgol, R. Banerjee, Effect of fluidizing agents on paclitaxel penetration in cervical cancerous monolayer membranes. J. Membr. Biol. 219(1–3), 83–91 (2007)CrossRef
7.
go back to reference A. Berquand, N. Fa, Y.F. Dufrêne, M.P. Mingeot-Leclercq, Interaction of the macrolide antibiotic azithromycin with lipid bilayers: effect on membrane organization, fluidity, and permeability. Pharm. Res. 22(3), 465–475 (2005)CrossRef A. Berquand, N. Fa, Y.F. Dufrêne, M.P. Mingeot-Leclercq, Interaction of the macrolide antibiotic azithromycin with lipid bilayers: effect on membrane organization, fluidity, and permeability. Pharm. Res. 22(3), 465–475 (2005)CrossRef
8.
go back to reference M. Pinheiro, C. Nunes, J.M. Caio, C. Moiteiro, M. Lucio, G. Brezesinski, S. Reis, The influence of rifabutin on human and bacterial membrane models: implications for its mechanism of action. J. Phys. Chem. B 117(20), 6187–6193 (2013)CrossRef M. Pinheiro, C. Nunes, J.M. Caio, C. Moiteiro, M. Lucio, G. Brezesinski, S. Reis, The influence of rifabutin on human and bacterial membrane models: implications for its mechanism of action. J. Phys. Chem. B 117(20), 6187–6193 (2013)CrossRef
9.
go back to reference D. Nieciecka, A. Królikowska, P. Krysinski, Probing the interactions of mitoxantrone with biomimetic membranes with electrochemical and spectroscopic techniques. Electrochim. Acta 165, 430–442 (2015)CrossRef D. Nieciecka, A. Królikowska, P. Krysinski, Probing the interactions of mitoxantrone with biomimetic membranes with electrochemical and spectroscopic techniques. Electrochim. Acta 165, 430–442 (2015)CrossRef
10.
go back to reference O. Domenech, G. Francius, P.M. Tulkens, F. Van Bambeke, Y. Dufrene, M.P. Mingeot-Leclercq, Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: effect on membrane permeability and nanoscale lipid membrane organization. Biochim. Biophys. Acta 1788(9), 1832–1840 (2009)CrossRef O. Domenech, G. Francius, P.M. Tulkens, F. Van Bambeke, Y. Dufrene, M.P. Mingeot-Leclercq, Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: effect on membrane permeability and nanoscale lipid membrane organization. Biochim. Biophys. Acta 1788(9), 1832–1840 (2009)CrossRef
11.
go back to reference I. Alves, G. Staneva, C. Tessier, G.F. Salgado, P. Nuss, The interaction of antipsychotic drugs with lipids and subsequent lipid reorganization investigated using biophysical methods. Biochim. Biophys. Acta 1808(8), 2009–2018 (2011)CrossRef I. Alves, G. Staneva, C. Tessier, G.F. Salgado, P. Nuss, The interaction of antipsychotic drugs with lipids and subsequent lipid reorganization investigated using biophysical methods. Biochim. Biophys. Acta 1808(8), 2009–2018 (2011)CrossRef
12.
go back to reference P. Kuhn, K. Eyer, S. Allner, D. Lombardi, P.S. Dittrich, A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines. Anal. Chem. 83(23), 8877–8885 (2011)CrossRef P. Kuhn, K. Eyer, S. Allner, D. Lombardi, P.S. Dittrich, A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines. Anal. Chem. 83(23), 8877–8885 (2011)CrossRef
13.
go back to reference N.K. Khadka, X. Cheng, C.S. Ho, J. Katsaras, J. Pan, Interactions of the anticancer drug tamoxifen with lipid membranes. Biophys. J. 108(10), 2492–2501 (2015)CrossRef N.K. Khadka, X. Cheng, C.S. Ho, J. Katsaras, J. Pan, Interactions of the anticancer drug tamoxifen with lipid membranes. Biophys. J. 108(10), 2492–2501 (2015)CrossRef
14.
go back to reference A. Arslan Yildiz, C. Kang, E.K. Sinner, Biomimetic membrane platform containing hERG potassium channel and its application to drug screening. Analyst 138(7), 2007–2012 (2013a)CrossRef A. Arslan Yildiz, C. Kang, E.K. Sinner, Biomimetic membrane platform containing hERG potassium channel and its application to drug screening. Analyst 138(7), 2007–2012 (2013a)CrossRef
15.
go back to reference B. Le Pioufle, H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Lipid bilayer microarray for parallel recording of transmembrane ion currents. Anal. Chem. 80, 328–332 (2008)CrossRef B. Le Pioufle, H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Lipid bilayer microarray for parallel recording of transmembrane ion currents. Anal. Chem. 80, 328–332 (2008)CrossRef
16.
go back to reference E.K. Schmitt, M. Vrouenraets, C. Steinem, Channel activity of OmpF monitored in nano-BLMs. Biophys. J. 91(6), 2163–2171 (2006)CrossRef E.K. Schmitt, M. Vrouenraets, C. Steinem, Channel activity of OmpF monitored in nano-BLMs. Biophys. J. 91(6), 2163–2171 (2006)CrossRef
17.
