Skip to main content
Top

2018 | OriginalPaper | Chapter

Biorefinery-Based Lactic Acid Fermentation: Microbial Production of Pure Monomer Product

Authors : Jiaming Tan, Mohamed Ali Abdel-Rahman, Kenji Sonomoto

Published in: Synthesis, Structure and Properties of Poly(lactic acid)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Demand for lactic acid has increased considerably because of its wide application, especially as monomer feedstock for the production of biodegradable and biocompatible poly(lactic acid) materials. Therefore, improvement in fermentative production of optically pure lactic acid has attracted considerable attention. However, the high costs of the process and of raw materials are two serious obstacles to effective lactic acid production. Investigation of biorefinery-based lactic acid fermentation using residual biomass from agriculture and agro-industries has intensified because of environmental and economic factors. This chapter reviews recent advances, prospects, and limitations of lactic acid production from cellulosic biomass by lactic acid bacteria. The main obstacles to production are discussed and appropriate strategies are suggested for improving biomass hydrolysis and the efficiency of lactic acid fermentation. This chapter also introduces a cost-effective and environmentally friendly fermentation that utilizes “designed biomass.” Separation and purification techniques for obtaining purified lactic acid monomers are also summarized.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7(2):222–229CrossRef Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7(2):222–229CrossRef
2.
go back to reference Subramanian MR, Talluri S, Christopher LP (2015) Production of lactic acid using a new homofermentative Enterococcus faecalis isolate. Microb Biotechnol 8(2):221–229CrossRef Subramanian MR, Talluri S, Christopher LP (2015) Production of lactic acid using a new homofermentative Enterococcus faecalis isolate. Microb Biotechnol 8(2):221–229CrossRef
3.
go back to reference Tashiro Y, Kaneko W, Sun YQ, Shibata K, Inokuma K, Zendo T, Sonomoto K (2011) Continuous d-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Appl Microbiol Biotechnol 89(6):1741–1750CrossRef Tashiro Y, Kaneko W, Sun YQ, Shibata K, Inokuma K, Zendo T, Sonomoto K (2011) Continuous d-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Appl Microbiol Biotechnol 89(6):1741–1750CrossRef
4.
go back to reference Ohara H, Okuyama H, Sawa S, Fujii Y, Hiyama K (2001) Development of industrial production of high molecular weight poly-l-lactate from renewable resources. Nippon Kagaku Kaishi 2001(6):323–331CrossRef Ohara H, Okuyama H, Sawa S, Fujii Y, Hiyama K (2001) Development of industrial production of high molecular weight poly-l-lactate from renewable resources. Nippon Kagaku Kaishi 2001(6):323–331CrossRef
5.
go back to reference Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31(6):877–902CrossRef Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31(6):877–902CrossRef
6.
go back to reference Nagasawa N, Kaneda A, Kanazawa S, Yagi T, Mitomo H, Yoshii F, Tamada M (2005) Application of poly (lactic acid) modified by radiation crosslinking. Nucl Instrum Methods Phys Res B 236(1-4):611–616CrossRef Nagasawa N, Kaneda A, Kanazawa S, Yagi T, Mitomo H, Yoshii F, Tamada M (2005) Application of poly (lactic acid) modified by radiation crosslinking. Nucl Instrum Methods Phys Res B 236(1-4):611–616CrossRef
7.
go back to reference Goldberg JS (2014) PDLA a potential new potent topical analgesic: a case report. Local Reg Anesth 7:59–61CrossRef Goldberg JS (2014) PDLA a potential new potent topical analgesic: a case report. Local Reg Anesth 7:59–61CrossRef
8.
go back to reference Tsuji H, Ikada Y (1992) Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers. Macromolecules 25(21):5719–5723CrossRef Tsuji H, Ikada Y (1992) Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers. Macromolecules 25(21):5719–5723CrossRef
9.
go back to reference Okihara T, Tsuji M, Kawaguchi A, Katayama K, Tshuji H, Hyon SH, Ikada Y (1991) Crystal structure of stereocomplex of poly(l-lactide) and poly(d-lactide). J Macromol Sci B Phys B30(1–2):119–140CrossRef Okihara T, Tsuji M, Kawaguchi A, Katayama K, Tshuji H, Hyon SH, Ikada Y (1991) Crystal structure of stereocomplex of poly(l-lactide) and poly(d-lactide). J Macromol Sci B Phys B30(1–2):119–140CrossRef
10.
go back to reference Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44(2):163–172 Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44(2):163–172
11.
go back to reference Wang Y, Tashiro Y, Sonomoto K (2015) Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng 199(1):10–18CrossRef Wang Y, Tashiro Y, Sonomoto K (2015) Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng 199(1):10–18CrossRef
12.
go back to reference Kim D, Lee M, Hwang Y, Im W, Yun Y, Park C, Kim M (2016) Microbial granulation for lactic acid production. Biotechnol Bioeng 113(1):101–111CrossRef Kim D, Lee M, Hwang Y, Im W, Yun Y, Park C, Kim M (2016) Microbial granulation for lactic acid production. Biotechnol Bioeng 113(1):101–111CrossRef
13.
go back to reference Gao C, Ma C, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29(6):930–939CrossRef Gao C, Ma C, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29(6):930–939CrossRef
14.
go back to reference Alvarado-Morales M, Gunnarsson IB, Fotidis IA, Vasilakou E, Lyberatos G, Angelidaki I (2015) Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Res 9:126–132CrossRef Alvarado-Morales M, Gunnarsson IB, Fotidis IA, Vasilakou E, Lyberatos G, Angelidaki I (2015) Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Res 9:126–132CrossRef
15.
go back to reference Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522CrossRef Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522CrossRef
16.
17.
go back to reference Gandolfi S, Pistone L, Ottolina G, Xu P, Riva S (2015) Hemp hurds biorefining: a path to green l-(+)-lactic acid production. Bioresour Technol 191:59–65CrossRef Gandolfi S, Pistone L, Ottolina G, Xu P, Riva S (2015) Hemp hurds biorefining: a path to green l-(+)-lactic acid production. Bioresour Technol 191:59–65CrossRef
18.
go back to reference Sambusiti C, Bellucci M, Zabaniotou A, Beneduce L, Monlau F (2015) Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renew Sust Energ Rev 44:20–36CrossRef Sambusiti C, Bellucci M, Zabaniotou A, Beneduce L, Monlau F (2015) Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renew Sust Energ Rev 44:20–36CrossRef
19.
go back to reference Ohara H, Yahata M (1996) l-lactic acid production by Bacillus sp. in anaerobic and aerobic culture. J Ferment Bioeng 81(3):272–274CrossRef Ohara H, Yahata M (1996) l-lactic acid production by Bacillus sp. in anaerobic and aerobic culture. J Ferment Bioeng 81(3):272–274CrossRef
20.
go back to reference Saito K, Hasa Y, Abe H (2012) Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. J Biosci Bioeng 114(2):166–169CrossRef Saito K, Hasa Y, Abe H (2012) Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. J Biosci Bioeng 114(2):166–169CrossRef
21.
go back to reference Wu X, Jiang S, Liu M, Pan L, Zheng Z, Luo S (2011) Production of l-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. J Ind Microbiol Biotechnol 38(4):565–571CrossRef Wu X, Jiang S, Liu M, Pan L, Zheng Z, Luo S (2011) Production of l-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. J Ind Microbiol Biotechnol 38(4):565–571CrossRef
22.
go back to reference Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35(3):251–263CrossRef Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35(3):251–263CrossRef
23.
go back to reference Khuat HBT, Kaboré AK, Olmos E, Fick M, Boudrant J, Goergen J, Delaunay S, Guedon E (2014) Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process. Biosci Biotechnol Biochem 78(2):343–349CrossRef Khuat HBT, Kaboré AK, Olmos E, Fick M, Boudrant J, Goergen J, Delaunay S, Guedon E (2014) Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process. Biosci Biotechnol Biochem 78(2):343–349CrossRef
24.
go back to reference Kou X, Yang R, Zhao J, Lu J, Liu Y (2013) Enzymatic saccharification and l-lactic acid fermentation of corn stover pretreated with liquid hot water by Rhizopus oryzae. BioResources 8(4):4899–4911 Kou X, Yang R, Zhao J, Lu J, Liu Y (2013) Enzymatic saccharification and l-lactic acid fermentation of corn stover pretreated with liquid hot water by Rhizopus oryzae. BioResources 8(4):4899–4911
25.
