Skip to main content
Top

2015 | OriginalPaper | Chapter

Bionanocomposites for Magnetic Removal of Water Pollutants

Authors : F. L. Sousa, A. L. Daniel-da-Silva, N. J. O. Silva, T. Trindade

Published in: Eco-friendly Polymer Nanocomposites

Publisher: Springer India

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnetic separation in water remediation processes is of great interest in current environmental technologies. An important aspect in this field has been the development of efficient sorbents for water purification units, namely by exploiting other functionalities that might originate more sustainable technologies. This chapter describes the state-of-art on the chemical preparation of magnetic sorbents comprising inorganic particles and biopolymer matrices. Fundamental aspects related to nanoparticle synthesis of iron oxides and nanomagnetism will be first addressed. The use of these particles in biopolymers matrices such as polysaccharides will be then reviewed as an innovative strategy aiming at production of eco-friendly sorbents for magnetic separation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
A constant magnetic field would just produce a torque.
 
Literature
1.
go back to reference Ahmaruzzaman M (2011) Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Colloid Interface Sci 166:36–59 Ahmaruzzaman M (2011) Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Colloid Interface Sci 166:36–59
2.
go back to reference Ai L, Li M, Li L (2011) Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, osotherms, and thermodynamics. J Chem Eng Data 56:3475–3483 Ai L, Li M, Li L (2011) Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, osotherms, and thermodynamics. J Chem Eng Data 56:3475–3483
3.
go back to reference Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091 Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091
4.
go back to reference Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243 Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243
5.
go back to reference Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. J Hazard Mater 185:1177–1186 Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. J Hazard Mater 185:1177–1186
6.
go back to reference Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479 Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479
7.
go back to reference Banerjee SS, Chen D-H (2007) Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J Hazard Mater 147:792–799 Banerjee SS, Chen D-H (2007) Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J Hazard Mater 147:792–799
8.
go back to reference Bee A, Talbot D, Abramson S, Dupuis V (2011) Magnetic alginate beads for Pb(II) ions removal from wastewater. J Colloid Interface Sci 362:486–593 Bee A, Talbot D, Abramson S, Dupuis V (2011) Magnetic alginate beads for Pb(II) ions removal from wastewater. J Colloid Interface Sci 362:486–593
9.
go back to reference Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv Colloid Interface Sci 140:114–131 Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv Colloid Interface Sci 140:114–131
10.
go back to reference Blackburn RS (2004) Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environ Sci Technol 38:4905–4909 Blackburn RS (2004) Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environ Sci Technol 38:4905–4909
11.
go back to reference Carlos L, Einschlag FSG, González MC, Mártire DO (2013) Waste water – treatment technologies and recent analytical developments. Intech – Open Access Publisher Carlos L, Einschlag FSG, González MC, Mártire DO (2013) Waste water – treatment technologies and recent analytical developments. Intech – Open Access Publisher
12.
go back to reference Chang Y-C, Chen D-H (2006) Recovery of gold(III) ions by a chitosan coated magnetic nano-adsorbent. Gold Bulletin 39:98–102 Chang Y-C, Chen D-H (2006) Recovery of gold(III) ions by a chitosan coated magnetic nano-adsorbent. Gold Bulletin 39:98–102
13.
go back to reference Chang PR, Zheng P, Liu B, Anderson DP, Yu J, Ma X (2011) Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes. J Hazard Mater 186:2144–2150 Chang PR, Zheng P, Liu B, Anderson DP, Yu J, Ma X (2011) Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes. J Hazard Mater 186:2144–2150
14.
go back to reference Chen Y, Wang J (2012) Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl Eng Des 242:445–451 Chen Y, Wang J (2012) Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl Eng Des 242:445–451
15.
go back to reference Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70 Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70
16.
go back to reference Crini G (2006) Non-conventional low-cost adsorbents for dye removal: A review. Bioresour Technol 97:1061–1085 Crini G (2006) Non-conventional low-cost adsorbents for dye removal: A review. Bioresour Technol 97:1061–1085
17.