go back to reference S. Damiati, S. Zayni, A. Schrems, E. Kiene, U.B. Sleytr, J. Chopineau, B. Schuster, E.K. Sinner, Inspired and stabilized by nature: ribosomal synthesis of the human voltage gated ion channel (VDAC) into 2D-protein-tethered lipid interfaces. Biomater. Sci. 3(10), 1406–1413 (2015)CrossRef S. Damiati, S. Zayni, A. Schrems, E. Kiene, U.B. Sleytr, J. Chopineau, B. Schuster, E.K. Sinner, Inspired and stabilized by nature: ribosomal synthesis of the human voltage gated ion channel (VDAC) into 2D-protein-tethered lipid interfaces. Biomater. Sci. 3(10), 1406–1413 (2015)CrossRef
18.
go back to reference R. Syeda, M.A. Holden, W.L. Hwang, H. Bayley, Screening blockers against a potassium channel with a droplet interface bilayer array. J. Am. Chem. Soc. 130, 15543–15548 (2008)CrossRef R. Syeda, M.A. Holden, W.L. Hwang, H. Bayley, Screening blockers against a potassium channel with a droplet interface bilayer array. J. Am. Chem. Soc. 130, 15543–15548 (2008)CrossRef
19.
go back to reference A.A. Yildiz, W. Knoll, R.B. Gennis, E.K. Sinner, Cell-free synthesis of cytochrome bo(3) ubiquinol oxidase in artificial membranes. Anal. Biochem. 423(1), 39–45 (2012)CrossRef A.A. Yildiz, W. Knoll, R.B. Gennis, E.K. Sinner, Cell-free synthesis of cytochrome bo(3) ubiquinol oxidase in artificial membranes. Anal. Biochem. 423(1), 39–45 (2012)CrossRef
20.
go back to reference T.H. Bayburt, A.J. Leitz, G. Xie, D.D. Oprian, S.G. Sligar, Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 282(20), 14875–14881 (2007)CrossRef T.H. Bayburt, A.J. Leitz, G. Xie, D.D. Oprian, S.G. Sligar, Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 282(20), 14875–14881 (2007)CrossRef
21.
go back to reference T.H. Bayburt, S.G. Sligar, Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci. 12(11), 2476–2481 (2003)CrossRef T.H. Bayburt, S.G. Sligar, Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci. 12(11), 2476–2481 (2003)CrossRef
22.
go back to reference A.Z. Kijac, Y. Li, S.G. Sligar, C.M. Rienstra, Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46, 13696–13703 (2007)CrossRef A.Z. Kijac, Y. Li, S.G. Sligar, C.M. Rienstra, Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46, 13696–13703 (2007)CrossRef
23.
go back to reference T. Boldog, S. Grimme, M. Li, S.G. Sligar, G.L. Hazelbauer, Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. PNAS 103, 11509–11514 (2006)CrossRef T. Boldog, S. Grimme, M. Li, S.G. Sligar, G.L. Hazelbauer, Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. PNAS 103, 11509–11514 (2006)CrossRef
24.
go back to reference K. Dalal, N. Nguyen, M. Alami, J. Tan, T.F. Moraes, W.C. Lee, R. Maurus, S.S. Sligar, G.D. Brayer, F. Duong, Structure, binding, and activity of Syd, a SecY-interacting protein. J. Biol. Chem. 284(12), 7897–7902 (2009)CrossRef K. Dalal, N. Nguyen, M. Alami, J. Tan, T.F. Moraes, W.C. Lee, R. Maurus, S.S. Sligar, G.D. Brayer, F. Duong, Structure, binding, and activity of Syd, a SecY-interacting protein. J. Biol. Chem. 284(12), 7897–7902 (2009)CrossRef
25.
go back to reference Y. Gao, E. Cao, D. Julius, Y. Cheng, TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607), 347–351 (2016)CrossRef Y. Gao, E. Cao, D. Julius, Y. Cheng, TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607), 347–351 (2016)CrossRef
26.
go back to reference J.H. Wade, J.D. Jones, I.L. Lenov, C.M. Riordan, S.G. Sligar, R.C. Bailey, Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification. Lab. Chip. 17(17), 2951–2959 (2017)CrossRef J.H. Wade, J.D. Jones, I.L. Lenov, C.M. Riordan, S.G. Sligar, R.C. Bailey, Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification. Lab. Chip. 17(17), 2951–2959 (2017)CrossRef
27.
go back to reference P.B. Bennett, H.R. Guthrie, Trends in ion channel drug discovery: advances in screening technologies. Trends Biotechnol. 21(12), 563–569 (2003)CrossRef P.B. Bennett, H.R. Guthrie, Trends in ion channel drug discovery: advances in screening technologies. Trends Biotechnol. 21(12), 563–569 (2003)CrossRef
28.