go back to reference Yamane T, Tanaka R (2013) Highly accumulative production of l (+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. J Biosci Bioeng 115(1):90–95CrossRef Yamane T, Tanaka R (2013) Highly accumulative production of l (+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. J Biosci Bioeng 115(1):90–95CrossRef
26.
go back to reference Zhang L, Li X, Yong Q, Yang S, Ouyang J, Yu S (2015) Simultaneous saccharification and fermentation of xylo-oligosaccharides manufacturing waste residue for l-lactic acid production by Rhizopus oryzae. Biochem Eng J 94:92–99CrossRef Zhang L, Li X, Yong Q, Yang S, Ouyang J, Yu S (2015) Simultaneous saccharification and fermentation of xylo-oligosaccharides manufacturing waste residue for l-lactic acid production by Rhizopus oryzae. Biochem Eng J 94:92–99CrossRef
27.
go back to reference Kumar R, Shivakumar S (2014) Production of l-lactic acid from starch and food waste by amylolytic Rhizopus oryzae MTCC 8784. Int J Chem Technol Res 6(1):527–537 Kumar R, Shivakumar S (2014) Production of l-lactic acid from starch and food waste by amylolytic Rhizopus oryzae MTCC 8784. Int J Chem Technol Res 6(1):527–537
28.
go back to reference Taskin M, Esim N, Ortucu S (2012) Efficient production of l-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61. Food Bioprod Process 90(4):773–779CrossRef Taskin M, Esim N, Ortucu S (2012) Efficient production of l-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61. Food Bioprod Process 90(4):773–779CrossRef
29.
go back to reference Wang C, Lin C, Sheu D, Liu C (2014) l-lactic acid fermentation by culture of Rhizopus oryzae using ammonia as neutralizing agent. J Taiwan Inst Chem Eng 45(1):1–5CrossRef Wang C, Lin C, Sheu D, Liu C (2014) l-lactic acid fermentation by culture of Rhizopus oryzae using ammonia as neutralizing agent. J Taiwan Inst Chem Eng 45(1):1–5CrossRef
30.
go back to reference Ma K, Maeda T, You H, Shirai Y (2015) Open fermentative production of l-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Bioresour Technol 151:28–35CrossRef Ma K, Maeda T, You H, Shirai Y (2015) Open fermentative production of l-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Bioresour Technol 151:28–35CrossRef
31.
go back to reference Poudel P, Tashiro Y, Miyamoto H, Miyamoto H, Okugawa Y, Sakai K (2015) Direct starch fermentation to l-lactic acid by a newly isolated thermophilic strain, Bacillus sp. MC-07. J Ind Microbiol Biotechnol 42(1):143–149CrossRef Poudel P, Tashiro Y, Miyamoto H, Miyamoto H, Okugawa Y, Sakai K (2015) Direct starch fermentation to l-lactic acid by a newly isolated thermophilic strain, Bacillus sp. MC-07. J Ind Microbiol Biotechnol 42(1):143–149CrossRef
32.
go back to reference Hu J, Zhang Z, Lin Y, Zhao S, Mei Y, Liang Y, Peng N (2015) High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Bioresour Technol 182:251–257CrossRef Hu J, Zhang Z, Lin Y, Zhao S, Mei Y, Liang Y, Peng N (2015) High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Bioresour Technol 182:251–257CrossRef
33.
go back to reference Zhang Y, Chen X, Luo J, Qi B, Wan Y (2014) An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. Bioresour Technol 158:396–399CrossRef Zhang Y, Chen X, Luo J, Qi B, Wan Y (2014) An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. Bioresour Technol 158:396–399CrossRef
34.
go back to reference Ye L, Hudari MSB, Li Z, Wu JC (2014) Simultaneous detoxification, saccharification and co-fermentation of oil palm empty fruit bunch hydrolysate for l-lactic acid production by Bacillus coagulans JI12. Biochem Eng J 83:16–21CrossRef Ye L, Hudari MSB, Li Z, Wu JC (2014) Simultaneous detoxification, saccharification and co-fermentation of oil palm empty fruit bunch hydrolysate for l-lactic acid production by Bacillus coagulans JI12. Biochem Eng J 83:16–21CrossRef
35.
go back to reference Abdel-Rahman MA, Tashiro Y, Zendo T, Sakai K, Sonomoto K (2015) Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose. FEMS Microbiol Lett 362(2):1–7CrossRef Abdel-Rahman MA, Tashiro Y, Zendo T, Sakai K, Sonomoto K (2015) Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose. FEMS Microbiol Lett 362(2):1–7CrossRef
36.
go back to reference Sun W, Liu J, Xu H, Li W, Zhang J (2015) l-Lactic acid fermentation by Enterococcus faecium: a new isolate from bovine rumen. Biotechnol Lett 37(7):1379–1383CrossRef Sun W, Liu J, Xu H, Li W, Zhang J (2015) l-Lactic acid fermentation by Enterococcus faecium: a new isolate from bovine rumen. Biotechnol Lett 37(7):1379–1383CrossRef
37.
go back to reference Watanabe M, Makino M, Kaku N, Koyama M, Nakamura K, Sasano K (2013) Fermentative l-(+)-lactic acid production from non-sterilized rice washing drainage containing rice bran by a newly isolated lactic acid bacteria without any additions of nutrients. J Biosci Bioeng 115(4):449–452CrossRef Watanabe M, Makino M, Kaku N, Koyama M, Nakamura K, Sasano K (2013) Fermentative l-(+)-lactic acid production from non-sterilized rice washing drainage containing rice bran by a newly isolated lactic acid bacteria without any additions of nutrients. J Biosci Bioeng 115(4):449–452CrossRef
38.
go back to reference Wang Y, Abdel-Rahman MA, Tashiro Y, Xiao Y, Zendo T, Sakai K, Sonomoto K (2014) l -(+)-lactic acid production by co-fermentation of cellobiose and xylose without carbon catabolite repression using Enterococcus mundtii QU 25. RSC Adv 4(42):22013–22021CrossRef Wang Y, Abdel-Rahman MA, Tashiro Y, Xiao Y, Zendo T, Sakai K, Sonomoto K (2014) l -(+)-lactic acid production by co-fermentation of cellobiose and xylose without carbon catabolite repression using Enterococcus mundtii QU 25. RSC Adv 4(42):22013–22021CrossRef
39.
go back to reference Zhang Y, Vadlani PV (2013) d-lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Bioprocess Biosyst Eng 36(12):1897–1904CrossRef Zhang Y, Vadlani PV (2013) d-lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Bioprocess Biosyst Eng 36(12):1897–1904CrossRef
40.
go back to reference Nguyen CM, Choi GJ, Choi YH, Jang KS, Kim JC (2013) d- and l-lactic acid production from fresh sweet potato through simultaneous saccharification and fermentation. Biochem Eng J 81:40–46CrossRef Nguyen CM, Choi GJ, Choi YH, Jang KS, Kim JC (2013) d- and l-lactic acid production from fresh sweet potato through simultaneous saccharification and fermentation. Biochem Eng J 81:40–46CrossRef
41.
go back to reference Yang P, Tian Y, Wang Q, Cong W (2015) Effect of different types of calcium carbonate on the lactic acid fermentation performance of Lactobacillus lactis. Biochem Eng J 98:38–46CrossRef Yang P, Tian Y, Wang Q, Cong W (2015) Effect of different types of calcium carbonate on the lactic acid fermentation performance of Lactobacillus lactis. Biochem Eng J 98:38–46CrossRef
42.
go back to reference Ilmén M, Koivuranta K, Ruohonen L, Suominen P, Penttilä M (2007) Efficient production of l-lactic acid from xylose by Pichia stipits. Appl Environ Microbiol 73(1):117–123CrossRef Ilmén M, Koivuranta K, Ruohonen L, Suominen P, Penttilä M (2007) Efficient production of l-lactic acid from xylose by Pichia stipits. Appl Environ Microbiol 73(1):117–123CrossRef
43.