go back to reference Daniel-da-Silva AL, Carvalho RS, Trindade T (2013) Magnetic hydrogel nanocomposites and composite nanoparticles – a review of recent patented works. Recent Pat Nanotechnol 7:153–166 Daniel-da-Silva AL, Carvalho RS, Trindade T (2013) Magnetic hydrogel nanocomposites and composite nanoparticles – a review of recent patented works. Recent Pat Nanotechnol 7:153–166
18.
go back to reference Daniel-da-Silva AL, Silva NJO, Gil AM, Trindade T (2011) Nano-composite particles for bio-applications: Materials and bio-interfaces. Pan Stanford Publishing Pte. Ltd., Singapore Daniel-da-Silva AL, Silva NJO, Gil AM, Trindade T (2011) Nano-composite particles for bio-applications: Materials and bio-interfaces. Pan Stanford Publishing Pte. Ltd., Singapore
19.
go back to reference Daniel-da-Silva AL, Trindade T (2011) Advances in nanocomposite technology. Intech – Open Access Publisher Daniel-da-Silva AL, Trindade T (2011) Advances in nanocomposite technology. Intech – Open Access Publisher
20.
go back to reference Dave SR, Gao X (2009) Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wires Nanomed Nanobi 1:583–609 Dave SR, Gao X (2009) Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wires Nanomed Nanobi 1:583–609
21.
go back to reference Debnath S, Maity A, Pillay K (2014) Magnetic chitosan–GO nanocomposite: Synthesis, characterization and batch adsorber design for Cr(VI) removal. J Environ Chem Eng 2:963–973 Debnath S, Maity A, Pillay K (2014) Magnetic chitosan–GO nanocomposite: Synthesis, characterization and batch adsorber design for Cr(VI) removal. J Environ Chem Eng 2:963–973
22.
go back to reference Debrassi A, Corrêa AF, Baccarin T, Nedelko N, Slawska-Waniewsk A, Sobczak K, Dłuzwskib P, Greneche J-M, Rodrigues CA (2012) Removal of cationic dyes from aqueous solutions using N-benzyl-O-carboxymethylchitosan magnetic nanoparticles. Chem Eng J 183:284–293 Debrassi A, Corrêa AF, Baccarin T, Nedelko N, Slawska-Waniewsk A, Sobczak K, Dłuzwskib P, Greneche J-M, Rodrigues CA (2012) Removal of cationic dyes from aqueous solutions using N-benzyl-O-carboxymethylchitosan magnetic nanoparticles. Chem Eng J 183:284–293
23.
go back to reference Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: A review. J Hazard Mater 157:220–229 Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: A review. J Hazard Mater 157:220–229
24.
go back to reference Dias AMGC, Hussain A, Marcos AS, Roque ACA (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29:142–155 Dias AMGC, Hussain A, Marcos AS, Roque ACA (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29:142–155
25.
go back to reference Elwakeel KZ, Atia AA, Donia AM (2009) Removal of Mo(VI) as oxoanions fromaqueous solutions using chemically modified magnetic chitosan resins. Hydrometallurgy 97:21–28 Elwakeel KZ, Atia AA, Donia AM (2009) Removal of Mo(VI) as oxoanions fromaqueous solutions using chemically modified magnetic chitosan resins. Hydrometallurgy 97:21–28
26.
go back to reference Fan L, Luo C, Lv Z, Lu F, Qui H (2011) Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+. J Hazard Mater 194:193–201 Fan L, Luo C, Lv Z, Lu F, Qui H (2011) Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+. J Hazard Mater 194:193–201
27.
go back to reference Fan L, Luo C, Sun M, Li X, Lu F, Qiu H (2012) Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresour Technol 114:703–706 Fan L, Luo C, Sun M, Li X, Lu F, Qiu H (2012) Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresour Technol 114:703–706
28.
go back to reference Fan L, Luo C, Sun M, Li X, Qiu H (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B 103:523–529 Fan L, Luo C, Sun M, Li X, Qiu H (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B 103:523–529
29.