go back to reference Y.H. Ye Fang, B. Webb, J. Lahiri, Applications of biomembranes in drug discovery. MRS Bull. 31, 541–545 (2006)CrossRef Y.H. Ye Fang, B. Webb, J. Lahiri, Applications of biomembranes in drug discovery. MRS Bull. 31, 541–545 (2006)CrossRef
29.
go back to reference N.S. Schonenbach, S. Hussain, M.A. O'Malley, Structure and function of G protein-coupled receptor oligomers: implications for drug discovery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(3), 408–427 (2015)CrossRef N.S. Schonenbach, S. Hussain, M.A. O'Malley, Structure and function of G protein-coupled receptor oligomers: implications for drug discovery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(3), 408–427 (2015)CrossRef
30.
go back to reference J.M. Karasinska, S.R. George, B.F. O’Dowd, Family 1 G protein-coupled receptor function in the CNS. Insights from gene knockout mice. Brain Res. Brain Res. Rev. 41(2–3), 125–152 (2003)CrossRef J.M. Karasinska, S.R. George, B.F. O’Dowd, Family 1 G protein-coupled receptor function in the CNS. Insights from gene knockout mice. Brain Res. Brain Res. Rev. 41(2–3), 125–152 (2003)CrossRef
31.
go back to reference P.R. Gorry, P. Ancuta, Coreceptors and HIV-1 pathogenesis. Curr. HIV/AIDS Rep. 8(1), 45–53 (2011)CrossRef P.R. Gorry, P. Ancuta, Coreceptors and HIV-1 pathogenesis. Curr. HIV/AIDS Rep. 8(1), 45–53 (2011)CrossRef
32.
go back to reference I. Palmisano, P. Bagnato, A. Palmigiano, G. Innamorati, G. Rotondo, D. Altimare, C. Venturi, E.V. Sviderskaya, R. Piccirillo, M. Coppola, V. Marigo, B. Incerti, A. Ballabio, E.M. Surace, C. Tacchetti, D.C. Bennett, M.V. Schiaffino, The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells. Hum. Mol. Genet. 17(22), 3487–3501 (2008)CrossRef I. Palmisano, P. Bagnato, A. Palmigiano, G. Innamorati, G. Rotondo, D. Altimare, C. Venturi, E.V. Sviderskaya, R. Piccirillo, M. Coppola, V. Marigo, B. Incerti, A. Ballabio, E.M. Surace, C. Tacchetti, D.C. Bennett, M.V. Schiaffino, The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells. Hum. Mol. Genet. 17(22), 3487–3501 (2008)CrossRef
33.
go back to reference J.P. Overington, B. Al-Lazikani, A.L. Hopkins, How many drug targets are there? Nat. Rev. Drug Discov. 5(12), 993–996 (2006)CrossRef J.P. Overington, B. Al-Lazikani, A.L. Hopkins, How many drug targets are there? Nat. Rev. Drug Discov. 5(12), 993–996 (2006)CrossRef
34.
go back to reference A. Mullard, 2013 FDA drug approvals. Nat. Rev. Drug Discov. 13(2), 85–89 (2014)CrossRef A. Mullard, 2013 FDA drug approvals. Nat. Rev. Drug Discov. 13(2), 85–89 (2014)CrossRef
35.
go back to reference J.M. Ford, W.N. Hait, Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42(3), 155–199 (1990) J.M. Ford, W.N. Hait, Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42(3), 155–199 (1990)
36.
go back to reference J. Pallares-Trujillo, F.J. Lopez-Soriano, J.M. Argiles, Lipids: a key role in multidrug resistance? (review). Int. J. Oncol. 16, 783–798 (2000) J. Pallares-Trujillo, F.J. Lopez-Soriano, J.M. Argiles, Lipids: a key role in multidrug resistance? (review). Int. J. Oncol. 16, 783–798 (2000)
37.
go back to reference P. Cohen, Protein kinases – the major drug target of twenty century. Nat. Rev. Drug Discov. 1(4), 309–315 (2002)CrossRef P. Cohen, Protein kinases – the major drug target of twenty century. Nat. Rev. Drug Discov. 1(4), 309–315 (2002)CrossRef
38.
go back to reference N.V. Koudinova, A. Kontush, T.T. Berezov, A.R. Koudinov, Amyloid beta, neurallipids, cholesterol& Alzheimer’s disease. Neurobiol. Lipids. 1(6), 27–33 (2003) N.V. Koudinova, A. Kontush, T.T. Berezov, A.R. Koudinov, Amyloid beta, neurallipids, cholesterol& Alzheimer’s disease. Neurobiol. Lipids. 1(6), 27–33 (2003)
39.
go back to reference N.B. Chauhan, Membrane dynamics, cholesterol homeostasis, and Alzheimer’s disease. J. Lipid Res. 44(11), 2019–2029 (2003)CrossRef N.B. Chauhan, Membrane dynamics, cholesterol homeostasis, and Alzheimer’s disease. J. Lipid Res. 44(11), 2019–2029 (2003)CrossRef
40.
go back to reference Y. Verdier, M. Zarandi, B. Penke, Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. J. Pept. Sci. 10(5), 229–248 (2004)CrossRef Y. Verdier, M. Zarandi, B. Penke, Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. J. Pept. Sci. 10(5), 229–248 (2004)CrossRef
41.