go back to reference Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H (2005) Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene. Appl Environ Microbiol 71(4):1964–1970CrossRef Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H (2005) Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene. Appl Environ Microbiol 71(4):1964–1970CrossRef
44.
go back to reference Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H (2005) Genetically engineered wine yeast produces a high concentration of l-lactic acid of extremely high optical purity. Appl Environ Microbiol 71(5):2789–2792CrossRef Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H (2005) Genetically engineered wine yeast produces a high concentration of l-lactic acid of extremely high optical purity. Appl Environ Microbiol 71(5):2789–2792CrossRef
45.
go back to reference Ducat DC, Way JC, Silve PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103CrossRef Ducat DC, Way JC, Silve PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103CrossRef
46.
go back to reference Hirayama S, Ueda R (2004) Production of optically pure d-lactic acid by Nannochlorum sp. 26A4. Appl Biochem Biotechnol 199(1):71–77CrossRef Hirayama S, Ueda R (2004) Production of optically pure d-lactic acid by Nannochlorum sp. 26A4. Appl Biochem Biotechnol 199(1):71–77CrossRef
47.
go back to reference Angermayr SA, Paszota M, Hellingwerf KJ (2012) Engineering a cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol 78(19):7098–7106CrossRef Angermayr SA, Paszota M, Hellingwerf KJ (2012) Engineering a cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol 78(19):7098–7106CrossRef
48.
go back to reference Varman AM, Yu Y, You L, Tang YJ (2013) Photoautotrophic production of d-lactic acid in an engineered cyanobacterium. Microb Cell Fact 12:117CrossRef Varman AM, Yu Y, You L, Tang YJ (2013) Photoautotrophic production of d-lactic acid in an engineered cyanobacterium. Microb Cell Fact 12:117CrossRef
49.
go back to reference Akao S, Nagare H, Maeda M, Kondo K, Fujiwara T (2015) Combined use of sugars and nutrients derived from young maize plants for thermophilic l-lactic acid fermentation. Ind Crop Prod 69:440–446CrossRef Akao S, Nagare H, Maeda M, Kondo K, Fujiwara T (2015) Combined use of sugars and nutrients derived from young maize plants for thermophilic l-lactic acid fermentation. Ind Crop Prod 69:440–446CrossRef
50.
go back to reference Qin J, Wang X, Zheng Z, Ma C, Tang H, Xu P (2010) Production of l-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent. Bioresour Technol 101(19):7570–7576CrossRef Qin J, Wang X, Zheng Z, Ma C, Tang H, Xu P (2010) Production of l-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent. Bioresour Technol 101(19):7570–7576CrossRef
51.
go back to reference Wang Y, Cai D, He M, Wang Z, Qin P, Tan T (2015) Open fermentative production of l-lactic acid using white rice bran by simultaneous saccharification and fermentation. Bioresour Technol 198:664–672CrossRef Wang Y, Cai D, He M, Wang Z, Qin P, Tan T (2015) Open fermentative production of l-lactic acid using white rice bran by simultaneous saccharification and fermentation. Bioresour Technol 198:664–672CrossRef
52.
go back to reference Tsuge Y, Hasunuma T, Kondo A (2015) Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources. J Ind Microbiol Biotechnol 42(3):375–389CrossRef Tsuge Y, Hasunuma T, Kondo A (2015) Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources. J Ind Microbiol Biotechnol 42(3):375–389CrossRef
53.
go back to reference Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78(3):449–454CrossRef Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78(3):449–454CrossRef
54.
go back to reference Tsuge Y, Yamamoto S, Kato N, Suda M, Vertès AA, Yukawa H, Inui M (2015) Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of d-lactate in Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 99(11):4679–4689CrossRef Tsuge Y, Yamamoto S, Kato N, Suda M, Vertès AA, Yukawa H, Inui M (2015) Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of d-lactate in Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 99(11):4679–4689CrossRef
55.
go back to reference Wood BJB, Holzapfel WH (1995) The genera of lactic acid bacteria. Blackie Academic and Professional, GlasgowCrossRef Wood BJB, Holzapfel WH (1995) The genera of lactic acid bacteria. Blackie Academic and Professional, GlasgowCrossRef
56.
go back to reference Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50(1-2):131–149CrossRef Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50(1-2):131–149CrossRef
57.
go back to reference Lee CW (2007) Production of d-lactic acid by bacterial fermentation of rice. Fiber Polym 8(6):571–578CrossRef Lee CW (2007) Production of d-lactic acid by bacterial fermentation of rice. Fiber Polym 8(6):571–578CrossRef
58.
go back to reference Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49(3):209–224CrossRef Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49(3):209–224CrossRef
59.
go back to reference Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21(6):269–274CrossRef Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21(6):269–274CrossRef
60.
go back to reference Buyondo JP, Liu S (2011) Lactic acid production by Lactobacillus pentosus from wood extract. J Sci Technol Forest Prod Process 1(3):38–47 Buyondo JP, Liu S (2011) Lactic acid production by Lactobacillus pentosus from wood extract. J Sci Technol Forest Prod Process 1(3):38–47
61.
go back to reference Abdel-Rahman MA, Tashiro Y, Zendo T, Sonomoto K (2010) Isolation and characterization of novel lactic acid bacterium for efficient production of l (+)-lactic acid from xylose. J Biotechnol 150(1):S347 Abdel-Rahman MA, Tashiro Y, Zendo T, Sonomoto K (2010) Isolation and characterization of novel lactic acid bacterium for efficient production of l (+)-lactic acid from xylose. J Biotechnol 150(1):S347
62.
go back to reference Abdel-Rahman MA, Tashiro Y, Zendo Hanada K, Shibata K, Sonomoto K (2011) Efficient homofermentative l (+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl Environ Microbiol 77(5):1892–1895CrossRef Abdel-Rahman MA, Tashiro Y, Zendo Hanada K, Shibata K, Sonomoto K (2011) Efficient homofermentative l (+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl Environ Microbiol 77(5):1892–1895CrossRef
63.
go back to reference Tanaka K, Komiyama A, Sonomoto K, Ishizaki A, Hall SJ, Stanbury PF (2002) Two different pathways for d-xylose metabolism and the effect of xylose concentration on the yield coefficient of l-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Appl Microbiol Biotechnol 60(1):160–167 Tanaka K, Komiyama A, Sonomoto K, Ishizaki A, Hall SJ, Stanbury PF (2002) Two different pathways for d-xylose metabolism and the effect of xylose concentration on the yield coefficient of l-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Appl Microbiol Biotechnol 60(1):160–167
64.
go back to reference John RP, Sukumaran RK, Nampoothiri KM, Pandey A (2007) Statistical optimization of simultaneous saccharification and l (+)-lactic acid fermentation from cassava bagasse using mixed culture of Lactobacilli by response surface methodology. Biochem Eng J 36(3):262–267CrossRef John RP, Sukumaran RK, Nampoothiri KM, Pandey A (2007) Statistical optimization of simultaneous saccharification and l (+)-lactic acid fermentation from cassava bagasse using mixed culture of Lactobacilli by response surface methodology. Biochem Eng J 36(3):262–267CrossRef
65.
go back to reference Pleissner D, Venus J (2014) Agricultural residues as feedstocks for lactic acid fermentation. In: Green Technologies for the Environment. ACS Symposium Series, vol 1186. Am Chem Soc, pp 247–263 Pleissner D, Venus J (2014) Agricultural residues as feedstocks for lactic acid fermentation. In: Green Technologies for the Environment. ACS Symposium Series, vol 1186. Am Chem Soc, pp 247–263
66.
go back to reference Wakai S, Yoshie T, Asai-Nakashima N, Yamada R, Ogino C, Tsutsumi H, Hata Y, Kondo A (2014) l-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture. Bioresour Technol 173:376–383CrossRef Wakai S, Yoshie T, Asai-Nakashima N, Yamada R, Ogino C, Tsutsumi H, Hata Y, Kondo A (2014) l-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture. Bioresour Technol 173:376–383CrossRef
67.