go back to reference Fan L, Zhang Y, Li X, Luo C, Lu F, Qiu H (2012) Removal of alizarin red from water environment using magnetic chitosan with Alizarin Red as imprinted molecules. Colloids Surf B 91:250–257 Fan L, Zhang Y, Li X, Luo C, Lu F, Qiu H (2012) Removal of alizarin red from water environment using magnetic chitosan with Alizarin Red as imprinted molecules. Colloids Surf B 91:250–257
30.
go back to reference Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10 Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10
31.
go back to reference Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471 Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471
32.
go back to reference Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T (2010) Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci 345:234–240 Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T (2010) Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci 345:234–240
33.
go back to reference Gong J-L, Wang X-Y, Zeng G-M, Chen L, Deng J-H, Zhang X-R, Niu Q-Y (2012) Copper (II) removal by pectin–iron oxide magnetic nanocomposite adsorbent. Chem Eng J 185–186:100–107 Gong J-L, Wang X-Y, Zeng G-M, Chen L, Deng J-H, Zhang X-R, Niu Q-Y (2012) Copper (II) removal by pectin–iron oxide magnetic nanocomposite adsorbent. Chem Eng J 185–186:100–107
34.
go back to reference Goodenough JB (1963) Magnetism and the chemical bond. John Wiley and Sons, New York Goodenough JB (1963) Magnetism and the chemical bond. John Wiley and Sons, New York
35.
go back to reference Guglielmo CD, López DR, Lapuente JD, Mallafre JML, Suàrez MB (2010) Embryotoxicity of cobalt ferrite and gold nanoparticles: a first in vitro approach. Reprod Toxicol 30:271–276 Guglielmo CD, López DR, Lapuente JD, Mallafre JML, Suàrez MB (2010) Embryotoxicity of cobalt ferrite and gold nanoparticles: a first in vitro approach. Reprod Toxicol 30:271–276
36.
go back to reference Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomater 26:3995–4021 Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomater 26:3995–4021
37.
go back to reference Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465 Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465
38.
go back to reference Hritcu D, Humelnicu D, Dodi G, Popa MI (2012) Magnetic chitosan composite particles: Evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydr Polym 87:1185–1191 Hritcu D, Humelnicu D, Dodi G, Popa MI (2012) Magnetic chitosan composite particles: Evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydr Polym 87:1185–1191
39.
go back to reference Hu J, Lo IMC, Chen G (2004) Removal of Cr(VI) by magnetite. Water Sci Technol 50:139–146 Hu J, Lo IMC, Chen G (2004) Removal of Cr(VI) by magnetite. Water Sci Technol 50:139–146
40.
go back to reference Idris A, Ismail NSM, Hassan N, Misran E, Ngomsik A-F (2012) Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution. J Ind Eng Chem 18:1582–1589 Idris A, Ismail NSM, Hassan N, Misran E, Ngomsik A-F (2012) Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution. J Ind Eng Chem 18:1582–1589
41.
go back to reference Inbaraj BS, Chen BH (2011) Dye adsorption characteristics of magnetite nanoparticles coated with a biopolymer poly(γ-glutamic acid). Bioresour Technol 102:8868–8876 Inbaraj BS, Chen BH (2011) Dye adsorption characteristics of magnetite nanoparticles coated with a biopolymer poly(γ-glutamic acid). Bioresour Technol 102:8868–8876
42.
go back to reference Indira TK, Lakshmi PK (2010) Magnetic nanoparticles–a review. Int Pharm Sci Nanotech 3:1035–1042 Indira TK, Lakshmi PK (2010) Magnetic nanoparticles–a review. Int Pharm Sci Nanotech 3:1035–1042
43.
go back to reference Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60 Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60
44.
go back to reference Jiang Y-J, Yu X-Y, Luo T, Jia Y, Liu J-H, Huang X-J (2013) γ-Fe2O3 Nanoparticles encapsulated millimeter-sized magnetic chitosan beads for removal of Cr(VI) from water: Thermodynamics, kinetics, regeneration, and uptake mechanisms. J Chem Eng Data 58:3142–3149 Jiang Y-J, Yu X-Y, Luo T, Jia Y, Liu J-H, Huang X-J (2013) γ-Fe2O3 Nanoparticles encapsulated millimeter-sized magnetic chitosan beads for removal of Cr(VI) from water: Thermodynamics, kinetics, regeneration, and uptake mechanisms. J Chem Eng Data 58:3142–3149
45.