go back to reference J.M. Alakoskela, P. Vitovic, P.K. Kinnunen, Screening for the drug-phospholipid interaction: correlation to phospholipidosis. ChemMedChem 4(8), 1224–1251 (2009)CrossRef J.M. Alakoskela, P. Vitovic, P.K. Kinnunen, Screening for the drug-phospholipid interaction: correlation to phospholipidosis. ChemMedChem 4(8), 1224–1251 (2009)CrossRef
42.
go back to reference I.G. Denisov, S.G. Sligar, Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23(6), 481–486 (2016)CrossRef I.G. Denisov, S.G. Sligar, Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23(6), 481–486 (2016)CrossRef
43.
go back to reference C.-Y. Hsia, M.J. Richards, S. Daniel, A review of traditional and emerging methods to characterize lipid–protein interactions in biological membranes. Anal. Methods 7(17), 7076–7094 (2015)CrossRef C.-Y. Hsia, M.J. Richards, S. Daniel, A review of traditional and emerging methods to characterize lipid–protein interactions in biological membranes. Anal. Methods 7(17), 7076–7094 (2015)CrossRef
44.
go back to reference M.D. Marc Eeman, From biological membranes to biomimetic model. Biotechnol. Agron. Soc. Environ. 14(4), 719–736 (2010) M.D. Marc Eeman, From biological membranes to biomimetic model. Biotechnol. Agron. Soc. Environ. 14(4), 719–736 (2010)
45.
go back to reference J. Knobloch, D.K. Suhendro, J.L. Zieleniecki, J.G. Shapter, I. Koper, Membrane-drug interactions studied using model membrane systems. Saudi J. Biol. Sci. 22(6), 714–718 (2015)CrossRef J. Knobloch, D.K. Suhendro, J.L. Zieleniecki, J.G. Shapter, I. Koper, Membrane-drug interactions studied using model membrane systems. Saudi J. Biol. Sci. 22(6), 714–718 (2015)CrossRef
46.
go back to reference M. Lúcio, J.L. F, C. L, S. Reis, Drug-membrane interactions significance for medicinal chemistry. Curr. Med. Chem. 17, 1795–1809 (2010)CrossRef M. Lúcio, J.L. F, C. L, S. Reis, Drug-membrane interactions significance for medicinal chemistry. Curr. Med. Chem. 17, 1795–1809 (2010)CrossRef
47.
go back to reference H. Brockman, Lipid monolayers why use half a membrane to characterize. Curr. Opin. Struct. Biol. 9, 438–443 (1999)CrossRef H. Brockman, Lipid monolayers why use half a membrane to characterize. Curr. Opin. Struct. Biol. 9, 438–443 (1999)CrossRef
48.
go back to reference A.C. Alves, D. Ribeiro, C. Nunes, S. Reis, Biophysics in cancer: the relevance of drug-membrane interaction studies. Biochim. Biophys. Acta 1858(9), 2231–2244 (2016)CrossRef A.C. Alves, D. Ribeiro, C. Nunes, S. Reis, Biophysics in cancer: the relevance of drug-membrane interaction studies. Biochim. Biophys. Acta 1858(9), 2231–2244 (2016)CrossRef
49.
go back to reference V. Rosilio, How Can Artificial Lipid Models Mimic the Complexity of Molecule–Membrane Interactions?. Advances in Biomembranes and Lipid Self-Assembly, Elsevier, 27, 107–146 (2018) V. Rosilio, How Can Artificial Lipid Models Mimic the Complexity of Molecule–Membrane Interactions?. Advances in Biomembranes and Lipid Self-Assembly, Elsevier, 27, 107–146 (2018)
50.
go back to reference M. Deleu, J.M. Crowet, M.N. Nasir, L. Lins, Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: a review. Biochim. Biophys. Acta 1838(12), 3171–3190 (2014)CrossRef M. Deleu, J.M. Crowet, M.N. Nasir, L. Lins, Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: a review. Biochim. Biophys. Acta 1838(12), 3171–3190 (2014)CrossRef
51.
go back to reference Y.H. Chan, S.G. Boxer, Model membrane systems and their applications. Curr. Opin. Chem. Biol. 11(6), 581–587 (2007)CrossRef Y.H. Chan, S.G. Boxer, Model membrane systems and their applications. Curr. Opin. Chem. Biol. 11(6), 581–587 (2007)CrossRef
52.
go back to reference A. Kilic, F.N. Kok, Biomimetic lipid bilayers on solid surfaces: models for biological interactions. Surf.Innov. 4(3), 141–157 (2016)CrossRef A. Kilic, F.N. Kok, Biomimetic lipid bilayers on solid surfaces: models for biological interactions. Surf.Innov. 4(3), 141–157 (2016)CrossRef
53.
go back to reference H.T.T. Amma Wardak, Cyclic voltammetry studies of bilayer lipid membrane ranes deposited on platinum by self assembly. Bioelectrochem. Bioenerg. 24, 1–11 (1990)CrossRef H.T.T. Amma Wardak, Cyclic voltammetry studies of bilayer lipid membrane ranes deposited on platinum by self assembly. Bioelectrochem. Bioenerg. 24, 1–11 (1990)CrossRef
54.