go back to reference Smerilli M, Neureiter M, Wurz S, Haas C, Frühauf S, Fuchs W (2015) Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions. J Chem Technol Biotechnol 90(4):648–657CrossRef Smerilli M, Neureiter M, Wurz S, Haas C, Frühauf S, Fuchs W (2015) Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions. J Chem Technol Biotechnol 90(4):648–657CrossRef
68.
go back to reference Cingadi S, Srikanth K, EVR A, Sivaprakasam S (2015) Statistical optimization of cassava fibrous waste hydrolysis by response surface methodology and use of hydrolysate based media for the production of optically pure d-lactic acid. Biochem Eng J 102:82–90CrossRef Cingadi S, Srikanth K, EVR A, Sivaprakasam S (2015) Statistical optimization of cassava fibrous waste hydrolysis by response surface methodology and use of hydrolysate based media for the production of optically pure d-lactic acid. Biochem Eng J 102:82–90CrossRef
69.
go back to reference Xu K, Xu P (2014) Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresour Technol 153:23–29CrossRef Xu K, Xu P (2014) Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresour Technol 153:23–29CrossRef
70.
go back to reference Mladenović DD, Djukić-Vuković AP, Kocić-Tanackov SD, Pejin JD, Mojović LV (2015) Lactic acid production on a combined distillery stillage and sugar beet molasses substrate. J Chem Technol Biotechnol. doi:10.1002/jctb.4838 Mladenović DD, Djukić-Vuković AP, Kocić-Tanackov SD, Pejin JD, Mojović LV (2015) Lactic acid production on a combined distillery stillage and sugar beet molasses substrate. J Chem Technol Biotechnol. doi:10.​1002/​jctb.​4838
71.
go back to reference Hama S, Mizuno S, Kihara M, Tanaka T, Ogino C, Noda H, Kondo A (2015) Production of d-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharification and fermentation using metabolically engineered Lactobacillus plantarum. Bioresour Technol 187:167–172CrossRef Hama S, Mizuno S, Kihara M, Tanaka T, Ogino C, Noda H, Kondo A (2015) Production of d-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharification and fermentation using metabolically engineered Lactobacillus plantarum. Bioresour Technol 187:167–172CrossRef
72.
go back to reference Zhang Y, Vadlani PV, Kumar A, Hardwidge PR, Govind R, Tanaka T, Kondo A (2016) Enhanced d-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 100(1):279–288CrossRef Zhang Y, Vadlani PV, Kumar A, Hardwidge PR, Govind R, Tanaka T, Kondo A (2016) Enhanced d-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 100(1):279–288CrossRef
73.
go back to reference Ahring BK, Traverso JJ, Murali N, Srinivas K (2016) Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochem Eng J 109:162–169CrossRef Ahring BK, Traverso JJ, Murali N, Srinivas K (2016) Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochem Eng J 109:162–169CrossRef
74.
go back to reference Kuo Y, Yuan S, Wang C, Huang Y, Guo G, Hwang W (2015) Production of optically pure l-lactic acid from lignocellulosic hydrolysate by using a newly isolated and d-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Bioresour Technol 198:651–657CrossRef Kuo Y, Yuan S, Wang C, Huang Y, Guo G, Hwang W (2015) Production of optically pure l-lactic acid from lignocellulosic hydrolysate by using a newly isolated and d-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Bioresour Technol 198:651–657CrossRef
75.
go back to reference Petrova P, Velikova P, Popova L, Petrov K (2015) Direct conversion of chicory flour into l (+)-lactic acid by the highly effective inulinase producer Lactobacillus paracasei DSM 23505. Bioresour Technol 186:329–333CrossRef Petrova P, Velikova P, Popova L, Petrov K (2015) Direct conversion of chicory flour into l (+)-lactic acid by the highly effective inulinase producer Lactobacillus paracasei DSM 23505. Bioresour Technol 186:329–333CrossRef
76.
go back to reference Pejin J, Radosavljević M, Mojović L, Kocić-Tanackov S, Djukić-Vuković A (2015) The influence of calcium-carbonate and yeast extract addition on lactic acid fermentation of brewer’s spent grain hydrolysate. Food Res Int 73:31–37CrossRef Pejin J, Radosavljević M, Mojović L, Kocić-Tanackov S, Djukić-Vuković A (2015) The influence of calcium-carbonate and yeast extract addition on lactic acid fermentation of brewer’s spent grain hydrolysate. Food Res Int 73:31–37CrossRef
77.
go back to reference Kuda T, Eda M, Kataoka M, Nemoto M, Kawahara M, Oshio S, Takahashi H, Kimura B (2016) Anti-glycation properties of the aqueous extract solutions of dried algae products and effect of lactic acid fermentation on the properties. Food Chem 192:1109–1115CrossRef Kuda T, Eda M, Kataoka M, Nemoto M, Kawahara M, Oshio S, Takahashi H, Kimura B (2016) Anti-glycation properties of the aqueous extract solutions of dried algae products and effect of lactic acid fermentation on the properties. Food Chem 192:1109–1115CrossRef
78.
go back to reference Mazumdar S, Bang J, Oh MK (2014) l-lactate production from seaweed hydrolysate of Laminaria japonica using metabolically engineered Escherichia coli. Appl Biochem Biotechnol 172(4):1938–1952CrossRef Mazumdar S, Bang J, Oh MK (2014) l-lactate production from seaweed hydrolysate of Laminaria japonica using metabolically engineered Escherichia coli. Appl Biochem Biotechnol 172(4):1938–1952CrossRef
79.
go back to reference Shibata K, Flores DM, Kobayashi G, Sonomoto K (2007) Direct l-lactic acid fermentation with sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium. Enzyme Microbiol Technol 41(1–2):149–155CrossRef Shibata K, Flores DM, Kobayashi G, Sonomoto K (2007) Direct l-lactic acid fermentation with sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium. Enzyme Microbiol Technol 41(1–2):149–155CrossRef
80.
go back to reference Narita J, Nakahara S, Fukuda H, Kondo A (2004) Efficient production of l-(+)-lactic acid from raw starch by Streptococcus bovis 148. J Biosci Bioeng 97(6):423–425CrossRef Narita J, Nakahara S, Fukuda H, Kondo A (2004) Efficient production of l-(+)-lactic acid from raw starch by Streptococcus bovis 148. J Biosci Bioeng 97(6):423–425CrossRef
81.
go back to reference Altaf M, Naveena BJ, Venkateshwar M, Kumar EV, Reddy G (2006) Single step fermentation of starch to l (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract –optimization by RSM. Process Biochem 41(2):465–472CrossRef Altaf M, Naveena BJ, Venkateshwar M, Kumar EV, Reddy G (2006) Single step fermentation of starch to l (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract –optimization by RSM. Process Biochem 41(2):465–472CrossRef
82.
go back to reference Wee YJ, Kim JN, Yun JS, Ryu HW (2004) Utilization of sugar molasses for economical l (+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme Microb Technol 35(6-7):568–573CrossRef Wee YJ, Kim JN, Yun JS, Ryu HW (2004) Utilization of sugar molasses for economical l (+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme Microb Technol 35(6-7):568–573CrossRef
83.
go back to reference Kotzamanidis C, Roukas T, Skaracis G (2002) Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World J Microbiol Biotechnol 18(5):441–448CrossRef Kotzamanidis C, Roukas T, Skaracis G (2002) Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World J Microbiol Biotechnol 18(5):441–448CrossRef
84.
go back to reference Aksu Z, Kutsal T (1986) Lactic acid production from molasses utilizing Lactobacillus Delbrueckii and invertase together. Biotechnol Lett 8(3):157–160CrossRef Aksu Z, Kutsal T (1986) Lactic acid production from molasses utilizing Lactobacillus Delbrueckii and invertase together. Biotechnol Lett 8(3):157–160CrossRef
85.
go back to reference Garde A, Jonsson G, Schmidt AS, Ahring BK (2002) Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentoses and Lactobacillus brevis. Bioresour Technol 81(3):217–223CrossRef Garde A, Jonsson G, Schmidt AS, Ahring BK (2002) Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentoses and Lactobacillus brevis. Bioresour Technol 81(3):217–223CrossRef
86.
go back to reference Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manage 52(2):858–875CrossRef Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manage 52(2):858–875CrossRef
87.
go back to reference Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619CrossRef Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619CrossRef
88.