go back to reference Kalkan NA, Aksoy S, Aksoy EA, Hasirci N (2012) Adsorption of reactive yellow 145 onto chitosan coated magnetite nanoparticles. J Appl Polym Sci 124:576–584 Kalkan NA, Aksoy S, Aksoy EA, Hasirci N (2012) Adsorption of reactive yellow 145 onto chitosan coated magnetite nanoparticles. J Appl Polym Sci 124:576–584
46.
go back to reference Lan S, Leng Z, Guo N, Wu X, Gan S (2014) Sesbania gum-based magnetic carbonaceous nanocomposites: Facile fabrication and adsorption behavior. Colloids Surf A 446:163–171 Lan S, Leng Z, Guo N, Wu X, Gan S (2014) Sesbania gum-based magnetic carbonaceous nanocomposites: Facile fabrication and adsorption behavior. Colloids Surf A 446:163–171
47.
go back to reference Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1406 Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1406
48.
go back to reference Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110 Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110
49.
go back to reference Lee C-G, Kim S-B (2013) Magnetic alginate-layered double hydroxide composites for phosphate removal. Environ Technol 34:2749–2756 Lee C-G, Kim S-B (2013) Magnetic alginate-layered double hydroxide composites for phosphate removal. Environ Technol 34:2749–2756
50.
go back to reference Li G, Du Y, Tao Y, Deng H, Luo X, Yang J (2010) Iron(II) cross-linked chitin-based gel beads: Preparation, magnetic property and adsorption of methyl orange. Carbohydr Polym 82:706–713 Li G, Du Y, Tao Y, Deng H, Luo X, Yang J (2010) Iron(II) cross-linked chitin-based gel beads: Preparation, magnetic property and adsorption of methyl orange. Carbohydr Polym 82:706–713
51.
go back to reference Lim S-F, Zheng Y-M, Zou S-W, Chen JP (2009) Uptake of arsenate by an alginate-encapsulated magnetic sorbent: Process performance and characterization of adsorption chemistry. J Colloid Interface Sci 333:33–39 Lim S-F, Zheng Y-M, Zou S-W, Chen JP (2009) Uptake of arsenate by an alginate-encapsulated magnetic sorbent: Process performance and characterization of adsorption chemistry. J Colloid Interface Sci 333:33–39
52.
go back to reference Liu Z, Wang H, Liu C, Jiang Y, Yu G, Mu X, Wang X (2012) Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352 Liu Z, Wang H, Liu C, Jiang Y, Yu G, Mu X, Wang X (2012) Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352
53.
go back to reference Liu B, Wang D, Li H, Xu Y, Zhang L (2011) As(III) removal from aqueous solution using α-Fe2O3 impregnated chitosan beads with As(III) as imprinted ions. Desalination 272:286–1292 Liu B, Wang D, Li H, Xu Y, Zhang L (2011) As(III) removal from aqueous solution using α-Fe2O3 impregnated chitosan beads with As(III) as imprinted ions. Desalination 272:286–1292
54.
go back to reference Liu J-F, Zhao Z-S, Jiang G-B (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954 Liu J-F, Zhao Z-S, Jiang G-B (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954
55.
go back to reference Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244 Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244
56.
go back to reference Luo X, Zhang L (2009) High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J Hazard Mater 171:340–347 Luo X, Zhang L (2009) High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J Hazard Mater 171:340–347
57.
go back to reference Mahdavinia GR, Iravani S, Zoroufi S, Hosseinzadeh H (2014) Magnetic and K+-cross-linked kappa-carrageenan nanocomposite beads and adsorption of crystal violet. Iran Polym J 23:335–344 Mahdavinia GR, Iravani S, Zoroufi S, Hosseinzadeh H (2014) Magnetic and K+-cross-linked kappa-carrageenan nanocomposite beads and adsorption of crystal violet. Iran Polym J 23:335–344
58.