go back to reference R. Guidelli, G. Aloisi, L. Becucci, A. Dolfi, M.R. Moncelli, F.T. Buoninsegni, Bioelectrochemistry at metal/water interfaces. J. Electroanal. Chem. 504, 1–28 (2001)CrossRef R. Guidelli, G. Aloisi, L. Becucci, A. Dolfi, M.R. Moncelli, F.T. Buoninsegni, Bioelectrochemistry at metal/water interfaces. J. Electroanal. Chem. 504, 1–28 (2001)CrossRef
55.
go back to reference A. Arslan Yildiz, U.H. Yildiz, B. Liedberg, E.K. Sinner, Biomimetic membrane platform: fabrication, characterization and applications. Colloids Surf. B Biointerfaces 103, 510–516 (2013b)CrossRef A. Arslan Yildiz, U.H. Yildiz, B. Liedberg, E.K. Sinner, Biomimetic membrane platform: fabrication, characterization and applications. Colloids Surf. B Biointerfaces 103, 510–516 (2013b)CrossRef
56.
go back to reference V. Atanasov, P.P. Atanasova, I.K. Vockenroth, N. Knorr, I. Köper, A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. Bioconjug. Chem. 17, 631–637 (2006)CrossRef V. Atanasov, P.P. Atanasova, I.K. Vockenroth, N. Knorr, I. Köper, A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. Bioconjug. Chem. 17, 631–637 (2006)CrossRef
57.
go back to reference T. Yu, G. Zhou, X. Hu, S. Ye, Transport and organization of cholesterol in a planar solid-supported lipid bilayer depend on the phospholipid flip-flop rate. Langmuir 32(44), 11681–11689 (2016)CrossRef T. Yu, G. Zhou, X. Hu, S. Ye, Transport and organization of cholesterol in a planar solid-supported lipid bilayer depend on the phospholipid flip-flop rate. Langmuir 32(44), 11681–11689 (2016)CrossRef
58.
go back to reference J.P. Michel, Y.X. Wang, I. Kiesel, Y. Gerelli, V. Rosilio, Disruption of asymmetric lipid bilayer models mimicking the outer membrane of gram-negative Bacteria by an active Plasticin. Langmuir 33(41), 11028–11039 (2017)CrossRef J.P. Michel, Y.X. Wang, I. Kiesel, Y. Gerelli, V. Rosilio, Disruption of asymmetric lipid bilayer models mimicking the outer membrane of gram-negative Bacteria by an active Plasticin. Langmuir 33(41), 11028–11039 (2017)CrossRef
59.
go back to reference D. Zhang, M. Pekkanen-Mattila, M. Shahsavani, A. Falk, A.I. Teixeira, A. Herland, A 3D Alzheimer’s disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons. Biomaterials 35(5), 1420–1428 (2014)CrossRef D. Zhang, M. Pekkanen-Mattila, M. Shahsavani, A. Falk, A.I. Teixeira, A. Herland, A 3D Alzheimer’s disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons. Biomaterials 35(5), 1420–1428 (2014)CrossRef
60.
go back to reference I.G. Denisov, S.G. Sligar, Nanodiscs in membrane biochemistry and biophysics. Chem. Rev. 117(6), 4669–4713 (2017)CrossRef I.G. Denisov, S.G. Sligar, Nanodiscs in membrane biochemistry and biophysics. Chem. Rev. 117(6), 4669–4713 (2017)CrossRef
61.
go back to reference A. Nath, W.M. Atkins, S.G. Sligar, Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46, 2056–2067 (2007)CrossRef A. Nath, W.M. Atkins, S.G. Sligar, Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46, 2056–2067 (2007)CrossRef
62.
go back to reference T.K. Ritchie, Y.V. Grinkova, T.H. Bayburt, I.G. Denisov, J.K. Zolnerciks, W.M. Atkins, S.G. Sligar, Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Meth. Enzymol. 464(Liposomes, Part F), 211–231 (2009)CrossRef T.K. Ritchie, Y.V. Grinkova, T.H. Bayburt, I.G. Denisov, J.K. Zolnerciks, W.M. Atkins, S.G. Sligar, Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Meth. Enzymol. 464(Liposomes, Part F), 211–231 (2009)CrossRef
63.
go back to reference J.M. Gluck, B.W. Koenig, D. Willbold, Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies. Anal. Biochem. 408(1), 46–52 (2011)CrossRef J.M. Gluck, B.W. Koenig, D. Willbold, Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies. Anal. Biochem. 408(1), 46–52 (2011)CrossRef
64.
go back to reference C. Roos, L. Kai, D. Proverbio, U. Ghoshdastider, S. Filipek, V. Dotsch, F. Bernhard, Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers. Mol. Membr. Biol. 30(1), 75–89 (2013)CrossRef C. Roos, L. Kai, D. Proverbio, U. Ghoshdastider, S. Filipek, V. Dotsch, F. Bernhard, Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers. Mol. Membr. Biol. 30(1), 75–89 (2013)CrossRef
65.