go back to reference Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRef
89.
go back to reference Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energy Rev 27:77–93CrossRef Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energy Rev 27:77–93CrossRef
90.
go back to reference Dyk JSV, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes–factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480CrossRef Dyk JSV, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes–factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480CrossRef
91.
go back to reference Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuel Bioprod Bior 1(2):119–134CrossRef Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuel Bioprod Bior 1(2):119–134CrossRef
92.
go back to reference Li C, Zhang GF, Mao X, Wang JY, Duan CY, Wang ZJ, Liu LB (2016) Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass. J Dairy Sci 99(6):4243–4250CrossRef Li C, Zhang GF, Mao X, Wang JY, Duan CY, Wang ZJ, Liu LB (2016) Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass. J Dairy Sci 99(6):4243–4250CrossRef
93.
go back to reference Gao MT, Shimamura T, Ishida N, Takahashi H (2012) Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel. J Biosci Bioeng 114(3):330–333CrossRef Gao MT, Shimamura T, Ishida N, Takahashi H (2012) Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel. J Biosci Bioeng 114(3):330–333CrossRef
94.
go back to reference Gupta S, Abu-Ghannam N, Scannell AGM (2011) Growth and kinetics of Lactobacillus plantarum in the fermentation of edible Irish brown seaweeds. Food Bioprod Process 89(4):346–355CrossRef Gupta S, Abu-Ghannam N, Scannell AGM (2011) Growth and kinetics of Lactobacillus plantarum in the fermentation of edible Irish brown seaweeds. Food Bioprod Process 89(4):346–355CrossRef
95.
go back to reference Nguyen CM, Kim J, Hwang HJ, Park MS, Choi GJ, Choi YH, Jang KS, Kim J (2012) Production of l-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresour Technol 110:552–559CrossRef Nguyen CM, Kim J, Hwang HJ, Park MS, Choi GJ, Choi YH, Jang KS, Kim J (2012) Production of l-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresour Technol 110:552–559CrossRef
96.
go back to reference Talukder MMR, Das P, Wu JC (2012) Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochem Eng J 68:109–113CrossRef Talukder MMR, Das P, Wu JC (2012) Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochem Eng J 68:109–113CrossRef
97.
go back to reference Shi S, Kang L, Lee YY (2015) Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 175(5):2741–2754CrossRef Shi S, Kang L, Lee YY (2015) Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 175(5):2741–2754CrossRef
98.
go back to reference Cui F, Li Y, Wan C (2011) Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour Technol 102(2):1831–1836CrossRef Cui F, Li Y, Wan C (2011) Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour Technol 102(2):1831–1836CrossRef
99.
go back to reference Guo W, Jia W, Li Y, Chen S (2010) Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. App Biochem Biotechnol 161(1–8):124–136CrossRef Guo W, Jia W, Li Y, Chen S (2010) Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. App Biochem Biotechnol 161(1–8):124–136CrossRef
100.
go back to reference Guo W, He R, Ma L, Jia W, Li D, Chen S (2014) Construction of a constitutively expressed homo-fermentative pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 98(15):6641–6650CrossRef Guo W, He R, Ma L, Jia W, Li D, Chen S (2014) Construction of a constitutively expressed homo-fermentative pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 98(15):6641–6650CrossRef
101.
go back to reference Jönsson LJ, Alriksson B, Nilvebrant N (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16CrossRef Jönsson LJ, Alriksson B, Nilvebrant N (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16CrossRef
102.
go back to reference Alriksson B, Cavka A, Jönsson LJ (2011) Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresour Technol 102(2):1254–1263CrossRef Alriksson B, Cavka A, Jönsson LJ (2011) Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresour Technol 102(2):1254–1263CrossRef
103.
go back to reference Alriksson B, Sjöde A, Nilvebrant N, Jönsson LJ (2006) Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 130(1–3):599–611CrossRef Alriksson B, Sjöde A, Nilvebrant N, Jönsson LJ (2006) Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 130(1–3):599–611CrossRef
104.
go back to reference Zhao K, Qiao Q, Chu D, Gu H, Dao TH, Zhang J, Bao J (2013) Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresour Technol 135:481–489CrossRef Zhao K, Qiao Q, Chu D, Gu H, Dao TH, Zhang J, Bao J (2013) Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresour Technol 135:481–489CrossRef
105.
go back to reference Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol 150:220–227CrossRef Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol 150:220–227CrossRef
106.
go back to reference Gavilà L, Constantí M, Medina F (2015) d-Lactic acid production from cellulose: dilute acid treatment of cellulose assisted by microwave followed by microbial fermentation. Cellulose 22(5):3089–3098CrossRef Gavilà L, Constantí M, Medina F (2015) d-Lactic acid production from cellulose: dilute acid treatment of cellulose assisted by microwave followed by microbial fermentation. Cellulose 22(5):3089–3098CrossRef
107.
go back to reference Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1(2):105–114CrossRef Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1(2):105–114CrossRef
108.
go back to reference Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18CrossRef Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18CrossRef
109.
go back to reference Kim JH, Block DE, Mills DA (2010) Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 88(5):1077–1085CrossRef Kim JH, Block DE, Mills DA (2010) Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 88(5):1077–1085CrossRef
110.
go back to reference Jojima T, Omumasaba CA, Inui M, Yukawa H (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85(3):471–480CrossRef Jojima T, Omumasaba CA, Inui M, Yukawa H (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85(3):471–480CrossRef
111.
go back to reference Wang L, Zhao B, Liu B, Yu B, Ma C, Su F, Hua D, Li Q, Ma Y, Xu P (2010) Efficient production of l-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresour Technol 101:7908–7915CrossRef Wang L, Zhao B, Liu B, Yu B, Ma C, Su F, Hua D, Li Q, Ma Y, Xu P (2010) Efficient production of l-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresour Technol 101:7908–7915CrossRef
112.
go back to reference Yun JS, Ryu HW (2001) Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochem 37(3):235–240CrossRef Yun JS, Ryu HW (2001) Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochem 37(3):235–240CrossRef
113.
go back to reference Monedero V, Gosalbes MJ, Pérez-Martínez G (1997) Catabolite repression in Lactobacillus casei ATCC 393 is mediated by ccpA. J Bacteriol 179(21):6657–6664CrossRef Monedero V, Gosalbes MJ, Pérez-Martínez G (1997) Catabolite repression in Lactobacillus casei ATCC 393 is mediated by ccpA. J Bacteriol 179(21):6657–6664CrossRef
114.
go back to reference Veyrat A, Monedero V, Perez-Martinez G (1994) Glucose transport by the phosphoenolpyruvate: mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology 140:1141–1149CrossRef Veyrat A, Monedero V, Perez-Martinez G (1994) Glucose transport by the phosphoenolpyruvate: mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology 140:1141–1149CrossRef
115.
go back to reference Mahr K, Hillen W, Titgemeyer F (2000) Carbon catabolite repression in Lactobacillus pentosus: analysis of the ccpA region. Appl Environ Microbiol 66(1):277–283CrossRef Mahr K, Hillen W, Titgemeyer F (2000) Carbon catabolite repression in Lactobacillus pentosus: analysis of the ccpA region. Appl Environ Microbiol 66(1):277–283CrossRef
116.
go back to reference Tan JM, Abdel-Rahman MA, Numaguchi M, Tashiro Y, Zendo T, Sakai K, Sonomoto K (2016) Homo-fermentative L-lactic acid production from mixed sugars without carbon catabolite repression and by-products using themophilic Enterococcus faecium QU 50. RSC Ad (submitted) Tan JM, Abdel-Rahman MA, Numaguchi M, Tashiro Y, Zendo T, Sakai K, Sonomoto K (2016) Homo-fermentative L-lactic acid production from mixed sugars without carbon catabolite repression and by-products using themophilic Enterococcus faecium QU 50. RSC Ad (submitted)
117.
go back to reference Taniguchi M, Tokunaga T, Horiuchi K, Hoshino K, Sakai K, Tanaka T (2004) Production of l-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria. Appl Microbiol Biotechnol 66(2):160–165CrossRef Taniguchi M, Tokunaga T, Horiuchi K, Hoshino K, Sakai K, Tanaka T (2004) Production of l-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria. Appl Microbiol Biotechnol 66(2):160–165CrossRef
118.