go back to reference Mahmoodi NM (2013) Magnetic ferrite nanoparticle–alginate composite: Synthesis, characterization and binary system dye removal. J Taiwan Inst Chem Eng 44:322–330 Mahmoodi NM (2013) Magnetic ferrite nanoparticle–alginate composite: Synthesis, characterization and binary system dye removal. J Taiwan Inst Chem Eng 44:322–330
59.
go back to reference Mittal H, Mishra SB (2014) Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr Polym 101:1255–1264 Mittal H, Mishra SB (2014) Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr Polym 101:1255–1264
60.
go back to reference Ngomsik A-F, Bee A, Siaugue J-M, Cabuil V, Cote G (2006) Nickel adsorption by magnetic alginate microcapsules containing an extractant. Water Res 420:1848–1856 Ngomsik A-F, Bee A, Siaugue J-M, Cabuil V, Cote G (2006) Nickel adsorption by magnetic alginate microcapsules containing an extractant. Water Res 420:1848–1856
61.
go back to reference Obeid L, Bée A, Talbot D, Jaafar SB, Dupuis V, Abramson S, Cabuil V, Welschbillig M (2013) Chitosan/maghemite composite: A magsorbent for the adsorption of methyl orange. J Colloid Interface Sci 410:52–58 Obeid L, Bée A, Talbot D, Jaafar SB, Dupuis V, Abramson S, Cabuil V, Welschbillig M (2013) Chitosan/maghemite composite: A magsorbent for the adsorption of methyl orange. J Colloid Interface Sci 410:52–58
62.
go back to reference Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36:R167–R181 Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36:R167–R181
63.
go back to reference Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Almeida VC, Tambourgi EB (2011) Effect of magnetite on the adsorption behavior of Pb(II), Cd(II), and Cu(II) in chitosan-based hydrogels. Desalination 275:187–196 Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Almeida VC, Tambourgi EB (2011) Effect of magnetite on the adsorption behavior of Pb(II), Cd(II), and Cu(II) in chitosan-based hydrogels. Desalination 275:187–196
64.
go back to reference Paulino AT, Guilherme MR, Mattoso LHC, Tambourgi EB (2010) Smart hydrogels based on modified gum arabic as a potential device for magnetic biomaterial. Macromol Chem Phys 211:1196–1205 Paulino AT, Guilherme MR, Mattoso LHC, Tambourgi EB (2010) Smart hydrogels based on modified gum arabic as a potential device for magnetic biomaterial. Macromol Chem Phys 211:1196–1205
65.
go back to reference Peng L, Qin P, Lei M, Zeng Q, Song H, Yang J, Shao J, Liao B, Gu J (2012) Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J Hazard Mater 209–210:193–198 Peng L, Qin P, Lei M, Zeng Q, Song H, Yang J, Shao J, Liao B, Gu J (2012) Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J Hazard Mater 209–210:193–198
66.
go back to reference Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv Colloid Interface Sci 152:2–13 Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv Colloid Interface Sci 152:2–13
67.
go back to reference Polyak B, Friedman G (2009) Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Del 6:53–70 Polyak B, Friedman G (2009) Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Del 6:53–70
68.
go back to reference Pourjavadi A, Hosseini SH, Seidi F, Soleyman R (2013) Magnetic removal of crystal violet from aqueous solutions using polysaccharide-based magnetic nanocomposite hydrogels. Polym Int 62:1038–1044 Pourjavadi A, Hosseini SH, Seidi F, Soleyman R (2013) Magnetic removal of crystal violet from aqueous solutions using polysaccharide-based magnetic nanocomposite hydrogels. Polym Int 62:1038–1044
69.
go back to reference Purcell EM (1977) Life at low reynolds number. Am J Phys 45:3–11 Purcell EM (1977) Life at low reynolds number. Am J Phys 45:3–11
70.
go back to reference Rakhshaeea R, Panahandeh M (2011) Stabilization of a magnetic nano-adsorbent by extracted pectin to remove methylene blue from aqueous solution: A comparative studying between two kinds of cross-likened pectin. J Hazard Mater 189:158–166 Rakhshaeea R, Panahandeh M (2011) Stabilization of a magnetic nano-adsorbent by extracted pectin to remove methylene blue from aqueous solution: A comparative studying between two kinds of cross-likened pectin. J Hazard Mater 189:158–166
71.