go back to reference S.G. Rasmussen, H.J. Choi, J.J. Fung, E. Pardon, P. Casarosa, P.S. Chae, B.T. Devree, D.M. Rosenbaum, F.S. Thian, T.S. Kobilka, A. Schnapp, I. Konetzki, R.K. Sunahara, S.H. Gellman, A. Pautsch, J. Steyaert, W.I. Weis, B.K. Kobilka, Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469(7329), 175–180 (2011)CrossRef S.G. Rasmussen, H.J. Choi, J.J. Fung, E. Pardon, P. Casarosa, P.S. Chae, B.T. Devree, D.M. Rosenbaum, F.S. Thian, T.S. Kobilka, A. Schnapp, I. Konetzki, R.K. Sunahara, S.H. Gellman, A. Pautsch, J. Steyaert, W.I. Weis, B.K. Kobilka, Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469(7329), 175–180 (2011)CrossRef
66.
go back to reference A. Obergrussberger, S. Stolzle-Feix, N. Becker, A. Bruggemann, N. Fertig, C. Moller, Novel screening techniques for ion channel targeting drugs. Channels (Austin) 9(6), 367–375 (2015)CrossRef A. Obergrussberger, S. Stolzle-Feix, N. Becker, A. Bruggemann, N. Fertig, C. Moller, Novel screening techniques for ion channel targeting drugs. Channels (Austin) 9(6), 367–375 (2015)CrossRef
67.
go back to reference N. Fertig, R.H. Blick, J.C. Behrends, Whole cell patch clamp recording performed on a planar glass chip. Biophys. J. 82, 3056–3062 (2002)CrossRef N. Fertig, R.H. Blick, J.C. Behrends, Whole cell patch clamp recording performed on a planar glass chip. Biophys. J. 82, 3056–3062 (2002)CrossRef
68.
go back to reference A.E. Dubin, N. Nasser, J. Rohrbacher, A.N. Hermans, R. Marrannes, C. Grantham, K. Van Rossem, M. Cik, S.R. Chaplan, D. Gallacher, J. Xu, A. Guia, N.G. Byrne, C. Mathes, Identifying modulators of hERG channel activity using the PatchXpress planar patch clamp. J. Biomol. Screen. 10(2), 168–181 (2005)CrossRef A.E. Dubin, N. Nasser, J. Rohrbacher, A.N. Hermans, R. Marrannes, C. Grantham, K. Van Rossem, M. Cik, S.R. Chaplan, D. Gallacher, J. Xu, A. Guia, N.G. Byrne, C. Mathes, Identifying modulators of hERG channel activity using the PatchXpress planar patch clamp. J. Biomol. Screen. 10(2), 168–181 (2005)CrossRef
69.
go back to reference Z.L. Mo, T. Faxel, Y.S. Yang, R. Gallavan, D. Messing, A. Bahinski, Effect of compound plate composition on measurement of hERG current IC(50) using PatchXpress. J. Pharmacol. Toxicol. Methods 60(1), 39–44 (2009)CrossRef Z.L. Mo, T. Faxel, Y.S. Yang, R. Gallavan, D. Messing, A. Bahinski, Effect of compound plate composition on measurement of hERG current IC(50) using PatchXpress. J. Pharmacol. Toxicol. Methods 60(1), 39–44 (2009)CrossRef
70.
go back to reference H. Tao, D.S. Ana, A. Guia, M. Huang, J. Ligutti, G. Walker, K. Sithiphong, F. Chan, T. Guoliang, Z. Zozulya, S. Saya, R. Phimmachack, C. Sie, J. Yuan, L. Wu, J. Xu, A. Ghetti, Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds. Assay Drug Dev. Technol. 2(5), 497–506 (2004)CrossRef H. Tao, D.S. Ana, A. Guia, M. Huang, J. Ligutti, G. Walker, K. Sithiphong, F. Chan, T. Guoliang, Z. Zozulya, S. Saya, R. Phimmachack, C. Sie, J. Yuan, L. Wu, J. Xu, A. Ghetti, Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds. Assay Drug Dev. Technol. 2(5), 497–506 (2004)CrossRef
71.
go back to reference J. Kutchinsky, S. Friis, M. Asmild, R. Taboryski, S. Pedersen, R.K. Vestergaard, R.B. Jacobsen, K. Krzywkowski, R.L. Schrøder, T. Ljungstrøm, N. Hélix, C.B. Sørensen, M. Bech, N.J. Willumsen, Characterization of Potassium Channel modulators with QPatch automated patch-clamp technology: system characteristics and performance. Assay Drug Dev. Technol. 1, 685–693 (2003)CrossRef J. Kutchinsky, S. Friis, M. Asmild, R. Taboryski, S. Pedersen, R.K. Vestergaard, R.B. Jacobsen, K. Krzywkowski, R.L. Schrøder, T. Ljungstrøm, N. Hélix, C.B. Sørensen, M. Bech, N.J. Willumsen, Characterization of Potassium Channel modulators with QPatch automated patch-clamp technology: system characteristics and performance. Assay Drug Dev. Technol. 1, 685–693 (2003)CrossRef
72.