go back to reference Yoshida S, Okano K, Tanaka T, Ogino C, Kondo A (2011) Homo-d-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl Microbiol Biotechnol 92(1):67–76CrossRef Yoshida S, Okano K, Tanaka T, Ogino C, Kondo A (2011) Homo-d-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl Microbiol Biotechnol 92(1):67–76CrossRef
119.
go back to reference Ouyang J, Cai C, Chen H, Jiang T, Zheng Z (2012) Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01. Appl Biochem Biotechnol 168(8):2387–2397CrossRef Ouyang J, Cai C, Chen H, Jiang T, Zheng Z (2012) Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01. Appl Biochem Biotechnol 168(8):2387–2397CrossRef
120.
go back to reference Shinkawa S, Okano K, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2011) Improved homo l-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Appl Microbiol Biotechnol 91(6):1537–1544CrossRef Shinkawa S, Okano K, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2011) Improved homo l-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Appl Microbiol Biotechnol 91(6):1537–1544CrossRef
121.
go back to reference Kádár Z, Szengyel Z, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crops Prod 20(1):103–110CrossRef Kádár Z, Szengyel Z, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crops Prod 20(1):103–110CrossRef
122.
go back to reference Abdel-Rahman MA, Tashiro Y, Zendo T, Sonomoto K (2013) Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25. RSC Adv 3(22):8437–8445CrossRef Abdel-Rahman MA, Tashiro Y, Zendo T, Sonomoto K (2013) Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25. RSC Adv 3(22):8437–8445CrossRef
123.
go back to reference Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRef Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRef
124.
go back to reference Jagatee S, Behera S, Dash PK, Sahoo S, Mohanty RC (2015) Bioprospecting starchy feedstocks for bioethanol production: a future perspective. J Microbiol Res Rev 3(3):24–42 Jagatee S, Behera S, Dash PK, Sahoo S, Mohanty RC (2015) Bioprospecting starchy feedstocks for bioethanol production: a future perspective. J Microbiol Res Rev 3(3):24–42
125.
go back to reference Öhgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 126(4):488–498CrossRef Öhgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 126(4):488–498CrossRef
126.
go back to reference Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRef
127.
go back to reference Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861CrossRef Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861CrossRef
128.
go back to reference Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2009) Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem 44(5):540–545CrossRef Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2009) Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem 44(5):540–545CrossRef
129.
go back to reference Martín C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microbiol Technol 40(3):426–432CrossRef Martín C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microbiol Technol 40(3):426–432CrossRef
130.
go back to reference Schmidt AS, Thomsen AB (1997) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64(2):139–151CrossRef Schmidt AS, Thomsen AB (1997) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64(2):139–151CrossRef
131.
go back to reference Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966CrossRef Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966CrossRef
132.
go back to reference Zhang DX, Cheryan M (1991) Direct fermentation of starch to lactic acid by Lactobacillus amylovorus. Biotechnol Lett 13(10):733–738CrossRef Zhang DX, Cheryan M (1991) Direct fermentation of starch to lactic acid by Lactobacillus amylovorus. Biotechnol Lett 13(10):733–738CrossRef
133.
go back to reference Olympia M, Fukuda H, Ono H, Kaneko Y, Takano M (1995) Characterization of starch-hydrolyzing lactic acid bacteria isolated from a fermented fish and rice food, “Burong Isda”, and its amylolytic enzyme. J Ferment Bioeng 80(2):124–130CrossRef Olympia M, Fukuda H, Ono H, Kaneko Y, Takano M (1995) Characterization of starch-hydrolyzing lactic acid bacteria isolated from a fermented fish and rice food, “Burong Isda”, and its amylolytic enzyme. J Ferment Bioeng 80(2):124–130CrossRef
134.
go back to reference Agati V, Guyot JP, Morlon-Guyot J, Talamond P, Hounhouigan DJ (1998) Isolation and characterization of new amylolytic strains of Lactobacillus fermentum from fermented maize doughs (mawe and ogi) from Benin. J Appl Microbiol 85(3):512–520CrossRef Agati V, Guyot JP, Morlon-Guyot J, Talamond P, Hounhouigan DJ (1998) Isolation and characterization of new amylolytic strains of Lactobacillus fermentum from fermented maize doughs (mawe and ogi) from Benin. J Appl Microbiol 85(3):512–520CrossRef
135.
go back to reference Vishnu C, Seenayya G, Reddy G (2000) Direct conversion of starch to l (+) lactic acid by amylase producting Lactobacillus amylophilus GV6. Bioprocess Eng 23(2):155–158CrossRef Vishnu C, Seenayya G, Reddy G (2000) Direct conversion of starch to l (+) lactic acid by amylase producting Lactobacillus amylophilus GV6. Bioprocess Eng 23(2):155–158CrossRef
136.
go back to reference Horváthová V, Janeček Š, Šturdík E (2001) Amylolytic enzymes: molecular aspects of their properties. Gen Physiol Biophys 20(1):7–32 Horváthová V, Janeček Š, Šturdík E (2001) Amylolytic enzymes: molecular aspects of their properties. Gen Physiol Biophys 20(1):7–32
137.
go back to reference van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94(2):137–155CrossRef van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94(2):137–155CrossRef
138.
go back to reference Linko YY, Javanainen P (1996) Simultaneous liquefaction, saccharification, and lactic acid fermentation on barley starch. Enzyme Microbiol Technol 19(2):118–123CrossRef Linko YY, Javanainen P (1996) Simultaneous liquefaction, saccharification, and lactic acid fermentation on barley starch. Enzyme Microbiol Technol 19(2):118–123CrossRef
139.
go back to reference Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97(2):287–296CrossRef Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97(2):287–296CrossRef
140.
go back to reference Nguyen CM, Kim J, Song JK, Choi GJ, Choi YH, Jang KS, Kim J (2012) d-lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol Lett 34(12):2235–2240CrossRef Nguyen CM, Kim J, Song JK, Choi GJ, Choi YH, Jang KS, Kim J (2012) d-lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol Lett 34(12):2235–2240CrossRef
141.
go back to reference Abdel-Rahman MA, Xiao Y, Tashiro YM, Wang Y, Zendo T, Sakai K, Sonomoto K (2015) Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression. J Biosci Bioeng 119(2):153–158CrossRef Abdel-Rahman MA, Xiao Y, Tashiro YM, Wang Y, Zendo T, Sakai K, Sonomoto K (2015) Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression. J Biosci Bioeng 119(2):153–158CrossRef
142.
go back to reference Choi M, Al-Zahrani SM, Lee SY (2014) Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice. Bioprocess Biosyst Eng 37(6):1007–1015CrossRef Choi M, Al-Zahrani SM, Lee SY (2014) Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice. Bioprocess Biosyst Eng 37(6):1007–1015CrossRef
143.
go back to reference Abdel-Rahman MA, Tashiro Y, Zendo T, Sakai K, Sonomoto K (2016) Highly efficient l-lactic acid production from xylose in cell recycle continuous fermentation using Enterococcus mundtii QU 25. RSC Adv 6(21):17659–17668CrossRef Abdel-Rahman MA, Tashiro Y, Zendo T, Sakai K, Sonomoto K (2016) Highly efficient l-lactic acid production from xylose in cell recycle continuous fermentation using Enterococcus mundtii QU 25. RSC Adv 6(21):17659–17668CrossRef
144.
go back to reference Mimitsuka T, Sawai K, Kobayashi K, Tsukada T, Takeuchi N, Yamada K, Ogino H, Yonehara T (2015) Production of d-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in d-lactic acid carbon yield. J Biosci Bioeng 119(1):65–71CrossRef Mimitsuka T, Sawai K, Kobayashi K, Tsukada T, Takeuchi N, Yamada K, Ogino H, Yonehara T (2015) Production of d-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in d-lactic acid carbon yield. J Biosci Bioeng 119(1):65–71CrossRef
145.
go back to reference Marques S, Alves LM, Gírio FM, Santos JAL, Roseiro JC (2009) Biological upgrading of wastes from the pulp and paper industry. NWBC, Helsinki, Finland, 2–4 September Marques S, Alves LM, Gírio FM, Santos JAL, Roseiro JC (2009) Biological upgrading of wastes from the pulp and paper industry. NWBC, Helsinki, Finland, 2–4 September
146.