go back to reference Reddy DHK, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 201–202:68–93 Reddy DHK, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 201–202:68–93
72.
go back to reference Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1026 Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1026
73.
go back to reference Ritter JA, Ebner AD, Daniel KD, Stewart KL (2004) Application of high gradient magnetic separation principles to magnetic drug targeting. J Magn Magn Mater 280:184–201 Ritter JA, Ebner AD, Daniel KD, Stewart KL (2004) Application of high gradient magnetic separation principles to magnetic drug targeting. J Magn Magn Mater 280:184–201
74.
go back to reference Rivera-Utrilla J, Sánchez-Polo M, Gómez-Serrano V, Alvarez PM, Alvim-Ferraz M CM, Dias JM (2011) Activated carbon modifications to enhance its water treatment applications. An overview. J Hazard Mater 187:1–23 Rivera-Utrilla J, Sánchez-Polo M, Gómez-Serrano V, Alvarez PM, Alvim-Ferraz M CM, Dias JM (2011) Activated carbon modifications to enhance its water treatment applications. An overview. J Hazard Mater 187:1–23
75.
go back to reference Rocher V, Bee A, Siaugue J-M, Cabuil V (2010) Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J Hazard Mater 178:434–439 Rocher V, Bee A, Siaugue J-M, Cabuil V (2010) Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J Hazard Mater 178:434–439
76.
go back to reference Rocher V, Siaugue J-M, Cabuil V, Bee A (2008) Removal of organic dyes by magnetic alginate beads. Water Res 42:1290–1298 Rocher V, Siaugue J-M, Cabuil V, Bee A (2008) Removal of organic dyes by magnetic alginate beads. Water Res 42:1290–1298
77.
go back to reference Roginsky S, Zeldovich Y (1934) Acta Physicochim USSR 1:554 Roginsky S, Zeldovich Y (1934) Acta Physicochim USSR 1:554
78.
go back to reference Salgueiro AM, Daniel-da-Silva AL, Girão AV, Pinheiro PC, Trindade T (2013) Unusual dye adsorption behavior of κ-carrageenan coated superparamagnetic nanoparticles. Chem Eng J 229:276–284 Salgueiro AM, Daniel-da-Silva AL, Girão AV, Pinheiro PC, Trindade T (2013) Unusual dye adsorption behavior of κ-carrageenan coated superparamagnetic nanoparticles. Chem Eng J 229:276–284
79.
go back to reference Saravanan P, Vinod VTP, Sreedhar B, Sashidhar RB (2012) Gum kondagogu modified magnetic nano-adsorbent: An efficient protocol for removal of various toxic metal ions. Mater Sci Eng C 32:581–586 Saravanan P, Vinod VTP, Sreedhar B, Sashidhar RB (2012) Gum kondagogu modified magnetic nano-adsorbent: An efficient protocol for removal of various toxic metal ions. Mater Sci Eng C 32:581–586
80.
go back to reference Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915 Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915
81.
go back to reference Shi H, Li W, Zhong L, Xu C (2014) Methylene blue adsorption from aqueous solution by magnetic cellulose/graphene oxide composite: Equilibrium, kinetics, and thermodynamics. Ind Eng Chem Res 53:1108–1118 Shi H, Li W, Zhong L, Xu C (2014) Methylene blue adsorption from aqueous solution by magnetic cellulose/graphene oxide composite: Equilibrium, kinetics, and thermodynamics. Ind Eng Chem Res 53:1108–1118
82.
go back to reference Sips R (1948) Combined form of Langmuir and Freundlich equations. J Chem Phys 16:490–495 Sips R (1948) Combined form of Langmuir and Freundlich equations. J Chem Phys 16:490–495
83.
