Skip to main content
Top

2019 | OriginalPaper | Chapter

Biominerlisation as a Remediation Technique: A Critical Review

Authors : Surabhi Jain, D. N. Arnepalli

Published in: Geotechnical Characterisation and Geoenvironmental Engineering

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rapid industrialization and urbanization cause release of significant quantities of hazardous contaminants, including heavy metals and radionuclides, into the biosphere. Severe accumulation of these contaminants and their exposure deteriorates human health, environment, and biota system. Conventional remediation of heavy metal, radionuclide contaminated soils includes physicochemical extraction, stabilization/solidification/immobilization, soil washing. These techniques demand large quantities of chemical reagents, huge cost apart from the generation of secondary toxic by-products, and hence, the aforementioned techniques become unsuccessful and ineffective. This necessitates an interdisciplinary approach using biomediated processes and/or derived by-products, which enhances remediation process through accelerated biogeochemical phenomenon. Bioremediation is a broad area which involves large matrix of remediation techniques such as bioaccumulation, biosorption, biosparging, bioleaching, biomineralization, phytoremediation. Among all these techniques, biomineralization or microbially induced carbonate mineral precipitation is the most fascinating, promising methods to handle the present-day challenges pertaining to remediation of contaminated soils. In view of this, the current study presents a critical review on mechanisms of microbially induced carbonate precipitation in view of solid-phase sequestration of inorganic contaminants. Further, this study assesses the suitability of various microorganisms along with the associated precipitation processes for transforming soluble inorganic compounds into stable and non-redox sensitive carbonate minerals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference AbdEl-Sabour, M. F. (2007). Remediation and bioremediation of uranium contaminated soils. Electronic Journal of Environmental, Agriculture and Food Chemistry, 6, 2009–2023. AbdEl-Sabour, M. F. (2007). Remediation and bioremediation of uranium contaminated soils. Electronic Journal of Environmental, Agriculture and Food Chemistry, 6, 2009–2023.
go back to reference Achal, V., Pan, X., Fu, Q., & Zhang, D. (2012b). Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 178–184.CrossRef Achal, V., Pan, X., Fu, Q., & Zhang, D. (2012b). Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 178–184.CrossRef
go back to reference Achal, V., Pan, X., Lee, D. J., Kumari, D., & Zhang, D. (2013). Remediation of Cr(VI) from chromium slag by biocementation. Chemosphere, 93(7), 1352–1358.CrossRef Achal, V., Pan, X., Lee, D. J., Kumari, D., & Zhang, D. (2013). Remediation of Cr(VI) from chromium slag by biocementation. Chemosphere, 93(7), 1352–1358.CrossRef
go back to reference Achal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601–1605.CrossRef Achal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601–1605.CrossRef
go back to reference Achal, V., Pan, X., & Zhang, D. (2012a). Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere, 89(6), 764–768.CrossRef Achal, V., Pan, X., & Zhang, D. (2012a). Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere, 89(6), 764–768.CrossRef
go back to reference Achal, V., Pan, X., Zhang, D., & Fu, Q. (2012c). Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. Journal of Microbiology and Biotechnology, 22(2), 244–247.CrossRef Achal, V., Pan, X., Zhang, D., & Fu, Q. (2012c). Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. Journal of Microbiology and Biotechnology, 22(2), 244–247.CrossRef
go back to reference Fujita, Y., Taylor, J. L., Wendt, L. M., Reed, D. W., & Smith, R. W. (2010). Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environmental Science and Technology, 44(19), 7652–7658.CrossRef Fujita, Y., Taylor, J. L., Wendt, L. M., Reed, D. W., & Smith, R. W. (2010). Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environmental Science and Technology, 44(19), 7652–7658.CrossRef
go back to reference Kang, C. H., Choi, J. H., Noh, J. G., Kwak, D. Y., Han, S. H., & So, J. S. (2014a). Microbially induced calcite precipitation-based sequestration of strontium by Sporosarcina pasteurii WJ-2. Applied Biochemistry and Biotechnology, 174(7), 2482–2491.CrossRef Kang, C. H., Choi, J. H., Noh, J. G., Kwak, D. Y., Han, S. H., & So, J. S. (2014a). Microbially induced calcite precipitation-based sequestration of strontium by Sporosarcina pasteurii WJ-2. Applied Biochemistry and Biotechnology, 174(7), 2482–2491.CrossRef
go back to reference Kang, C. H., Han, S. H., Shin, Y., Oh, S. J., & So, J. S. (2014b). Bioremediation of Cd by microbially induced calcite precipitation. Applied Biochemistry and Biotechnology, 172(6), 2907–2915.CrossRef Kang, C. H., Han, S. H., Shin, Y., Oh, S. J., & So, J. S. (2014b). Bioremediation of Cd by microbially induced calcite precipitation. Applied Biochemistry and Biotechnology, 172(6), 2907–2915.CrossRef
go back to reference Kang, C. H., Kwon, Y.-J., & So, J.-S. (2016). Bioremediation of heavy metals by using bacterial mixtures. Ecological Engineering, 89, 64–69.CrossRef Kang, C. H., Kwon, Y.-J., & So, J.-S. (2016). Bioremediation of heavy metals by using bacterial mixtures. Ecological Engineering, 89, 64–69.CrossRef
go back to reference Kang, C. H., Oh, S. J., Shin, Y., Han, S. H., Nam, I. H., & So, J. S. (2015). Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecological Engineering, 74, 402–407.CrossRef Kang, C. H., Oh, S. J., Shin, Y., Han, S. H., Nam, I. H., & So, J. S. (2015). Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecological Engineering, 74, 402–407.CrossRef
go back to reference Knoll, A. (2003). Biomineralization and evolutionary history. Reviews in Mineralogy and Geochemistry, 54, 329–356.CrossRef Knoll, A. (2003). Biomineralization and evolutionary history. Reviews in Mineralogy and Geochemistry, 54, 329–356.CrossRef
go back to reference Kumari, D., Li, M., Pan, X., & Xin-Yi, Q. (2014a). Effect of bacterial treatment on Cr(VI) remediation from soil and subsequent plantation of Pisum sativum. Ecological Engineering, 73, 404–408.CrossRef Kumari, D., Li, M., Pan, X., & Xin-Yi, Q. (2014a). Effect of bacterial treatment on Cr(VI) remediation from soil and subsequent plantation of Pisum sativum. Ecological Engineering, 73, 404–408.CrossRef
go back to reference Kumari, D., Pan, X., Lee, D. J., & Achal, V. (2014b). Immobilization of cadmium in soil by microbially induced carbonate precipitation with Eexiguobacterium undae at low temperature. International Biodeterioration and Biodegradation, 94, 98–102.CrossRef Kumari, D., Pan, X., Lee, D. J., & Achal, V. (2014b). Immobilization of cadmium in soil by microbially induced carbonate precipitation with Eexiguobacterium undae at low temperature. International Biodeterioration and Biodegradation, 94, 98–102.CrossRef
go back to reference Li, M., Cheng, X., & Guo, H. (2013). Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. International Biodeteriation and Biodegradation, 76, 81–85.CrossRef Li, M., Cheng, X., & Guo, H. (2013). Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. International Biodeteriation and Biodegradation, 76, 81–85.CrossRef
Metadata
Title
Biominerlisation as a Remediation Technique: A Critical Review
Authors
Surabhi Jain
D. N. Arnepalli
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-0899-4_19