go back to reference Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107CrossRef Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107CrossRef
147.
go back to reference Rani KY, Rao VSR (1999) Control of fermenters – a review. Bioprocess Eng 21(1):77–88CrossRef Rani KY, Rao VSR (1999) Control of fermenters – a review. Bioprocess Eng 21(1):77–88CrossRef
148.
go back to reference Xu G, Chu J, Wang Y, Zhuang Y, Zhang S, Peng H (2006) Development of a continuous cell-recycle fermentation system for production of lactic acid by Lactobacillus paracasei. Process Biochem 41(12):2458–2463CrossRef Xu G, Chu J, Wang Y, Zhuang Y, Zhang S, Peng H (2006) Development of a continuous cell-recycle fermentation system for production of lactic acid by Lactobacillus paracasei. Process Biochem 41(12):2458–2463CrossRef
149.
go back to reference Peng L, Chen Y (2011) Conversion of paper sludge to ethanol by separate hydrolysis and fermentation (SHF) using Saccharomyces cerevisiae. Biomass Bioenergy 35(4):1600–1606CrossRef Peng L, Chen Y (2011) Conversion of paper sludge to ethanol by separate hydrolysis and fermentation (SHF) using Saccharomyces cerevisiae. Biomass Bioenergy 35(4):1600–1606CrossRef
150.
go back to reference Iyer PV, Lee YY (1999) Simultaneous saccharification and extractive fermentation of lignocellulosic materials into lactic acid in a two-zone fermentor-extractor system. Appl Biochem Biotechnol 78(1):409–419CrossRef Iyer PV, Lee YY (1999) Simultaneous saccharification and extractive fermentation of lignocellulosic materials into lactic acid in a two-zone fermentor-extractor system. Appl Biochem Biotechnol 78(1):409–419CrossRef
151.
go back to reference Ojeda K, Sánchez E, El-Halwagi M, Kafarov V (2011) Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: comparison of SHF, SSF and SSCF pathways. Chem Eng J 176–177:195–201CrossRef Ojeda K, Sánchez E, El-Halwagi M, Kafarov V (2011) Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: comparison of SHF, SSF and SSCF pathways. Chem Eng J 176–177:195–201CrossRef
152.
go back to reference Lee SM, Koo YM, Lin J (2004) Production of lactic acid from paper sludge by simultaneous saccharification and fermentation. Adv Biochem Eng 87:173–194 Lee SM, Koo YM, Lin J (2004) Production of lactic acid from paper sludge by simultaneous saccharification and fermentation. Adv Biochem Eng 87:173–194
153.
go back to reference Stenberg K, Galbe M, Zacchi G (2000) The influence of lactic acid formation on the simultaneous saccharification and fermentation (SSF) of softwood to ethanol. Enzyme Microbiol Technol 26(1):71–79CrossRef Stenberg K, Galbe M, Zacchi G (2000) The influence of lactic acid formation on the simultaneous saccharification and fermentation (SSF) of softwood to ethanol. Enzyme Microbiol Technol 26(1):71–79CrossRef
154.
go back to reference Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30(6):1219–1227CrossRef Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30(6):1219–1227CrossRef
155.
go back to reference Martinez FAC, Balciunas EM, Salgado JM, González ZMD, Convertic A, Oliveira RPdS (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30(1):70–83CrossRef Martinez FAC, Balciunas EM, Salgado JM, González ZMD, Convertic A, Oliveira RPdS (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30(1):70–83CrossRef
156.
go back to reference Pleissner D, Venus J (2016) Utilization of protein-rich residues in biotechnological processes. Appl Microbiol Biotechnol 100(5):2133–2140CrossRef Pleissner D, Venus J (2016) Utilization of protein-rich residues in biotechnological processes. Appl Microbiol Biotechnol 100(5):2133–2140CrossRef
157.
go back to reference Hujanen M, Linko YY (1996) Effect of temperature and various nitrogen sources on l (+)-lactic acid production by Lactobacillus casei. Appl Microbiol Biotechnol 45(3):307–313CrossRef Hujanen M, Linko YY (1996) Effect of temperature and various nitrogen sources on l (+)-lactic acid production by Lactobacillus casei. Appl Microbiol Biotechnol 45(3):307–313CrossRef
158.
go back to reference Yu L, Lei T, Ren X, Pei X, Feng Y (2008) Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochem Eng J 39(3):496–502CrossRef Yu L, Lei T, Ren X, Pei X, Feng Y (2008) Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochem Eng J 39(3):496–502CrossRef
159.
go back to reference Tang Y, Bu L, He J, Jiang J (2013) l-lactic acid production from furfural residues and corn kernels with treated yeast as nutrients. Eur Food Res Technol 236(2):365–371CrossRef Tang Y, Bu L, He J, Jiang J (2013) l-lactic acid production from furfural residues and corn kernels with treated yeast as nutrients. Eur Food Res Technol 236(2):365–371CrossRef
160.
go back to reference Naveena BJ, Altaf M, Bhadrayya K, Madhavendra SS, Reddy G (2005) Direct fermentation of starch to l (+)-lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM. Process Biochem 40(2):681–690CrossRef Naveena BJ, Altaf M, Bhadrayya K, Madhavendra SS, Reddy G (2005) Direct fermentation of starch to l (+)-lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM. Process Biochem 40(2):681–690CrossRef
161.
go back to reference Kwon S, Lee PC, Lee EG, Chang YK, Chang N (2000) Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme Microbiol Technol 26(2–4):209–215CrossRef Kwon S, Lee PC, Lee EG, Chang YK, Chang N (2000) Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme Microbiol Technol 26(2–4):209–215CrossRef
162.
go back to reference Dicks LMT, Dellaglio F, Collins MD (1995) Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 45(2):395–397CrossRef Dicks LMT, Dellaglio F, Collins MD (1995) Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 45(2):395–397CrossRef
163.
go back to reference Yokaryo H, Tokiwa Y (2014) Isolation of alkaliphilic bacteria for production of high optically pure l-(+)-lactic acid. J Gen Appl Microbiol 60(6):270–275CrossRef Yokaryo H, Tokiwa Y (2014) Isolation of alkaliphilic bacteria for production of high optically pure l-(+)-lactic acid. J Gen Appl Microbiol 60(6):270–275CrossRef
164.
go back to reference Abdel-Rahman MA, Tashiro Y, Zendo T, Shibata K, Sonomoto K (2011) Isolation and characterization of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Appl Microbiol Biotechnol 89(4):1039–1049CrossRef Abdel-Rahman MA, Tashiro Y, Zendo T, Shibata K, Sonomoto K (2011) Isolation and characterization of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Appl Microbiol Biotechnol 89(4):1039–1049CrossRef
165.
go back to reference Nakano S, Ugwu CU, Tokiwa Y (2012) Efficient production of d-(–)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent. Bioresour Technol 104:791–794CrossRef Nakano S, Ugwu CU, Tokiwa Y (2012) Efficient production of d-(–)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent. Bioresour Technol 104:791–794CrossRef
166.
go back to reference Tashiro Y, Takeda K, Kobayashi G, Sonomoto K (2005) High production of acetone–butanol–ethanol with high cell density culture by cell-recycling and bleeding. J Biotechnol 120(2):197–206CrossRef Tashiro Y, Takeda K, Kobayashi G, Sonomoto K (2005) High production of acetone–butanol–ethanol with high cell density culture by cell-recycling and bleeding. J Biotechnol 120(2):197–206CrossRef
167.
go back to reference John RP, Nampoothiri KM (2011) Co-culturing of Lactobacillus paracasei subsp. paracasei with a Lactobacillus delbrueckii subsp. delbrueckii mutant to make high cell density for increased lactate productivity from cassava bagasse hydrolysate. Curr Microbiol 62(3):790–794CrossRef John RP, Nampoothiri KM (2011) Co-culturing of Lactobacillus paracasei subsp. paracasei with a Lactobacillus delbrueckii subsp. delbrueckii mutant to make high cell density for increased lactate productivity from cassava bagasse hydrolysate. Curr Microbiol 62(3):790–794CrossRef
168.