go back to reference Soto ML, Moure A, Dominguez H, Parajó JC (2001) Recovery, concentration and purification of phenolic compounds by adsorption: A review. J Food Eng 105:1–27 Soto ML, Moure A, Dominguez H, Parajó JC (2001) Recovery, concentration and purification of phenolic compounds by adsorption: A review. J Food Eng 105:1–27
84.
go back to reference Tang SCN, Lo IMC (2013) Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res 47:2613–2632 Tang SCN, Lo IMC (2013) Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res 47:2613–2632
85.
go back to reference Tempkin MJ, Pyzhev V (1940) Recent modification to Langmiur isotherms. Acta Physiochim USSR 12:217–222 Tempkin MJ, Pyzhev V (1940) Recent modification to Langmiur isotherms. Acta Physiochim USSR 12:217–222
86.
go back to reference Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers 109:102–117 Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers 109:102–117
87.
go back to reference Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: A review. ACS Sustain Chem Eng 2:1072–1092 Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: A review. ACS Sustain Chem Eng  2:1072–1092
88.
go back to reference Tong J, Chen L (2013) Review: Preparation and application of magnetic chitosan derivatives in separation processes. Anal Lett 46:2635–2656 Tong J, Chen L (2013) Review: Preparation and application of magnetic chitosan derivatives in separation processes. Anal Lett 46:2635–2656
89.
go back to reference Tripathi A, Melo JS, D’Souza SF (2013) Uranium (VI) recovery from aqueous medium using novel floating macroporous alginate-agarose-magnetite cryobeads. J Hazard Mat 246–247:87–95 Tripathi A, Melo JS, D’Souza SF (2013) Uranium (VI) recovery from aqueous medium using novel floating macroporous alginate-agarose-magnetite cryobeads. J Hazard Mat 246–247:87–95
90.
go back to reference Umbuzeiro GA, Freeman HS, Warren SH, de Oliveira DP, Terao Y, Watanabe T, Claxton LD (2005) The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere 60:55–64 Umbuzeiro GA, Freeman HS, Warren SH, de Oliveira DP, Terao Y, Watanabe T, Claxton LD (2005) The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere 60:55–64
91.
go back to reference Vettorazzi G (1979) International regulatory aspects for pesticide chemicals. CRC Press Inc.: Boca Raton, Florida Vettorazzi G (1979) International regulatory aspects for pesticide chemicals. CRC Press Inc.: Boca Raton, Florida
92.
go back to reference Wang Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers 83:1446–1456 Wang Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers 83:1446–1456
93.
go back to reference Weber Jr WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Engrs 89:31–59 Weber Jr WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Engrs 89:31–59
94.
go back to reference Wu D, Zhang L, Wang L, Zhu B, Fan L (2011) Adsorption of lanthanum by magnetic alginate-chitosan gel beads. J Chem Technol Biotechnol 86:345–352 Wu D, Zhang L, Wang L, Zhu B, Fan L (2011) Adsorption of lanthanum by magnetic alginate-chitosan gel beads. J Chem Technol Biotechnol 86:345–352
95.
go back to reference Wu F-C, Tseng R-L, Juang R-S (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 150:366–373 Wu F-C, Tseng R-L, Juang R-S (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 150:366–373
96.
go back to reference Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: A review. Sci Total Environ 424:1–10 Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: A review. Sci Total Environ 424:1–10
97.
go back to reference Yan L, Chang PR, Zheng P, Ma X (2012) Characterization of magnetic guar gum-grafted carbon nanotubes and the adsorption of the dyes. Carbohydr Polym 87:1919–1924 Yan L, Chang PR, Zheng P, Ma X (2012) Characterization of magnetic guar gum-grafted carbon nanotubes and the adsorption of the dyes. Carbohydr Polym 87:1919–1924
98.
go back to reference Yang S, Zong P, Ren X, Wang Q, Wang X (2012) Rapid and highly efficient preconcentration of Eu(III) by core–shell structured Fe3O4@humic acid magnetic nanoparticles. ACS Appl Mater Interfaces 4:6891–6900 Yang S, Zong P, Ren X, Wang Q, Wang X (2012) Rapid and highly efficient preconcentration of Eu(III) by core–shell structured Fe3O4@humic acid magnetic nanoparticles. ACS Appl Mater Interfaces 4:6891–6900
99.