go back to reference R.L. Schroder, S. Friis, M. Sunesen, C. Mathes, N.J. Willumsen, Automated patch-clamp technique: increased throughput in functional characterization and in pharmacological screening of small-conductance Ca2+ release-activated Ca2+ channels. J. Biomol. Screen. 13(7), 638–647 (2008)CrossRef R.L. Schroder, S. Friis, M. Sunesen, C. Mathes, N.J. Willumsen, Automated patch-clamp technique: increased throughput in functional characterization and in pharmacological screening of small-conductance Ca2+ release-activated Ca2+ channels. J. Biomol. Screen. 13(7), 638–647 (2008)CrossRef
73.
go back to reference J. Pihl, J. Sinclair, E. Sahlin, M. Karlsson, F. Petterson, J. Olofsson, O. Orwar*, Microfluidic gradient-generating device for pharmalogical profiling. Anal. Chem. 77, 3897–3903 (2005)CrossRef J. Pihl, J. Sinclair, E. Sahlin, M. Karlsson, F. Petterson, J. Olofsson, O. Orwar*, Microfluidic gradient-generating device for pharmalogical profiling. Anal. Chem. 77, 3897–3903 (2005)CrossRef
74.
go back to reference M.R. Nussio, M.J. Sykes, J.O. Miners, J.G. Shapter, Characterisation of the binding of cationic amphiphilic drugs to phospholipid bilayers using surface plasmon resonance. ChemMedChem 2(3), 366–373 (2007)CrossRef M.R. Nussio, M.J. Sykes, J.O. Miners, J.G. Shapter, Characterisation of the binding of cationic amphiphilic drugs to phospholipid bilayers using surface plasmon resonance. ChemMedChem 2(3), 366–373 (2007)CrossRef
75.
go back to reference A. Das, J. Zhao, G.C. Schatz, S.G. Sligar, R.P.V. Duyne, Screening of type I and II drug binding to human cytochrome P450-3A4 in Nanodiscs by localized surface Plasmon resonance spectroscopy. Anal. Chem. 81, 3754–3759 (2009)CrossRef A. Das, J. Zhao, G.C. Schatz, S.G. Sligar, R.P.V. Duyne, Screening of type I and II drug binding to human cytochrome P450-3A4 in Nanodiscs by localized surface Plasmon resonance spectroscopy. Anal. Chem. 81, 3754–3759 (2009)CrossRef
76.
go back to reference A. Watts, Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat. Rev. Drug Discov. 4(7), 555–568 (2005)CrossRef A. Watts, Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat. Rev. Drug Discov. 4(7), 555–568 (2005)CrossRef
77.
go back to reference J.C. Debouzy, L. Mehenni, D. Crouzier, M. Lahiani-Skiba, G. Nugue, M. Skiba, NMR and ESR study of amphotericin B interactions with various binary phosphatidylcholine/phosphatidylglycerol membranes. Int. J. Pharm. 521(1–2), 384–394 (2017)CrossRef J.C. Debouzy, L. Mehenni, D. Crouzier, M. Lahiani-Skiba, G. Nugue, M. Skiba, NMR and ESR study of amphotericin B interactions with various binary phosphatidylcholine/phosphatidylglycerol membranes. Int. J. Pharm. 521(1–2), 384–394 (2017)CrossRef
78.
go back to reference J. Casas, M. Ibarguren, R. Alvarez, S. Teres, V. Llado, S.P. Piotto, S. Concilio, X. Busquets, D.J. Lopez, P.V. Escriba, G protein-membrane interactions II: effect of G protein-linked lipids on membrane structure and G protein-membrane interactions. Biochim. Biophys. Acta 1859(9 Pt B), 1526–1535 (2017)CrossRef J. Casas, M. Ibarguren, R. Alvarez, S. Teres, V. Llado, S.P. Piotto, S. Concilio, X. Busquets, D.J. Lopez, P.V. Escriba, G protein-membrane interactions II: effect of G protein-linked lipids on membrane structure and G protein-membrane interactions. Biochim. Biophys. Acta 1859(9 Pt B), 1526–1535 (2017)CrossRef
79.
go back to reference S. Morandat, S. Azouzi, E. Beauvais, A. Mastouri, K. El Kirat, Atomic force microscopy of model lipid membranes. Anal. Bioanal. Chem. 405(5), 1445–1461 (2013)CrossRef S. Morandat, S. Azouzi, E. Beauvais, A. Mastouri, K. El Kirat, Atomic force microscopy of model lipid membranes. Anal. Bioanal. Chem. 405(5), 1445–1461 (2013)CrossRef
80.
go back to reference J.A.N. Zasadzinski, C.A. Helm, M.L. Longo, A.L. Weisenhorn, S.A.C. Gould, P.K. Hansmat, Atomic force microscopy of hydrated phosphatidylethanolamine bilayers. Biophys. J. 59, 755–760 (1991)CrossRef J.A.N. Zasadzinski, C.A. Helm, M.L. Longo, A.L. Weisenhorn, S.A.C. Gould, P.K. Hansmat, Atomic force microscopy of hydrated phosphatidylethanolamine bilayers. Biophys. J. 59, 755–760 (1991)CrossRef
81.