go back to reference Wee Y, Ryu HW (2009) Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresour Technol 100(18):4262–4270CrossRef Wee Y, Ryu HW (2009) Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresour Technol 100(18):4262–4270CrossRef
169.
go back to reference Senthuran A, Senthuran V, Hatti-Kaul R, Mattiasson B (1999) Lactic acid production by immobilized Lactobacillus casei in recycle batch reactor: a step towards optimization. J Biotechnol 73(1):61–70CrossRef Senthuran A, Senthuran V, Hatti-Kaul R, Mattiasson B (1999) Lactic acid production by immobilized Lactobacillus casei in recycle batch reactor: a step towards optimization. J Biotechnol 73(1):61–70CrossRef
170.
go back to reference Murakami N, Oba M, Iwamoto M, Tashiro Y, Takuya N, Bonkohara K, Abdel-Rahman MA, Zendo T, Shimoda M, Sakai K, Sonomoto K (2016) l-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss. J Biosci Bioeng 121(1):89–95CrossRef Murakami N, Oba M, Iwamoto M, Tashiro Y, Takuya N, Bonkohara K, Abdel-Rahman MA, Zendo T, Shimoda M, Sakai K, Sonomoto K (2016) l-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss. J Biosci Bioeng 121(1):89–95CrossRef
171.
go back to reference Oshiro M, Hanada K, Tashiro Y, Sonomoto K (2010) Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. Appl Microbiol Biotechnol 87(3):1177–1185CrossRef Oshiro M, Hanada K, Tashiro Y, Sonomoto K (2010) Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. Appl Microbiol Biotechnol 87(3):1177–1185CrossRef
172.
go back to reference Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method. J Biosci Bioeng 98(4):263–268CrossRef Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method. J Biosci Bioeng 98(4):263–268CrossRef
173.
go back to reference Tashiro Y, Shinto H, Hayashi M, Baba S, Kobayashi G, Sonomoto K (2007) Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. J Biosci Bioeng 104(3):238–240CrossRef Tashiro Y, Shinto H, Hayashi M, Baba S, Kobayashi G, Sonomoto K (2007) Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. J Biosci Bioeng 104(3):238–240CrossRef
174.
go back to reference Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies-a review. J Chem Technol Biotechnol 81(7):1119–1129CrossRef Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies-a review. J Chem Technol Biotechnol 81(7):1119–1129CrossRef
175.
go back to reference Komesu A, Martinez PFM, Lunelli BH, Filho RM, Maciel MRW (2015) Lactic acid purification by reactive distillation system using design of experiments. Chem Eng Process 95:26–30CrossRef Komesu A, Martinez PFM, Lunelli BH, Filho RM, Maciel MRW (2015) Lactic acid purification by reactive distillation system using design of experiments. Chem Eng Process 95:26–30CrossRef
176.
go back to reference Tonova K, Svinyarov I, Bogdanov MG (2014) Hydrophobic-3-alkyl-1-methylimidazolium saccharinates as extractants for l-lactic acid recovery. Sep Purif Technol 125:239–246CrossRef Tonova K, Svinyarov I, Bogdanov MG (2014) Hydrophobic-3-alkyl-1-methylimidazolium saccharinates as extractants for l-lactic acid recovery. Sep Purif Technol 125:239–246CrossRef
177.
go back to reference Wu J, Hu Y, Zhou J, Qian W, Lin X, Chen Y, Chen X, Xie J, Bai J, Ying H (2012) Separation of d-lactic acid from aqueous solutions based on the adsorption technology. Colloids Surf A Physicochem Eng Asp 407:29–37CrossRef Wu J, Hu Y, Zhou J, Qian W, Lin X, Chen Y, Chen X, Xie J, Bai J, Ying H (2012) Separation of d-lactic acid from aqueous solutions based on the adsorption technology. Colloids Surf A Physicochem Eng Asp 407:29–37CrossRef
178.
go back to reference Patnaik PR (1995) Liquid emulsion membranes: principles, problems and application in fermentation processes. Biotechnol Adv 13(2):175–208 Patnaik PR (1995) Liquid emulsion membranes: principles, problems and application in fermentation processes. Biotechnol Adv 13(2):175–208
179.
go back to reference Chen GQ, Eschbach FII, Weeks M, Gras SL, Kentish SE (2016) Removal of lactic acid from acid whey using electrodialysis. Sep Purif Technol 158:230–237CrossRef Chen GQ, Eschbach FII, Weeks M, Gras SL, Kentish SE (2016) Removal of lactic acid from acid whey using electrodialysis. Sep Purif Technol 158:230–237CrossRef
180.
go back to reference Wang X, Wang Y, Zhang X, Feng H, Xu T (2013) In-situ combination of fermentation and electrodialysis with biopolar membranes of the production of lactic acid: continuous operation. Bioresour Technol 147:442–448CrossRef Wang X, Wang Y, Zhang X, Feng H, Xu T (2013) In-situ combination of fermentation and electrodialysis with biopolar membranes of the production of lactic acid: continuous operation. Bioresour Technol 147:442–448CrossRef
181.
go back to reference Neu A, Pleissner D, Mehlmann K, Schneider R, Puerta-Quintero GI, Venus J (2016) Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l (+)-lactic acid production. Bioresour Technol 211:398–405CrossRef Neu A, Pleissner D, Mehlmann K, Schneider R, Puerta-Quintero GI, Venus J (2016) Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l (+)-lactic acid production. Bioresour Technol 211:398–405CrossRef
182.
go back to reference Li Y, Shahbazi A, Williams K, Wan C (2008) Separate and concentrate lactic acid using combination of nanofiltration and reverse osmosis membranes. Appl Biochem Biotechnol 147(1–3):1–9CrossRef Li Y, Shahbazi A, Williams K, Wan C (2008) Separate and concentrate lactic acid using combination of nanofiltration and reverse osmosis membranes. Appl Biochem Biotechnol 147(1–3):1–9CrossRef
183.
go back to reference Huang C, Xu T, Zhang Y, Xue Y, Chen G (2007) Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. J Membrane Sci 288(1-2):1–12CrossRef Huang C, Xu T, Zhang Y, Xue Y, Chen G (2007) Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. J Membrane Sci 288(1-2):1–12CrossRef
184.
go back to reference Madzingaidzo L, Danner H, Braun R (2002) Process development and optimisation of lactic acid purification using electrodialysis. J Biotechnol 96(3):223–239CrossRef Madzingaidzo L, Danner H, Braun R (2002) Process development and optimisation of lactic acid purification using electrodialysis. J Biotechnol 96(3):223–239CrossRef
185.
go back to reference Bazinet L, Lamarche F, Ippersiel D (1998) Bipolar-membrane electrodialysis: applications of electrodialysis in the food industry. Trends Food Sci Technol 9(3):107–113CrossRef Bazinet L, Lamarche F, Ippersiel D (1998) Bipolar-membrane electrodialysis: applications of electrodialysis in the food industry. Trends Food Sci Technol 9(3):107–113CrossRef
186.
go back to reference Wang X, Wang Y, Zhang X, Xu T (2012) In situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: operational compatibility and uniformity. Bioresour Technol 125:165–171CrossRef Wang X, Wang Y, Zhang X, Xu T (2012) In situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: operational compatibility and uniformity. Bioresour Technol 125:165–171CrossRef
187.
go back to reference Li H, Mustacchi R, Knowles CJ, Skibar W, Sunderland G, Dalrymple I, Jackman SA (2004) An electrokinetic bioreactor: using direct electric current for enhanced lactic acid fermentation and product recovery. Tetrahedron 60(3):655–661CrossRef Li H, Mustacchi R, Knowles CJ, Skibar W, Sunderland G, Dalrymple I, Jackman SA (2004) An electrokinetic bioreactor: using direct electric current for enhanced lactic acid fermentation and product recovery. Tetrahedron 60(3):655–661CrossRef
Metadata
Title
Biorefinery-Based Lactic Acid Fermentation: Microbial Production of Pure Monomer Product
Authors
Jiaming Tan
Mohamed Ali Abdel-Rahman
Kenji Sonomoto
Copyright Year
2018
DOI
https://doi.org/10.1007/12_2016_11

Premium Partners