go back to reference Zhang S, Zhang Y, Bi G, Liu J, Wang Z, Xu Q, Xu H, Li X (2014) Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal. J Hazard Mater 270:27–34 Zhang S, Zhang Y, Bi G, Liu J, Wang Z, Xu Q, Xu H, Li X (2014) Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal. J Hazard Mater 270:27–34
100.
go back to reference Zhou L, Jin J, Liu Z, Liang X, Shang C (2011) Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J Hazard Mater 185:1045–1052 Zhou L, Jin J, Liu Z, Liang X, Shang C (2011) Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J Hazard Mater 185:1045–1052
101.
go back to reference Zhou L, Shang C, Liu Z, Huang G, Adesina AA (2012) Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interface Sci 366:165–172 Zhou L, Shang C, Liu Z, Huang G, Adesina AA (2012) Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interface Sci 366:165–172
102.
go back to reference Zhou L, Wang Y, Liu Z, Huang Q (2009) Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater 161:995–1002 Zhou L, Wang Y, Liu Z, Huang Q (2009) Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater 161:995–1002
103.
go back to reference Zhou Y, Fu S, Zhang L, Zhang H, Levit MV (2014b) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82 Zhou Y, Fu S, Zhang L, Zhang H, Levit MV (2014b) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82
104.
go back to reference Zhou Y-T, Nie H-L, Branford-White C, He Z-Y, Zhu L-M (2009) Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J Colloid Interface Sci 330:29–37 Zhou Y-T, Nie H-L, Branford-White C, He Z-Y, Zhu L-M (2009) Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J Colloid Interface Sci 330:29–37
105.
go back to reference Zhou Z, Lin S, Yue T, Lee T-C (2014a) Adsorption of food dyes from aqueous solution by glutaraldehyde cross-linked magnetic chitosan nanoparticles. J Food Eng 126:133–141 Zhou Z, Lin S, Yue T, Lee T-C (2014a) Adsorption of food dyes from aqueous solution by glutaraldehyde cross-linked magnetic chitosan nanoparticles. J Food Eng 126:133–141
106.
go back to reference Zhu H-Y, Jiang R, Xiao L (2010) Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Appl Clay Sci 48:522–526 Zhu H-Y, Jiang R, Xiao L (2010) Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Appl Clay Sci 48:522–526
107.
go back to reference Zhu H-Y, Jiang R, Xiao L, Li W (2010) A novel magnetically separable γ-Fe2O3/crosslinked chitosan adsorbent: Preparation, characterization and adsorption application for removal of hazardous azo dye. J Hazard Mater 179:251–257 Zhu H-Y, Jiang R, Xiao L, Li W (2010) A novel magnetically separable γ-Fe2O3/crosslinked chitosan adsorbent: Preparation, characterization and adsorption application for removal of hazardous azo dye. J Hazard Mater 179:251–257
108.
go back to reference Zhu H-Y, Jiang R, Xiao L, Zeng GM (2010) Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour Technol 101:5063–5069 Zhu H-Y, Jiang R, Xiao L, Zeng GM (2010) Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour Technol 101:5063–5069
109.
go back to reference Zhu HY, Jiang R, Fu Y-Q, Jiang J-H, Xiao L, Zeng G-M (2011) Preparation, characterization and dye adsorption properties of γ-Fe2O3/SiO2/chitosan composite. Appl Surf Sci 258:1337–1344 Zhu HY, Jiang R, Fu Y-Q, Jiang J-H, Xiao L, Zeng G-M (2011) Preparation, characterization and dye adsorption properties of γ-Fe2O3/SiO2/chitosan composite. Appl Surf Sci 258:1337–1344
Metadata
Title
Bionanocomposites for Magnetic Removal of Water Pollutants
Authors
F. L. Sousa
A. L. Daniel-da-Silva
N. J. O. Silva
T. Trindade
Copyright Year
2015
Publisher
Springer India
DOI
https://doi.org/10.1007/978-81-322-2473-0_9

Premium Partners