go back to reference S. Merino, O. Domenech, I. Diez, F. Sanz, M. Vinas, M.T. Montero, J. Hernandez-Borrell, Effects of ciprofloxacin on Escherichia colilipid bilayers: an atomic force microscopy. Langmuir 19, 6922–6927 (2003)CrossRef S. Merino, O. Domenech, I. Diez, F. Sanz, M. Vinas, M.T. Montero, J. Hernandez-Borrell, Effects of ciprofloxacin on Escherichia colilipid bilayers: an atomic force microscopy. Langmuir 19, 6922–6927 (2003)CrossRef
82.
go back to reference J. Mou, J. Yang, Z. Shao, Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J. Mol. Biol. 248, 507–512 (1995)CrossRef J. Mou, J. Yang, Z. Shao, Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J. Mol. Biol. 248, 507–512 (1995)CrossRef
83.
go back to reference M.P. Mingeot-Leclercq, M. Deleu, R. Brasseur, Y.F. Dufrene, Atomic force microscopy of supported lipid bilayers. Nat. Protoc. 3(10), 1654–1659 (2008)CrossRef M.P. Mingeot-Leclercq, M. Deleu, R. Brasseur, Y.F. Dufrene, Atomic force microscopy of supported lipid bilayers. Nat. Protoc. 3(10), 1654–1659 (2008)CrossRef
84.
go back to reference G.S. Lorite, T.M. Nobre, M.E. Zaniquelli, E. de Paula, M.A. Cotta, Dibucaine effects on structural and elastic properties of lipid bilayers. Biophys. Chem. 139(2–3), 75–83 (2009)CrossRef G.S. Lorite, T.M. Nobre, M.E. Zaniquelli, E. de Paula, M.A. Cotta, Dibucaine effects on structural and elastic properties of lipid bilayers. Biophys. Chem. 139(2–3), 75–83 (2009)CrossRef
85.
go back to reference A.-S. Andersson, K. Glasmästar, D. Sutherland, U. Lidberg, B. Kasemo, Cell adhesion on supported lipid bilayers. J. Biomed. Mater. Res. A 64A(4), 622–629 (2003)CrossRef A.-S. Andersson, K. Glasmästar, D. Sutherland, U. Lidberg, B. Kasemo, Cell adhesion on supported lipid bilayers. J. Biomed. Mater. Res. A 64A(4), 622–629 (2003)CrossRef
86.
go back to reference E. Reimhult, K. Kumar, Membrane biosensor platforms using nano- and microporous supports. Trends Biotechnol. 26(2), 82–89 (2008)CrossRef E. Reimhult, K. Kumar, Membrane biosensor platforms using nano- and microporous supports. Trends Biotechnol. 26(2), 82–89 (2008)CrossRef
87.
go back to reference H. Benamara, C. Rihouey, T. Jouenne, S. Alexandre, Impact of the biofilm mode of growth on the inner membrane phospholipid composition and lipid domains in Pseudomonas aeruginosa. Biochim. Biophys. Acta Biomembr. 1808(1), 98–105 (2011)CrossRef H. Benamara, C. Rihouey, T. Jouenne, S. Alexandre, Impact of the biofilm mode of growth on the inner membrane phospholipid composition and lipid domains in Pseudomonas aeruginosa. Biochim. Biophys. Acta Biomembr. 1808(1), 98–105 (2011)CrossRef
88.
go back to reference T.M. Nobre, F.J. Pavinatto, L. Caseli, A. Barros-Timmons, P. Dynarowicz-Łątka, O.N. Oliveir, Interactions of bioactive molecules & nanomaterials with Langmuir monolayers as cell membrane models. Thin Solid Films 593, 158–188 (2015) T.M. Nobre, F.J. Pavinatto, L. Caseli, A. Barros-Timmons, P. Dynarowicz-Łątka, O.N. Oliveir, Interactions of bioactive molecules & nanomaterials with Langmuir monolayers as cell membrane models. Thin Solid Films 593, 158–188 (2015)
89.
go back to reference C. Peetla, R. Bhave, S. Vijayaraghavalu, A. Stine, E. Kooijman, V. Labhasetwar, Drug resistance in breast cancer cells: biophysical characterization of and doxorubucin interactions with membrane lipids. Mol. Pharm. 7(6), 2334–2348 (2010) C. Peetla, R. Bhave, S. Vijayaraghavalu, A. Stine, E. Kooijman, V. Labhasetwar, Drug resistance in breast cancer cells: biophysical characterization of and doxorubucin interactions with membrane lipids. Mol. Pharm. 7(6), 2334–2348 (2010)
Metadata
Title
Biomimetic Model Membranes as Drug Screening Platform
Authors
Rumeysa Bilginer
Ahu Arslan Yildiz
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-11596-8_10

Premium Partners